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ABSTRACT 

We present new carbon and oxygen isotope curves from sections in the Bakony Mts. (Hungary), 

constrained by biostratigraphy and magnetostratigraphy in order to evaluate whether carbon isotopes 

can provide a tool to help establish and correlate the last system boundary remaining undefined in the 

Phanerozoic as well provide data to better understand the carbon cycle history and environmental 

drivers during the Jurassic-Cretaceous interval. We observe a gentle decrease in carbon isotope values 

through the Late Jurassic. A pronounced shift to more positive carbon isotope values does not occur 

until the Valanginian, corresponding to the Weissert event. In order to place the newly obtained stable 
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isotope data into a global context, we compiled 31 published and stratigraphically constrained carbon 

isotope records from the Pacific, Tethyan, Atlantic, and Boreal realms, to produce a new global δ13C 

stack for the Late Oxfordian through Early Hauterivian interval. Our new data from Hungary is 

consistent with the global δ13C stack. The stack reveals a steady but slow decrease in carbon isotope 

values until the Early Valanginian. In comparison, the Late Jurassic–Early Cretaceous δ13C curve in GTS 

2012 shows no slope and little variation. Aside from the well-defined Valanginian positive excursion, 

chemostratigraphic correlation durSchning the Jurassic–Cretaceous boundary interval is difficult, due 

to relatively stable δ13C values, compounded by a slope which is too slight. There is no clear isotopic 

marker event for the system boundary. The long-term gradual change towards more negative carbon 

isotope values through the Jurassic-Cretaceous transition has previously been explained by increasingly 

oligotrophic condition and lessened primary production. However, this contradicts the reported 

increase in 87Sr/86Sr ratios suggesting intensification of weathering (and a decreasing contribution of 

non-radiogenic hydrothermal Sr) and presumably a concomitant rise in nutrient input into the oceans. 

The concomitant rise of modern phytoplankton groups (dinoflagellates and coccolithophores) would 

have also led to increased primary productivity, making the negative carbon isotope trend even more 

notable. We suggest that gradual oceanographic changes, more effective connections and mixing 

between the Tethys, Atlantic and Pacific Oceans, would have promoted a shift towards enhanced 

burial of isotopically heavy carbonate carbon and effective recycling of isotopically light organic matter. 

These processes account for the observed long-term trend, interrupted only by the Weissert event in 

the Valanginian.  

Keywords: Late Jurassic; Early Cretaceous; chemostratigraphy; carbonate carbon cycle history
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1. Introduction 

 The Jurassic-Cretaceous transition is a relatively poorly understood interval in the development 

of the Mesozoic greenhouse world (Föllmi, 2012; Price et al., 2013). This is, in part, due to the lack of 

an agreed upon, chronostratigraphic framework for the Jurassic-Cretaceous boundary (Zakharov et al., 

1996; Wimbledon et al., 2011; Michalík and Reháková, 2011; Guzhikov et al., 2012; Shurygin and 

Dzyuba, 2015). It is a time of contentious biotic changes, for which opinions have ranged from proposal 

of a putative mass extinction (Raup and Sepkoski, 1984) or a regional event (Hallam, 1986) or non-

event (Alroy, 2008; Rogov et al., 2010). Using large taxonomic occurrence databases, several recent 

studies (particularly of tetrapods) have re-examined the Jurassic-Cretaceous boundary, and note a 

sharp decline in diversity around the Jurassic-Cretaceous boundary (Barrett et al., 2009; Mannion et al., 

2011; Upchurch et al., 2011; Tennant et al., 2016). Further, the boundary interval is characterized by 

elevated extinction and origination rates in calcareous nannoplankton (Bown, 2005) set against a 

background of several calpionellid diversification events (Remane, 1986; Michalík et al., 2009) and an 

evolutionary rise of the modern plankton groups, notably dinoflagellates and coccolithophores 

(Falkowski et al., 2004). The system boundary also presents persistent stratigraphic correlation 

problems, which explains why the Jurassic–Cretaceous boundary is the only Phanerozoic system 

boundary for which a GSSP (Global Stratotype Section and Point) remains to be defined (Wimbledon, 

2008; Wimbledon et al., 2011). The problems in global correlation of the Jurassic–Cretaceous boundary 

arise from the lack of an agreed upon biostratigraphical marker, in part related to general regression 

leading to marked provincialism in different fossil groups. The Tethyan based ammonite definition for 

the base of the Cretaceous has been the base of the Jacobi Zone (e.g., Hoedemaeker et al., 1993), 

although the base of which falls within the middle of relatively long sub-Boreal Preplicomphalus Zone 
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and the Boreal Nodiger Zone. Other definitions of the Jurassic–Cretaceous boundary (see Grabowski, 

2011; Wimbledon et al., 2011) include the base of Grandis ammonite Subzone, in the lower part of 

calpionellid Zone B, almost coinciding with the base of magnetozone M18r (Colloque sur la Crétacé 

inferieur, 1963) or the boundary between Grandis and Subalpina ammonite subzones, correlated with 

the middle part of calpionellid Zone B and the lower part of magnetozone M17r (Hoedemaeker, 1991). 

Due to scarcity of ammonites in many Tethyan Tithonian and Berriasian successions, calpionellids have 

been used as the main biostratigraphic tool in some studies (e.g., Horváth and Knauer, 1986;  lau and 

 r n, 1997; Houša et al., 2004;  oughdiri et al., 2006; Michalík et al., 2009;  rabowski et al., 2010a). 

The base of Calpionella Zone (B Zone) and the sudden appearance of a monospecific association of 

small, globular Calpionella alpina (referred to by authors as the alpina "acme", Remane 1985; Remane 

et al., 1986) is sometimes used as an indicator of the Jurassic-Cretaceous boundary. The base of 

reversed- polarity chron M18r has also been suggested as a convenient global correlation horizon near 

the clustering of these possible biostratigraphic-based boundaries (Ogg and Lowrie, 1986). The 

recognition of this magnetozone across provincial realms (e.g., Ogg et al., 1991; Houša et al., 2007; 

Grabowski et al., 2010a) has enabled inter-regional correlations. In the GTS2012, Ogg and Hinnov 

(2012a) utilize the base of chron M18r for assigning the numerical age (145.0 Ma) to the top of the 

Jurassic. Notably, the base of chron M18r which falls within the middle of the Berriasella jacobi Zone. 

Hence, Wimbledon et al. (2011) , tentatively suggest that several markers have the potential to help 

define any putative Jurassic-Cretaceous boundary. 

Carbon isotope stratigraphy is useful both to help understand past global environmental and 

biotic change that affected carbon cycle, and as a correlation tool. For example, the GSSP for the base 

of the Eocene Series is defined by a negative excursion in the carbon isotope curve (Aubry et al., 2007). 
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To serve both purposes, Late Jurassic–Early Cretaceous carbon isotope stratigraphies have been 

developed extensively from pelagic sediments of the Tethys Ocean and Atlantic (e.g., Weissert and 

Channell, 1989; Bartolini et al., 1999; Katz et al., 2005; Tremolada et al., 2006; Michalík et al., 2009; 

Coimbra et al., 2009; Coimbra and Olóriz, 2012). Weissert and Channell (1989) documented how the 

Late Jurassic carbonate carbon isotopic composition shifts from δ13C values of around 2.5‰ in the 

Kimmeridgian to values near 1.0‰ in the Late Tithonian–Early Berriasian. A change to lower δ13C 

values was identified to occur within Magnetozones M18–M17 and within the B/C Calpionellid Zone 

(Weissert and Channell, 1989). The low δ13C values of the earliest Cretaceous contrast with the more 

positive values obtained from the Valanginian (Lini et al., 1992; Hennig et al., 1999; Weissert et al., 

1998; Duchamp-Alphonse et al., 2007; Főzy et al., 2010). Such variation has led to the idea that carbon 

isotopes may be useful in adding to the characterisation of the Jurassic–Cretaceous boundary (e.g., 

Michalík et al., 2009; Dzyuba et al., 2013; Shurygin and Dzyuba, 2015) although others (e.g., Ogg and 

Hinnov, 2012a) note the lack of significant geochemical markers. Changes in the Late Jurassic–Early 

Cretaceous carbon isotope record are interpreted to reflect decelerated global carbon cycling and 

ocean productivity (Weissert and Mohr, 1996) and have been variously linked to changes in sea level, 

aridity and temperature (e.g., Weissert and Channell, 1989; Ruffell et al., 2002a; Tremolada et al., 2006; 

Föllmi, 2012). Other carbon isotope records through the Jurassic–Cretaceous boundary show 

somewhat different trends. For example, Michalík et al. (2009) documented a minor (<0.5‰) negative 

excursion in the latest Jurassic (Late Tithonian), whilst some Boreal records (e.g., Žák et al., 2011) show 

negligible variation associated with the boundary. Dzyuba et al. (2013) reported a positive δ13C shift 

immediately above the Jurassic–Cretaceous boundary. The significance of Jurassic–Cretaceous carbon 

isotope stratigraphies is underlined by correlation needs for the yet-to-be-defined GSSP.  
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 In this study we report new carbon isotope data for the Late Jurassic–Early Cretaceous from 

two sections, Lókút Hill and Hárskút in Hungary (Figs. 2, 3). Both sections are well constrained by 

ammonite (Figs. 4, 5), belemnite (Vigh, 1984; Horváth and Knauer, 1986; Főzy, 1990) and calpionellid 

(Horváth and Knauer, 1986; Grabowski et al., 2010a) biostratigraphy. Magnetostratigraphy is also 

available for Lókút Hill (Grabowski et al., 2010a). The aim of this study is to assess whether a consistent 

pattern in carbon isotope variation can be established, particularly with respect to the Jurassic–

Cretaceous boundary. To this end, we also developed a new global stack of carbonate 13C curves for 

the Jurassic–Cretaceous transition (from the Late Oxfordian to Early Hauterivian), based on the two 

newly obtained curves and a global compilation of 30 published curves from this interval. We use this 

global stack to evaluate the possible controls on carbon isotope variation (similar to the approach 

taken by Wendler (2013) for the Late Cretaceous) and the correlation potential of carbon isotope 

stratigraphy. Comparisons to a range of other climate proxies (including the oxygen isotopic 

composition of fossil belemnites derived from a range of low and mid Tethyan palaeolatitude sites) and 

environmental events is also made to help elucidate controls on the global 13C stack. 

2. Geological setting 

The studied Hungarian sections are situated ca. 6 km apart from each other in the 

southwestern part of the central Bakony Mountains (Fig. 1) that belongs to the Transdanubian Range, 

which in turn forms part of the Bakony Unit in the Austroalpine part of the AlCaPa terrane (Csontos 

and Vörös, 2004). This complex structural unit stretches from the Eastern Alps to the Western 

Carpathians. Its Mesozoic sedimentary succession is thought to have deposited on the southern 

passive margin of the Penninic ocean branch of the western Neotethys (Csontos and Vörös, 2004) (Fig. 
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1). In the lowermost part of the studied sections, the cherty Lókút Radiolarite Formation crops out 

(Figs. 2, 3). The overlying unit consists of red and yellowish, well-bedded nodular limestone (Pálihálás 

Limestone Formation), which passes gradually into light grey, less nodular, ammonite-rich facies 

(Szentivánhegy Limestone Formation). The uppermost part of both sections (Figs. 2, 3) are made up of 

white, thin-bedded, Biancone-type limestone (Mogyorósdomb Limestone Formation). The boundaries 

between these formations are gradational. A brief description of these lithostratigraphical units is 

given in Császár (1997). The studied section at Lókút (referred to as the hilltop section) ranges in age 

from the late Oxfordian to Berriasian, whereas at Hárskút (section HK-II) upper Kimmeridgian to 

Berriasian strata are exposed.  

The entire Jurassic succession of Lókút Hill (exposed in three disjunct sections, of which the 

hilltop section is the youngest) is the most complete and thickest Hettangian to Tithonian succession of 

Transdanubian Range, deposited in a deep, pelagic environment (Galácz and Vörös, 1972). In the 

"horst and graben" palaeogeographic model proposed by Vörös and Galácz (1998), this locality 

represents a site of typical basinal deposition. The Upper Jurassic–lowermost Cretaceous strata (Fig. 2) 

are exposed on the southwestern edge of the top of Lókút Hill in an artificial trench (47° 12' 17" N, 17° 

52' 56" E). The beds gently dip (20°) to the north. Biostratigraphic data from the Tithonian part of the 

section were first provided by Vigh (1984), later amended and complemented by late Oxfordian and 

Kimmeridgian cephalopod data by Főzy et al. (2011). In addition,  rabowski et al. (2010a) developed a 

calpionellid biostratigraphy and magnetostratigraphy for the Tithonian–Berriasian part of the section. 

Bed numbers of Grabowski et al. (2010a) are still visible, allowing correlation with these data and our 

isotope results.  
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At Hárskút, two measured Late Jurassic–Early Cretaceous sections (referred to as HK-II and HK-

12) are exposed on the opposite sides of a small valley, the Közöskút Ravine (Fig. 3). In the ravine itself, 

a Lower to Middle Jurassic Ammonitico Rosso-type succession crops out. Studies by Fülöp et al. (1969) 

and Galácz (1975) established the presence of repeated gaps due to non-deposition. Within the "horst 

and graben" palaeogeographic model (Vörös and Galácz, 1998), these strata represent intermittent 

deposition on an elevated submarine high. Overlying the extremely lacunose Middle Jurassic and the 

cherty Lókút Radiolarite Formation, the Upper Jurassic limestone succession is more complete. The 

studied profile (HK-II) is a c. 10 m high natural cliff, also known as “Prédikálószék” (“Pulpit”, 47° 09' 

53,4" N, 17° 47' 7,36" E). It offers excellent outcrop of the fossiliferous Upper Jurassic to lowermost 

Cretaceous limestone units. For the uppermost Kimmeridgian–Tithonian part of the section, Főzy (1990) 

established an ammonite-based biostratigraphy, whereas for the Berriasian part of the same profile, 

calpionellid and ammonite stratigraphy was provided by Horváth and Knauer (1986). The section HK-II 

described in the present paper is situated a few hundred meters west of a complementary section (HK-

12), which recently was subject of a detailed integrated stratigraphic study by Főzy et al. (2010), who 

demonstrated the Late Valanginian positive carbon isotope excursion, known as the Weissert event 

(Erba et al., 2004). 

3. Material and methods 

A substantial cephalopod fauna was collected from Lókút in 1962–1964 by a team of the 

Hungarian Geological Institute under the supervision of J. Fülöp. Our re-measuring and re-sampling of 

the section yielded additional specimens. Cephalopods of the studied section are housed in the 

Department of Palaeontology of the Hungarian Natural History Museum and partly in the Museum of 
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the Hungarian Geological and Geophysical Institute. Perusal of the original documentation allowed us 

to accurately reconstruct the source beds of the specimens collected nearly 50 years ago and partly 

published by Vigh (1984). Ammonites (Figs. 4, 5) are preserved throughout both sections as internal 

moulds As the fauna consists of solely Mediterranean (i.e. Tethyan) elements, the ammonite 

biostratigraphic zonation of Enay and Geyssant (1975) and Olóriz (1978) were used. Belemnites of 

stratigraphical value were collected only from the Tithonian of the Lókút section.  

 For this study, stable isotope analyses of 165 bulk carbonate samples were taken from sections 

at Lókút (hilltop) and Hárskút (HK-II) (Figs. 2, 3). The average spacing of samples was ~0.15 m. 

Subsamples, avoiding macrofossils and sparry calcite veins, were then analysed for stable isotopes. 

Carbonate powders were analysed on a GV Instruments Isoprime Mass Spectrometer with a Gilson 

Multiflow carbonate auto-sampler at Plymouth University, using 250 to 400 micrograms of carbonate. 

Isotopic results were calibrated against the NBS-19 standard. Reproducibility for both δ18O and δ13C 

was better than ±0.1‰, based upon duplicate sample analyses. 

4. Results 

4.1. Biostratigraphy 

Based on the rich and relatively well-preserved ammonite fauna which was collected bed-by-

bed, high-resolution biostratigraphical subdivision of the lower, cephalopod-bearing part of the Upper 

Jurassic–lowermost Cretaceous section was possible (Főzy et al., 2011). Above the lowermost beds of 

probable Oxfordian age, a relatively complete succession of the Kimmeridgian Platynota, Strombecki, 

Divisum, Compsum, Cavouri and Beckeri zones was recognised, which is followed by the Tithonian 

Hybonotum, Darwini, Semiforme, Fallauxi, Ponti and Microcanthum zones. Representative and age-
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diagnostic Late Jurassic ammonites from the Lókút section are shown in Figure 4. The belemnite fauna 

allowed the recognition of four belemnites assemblages (TiBA-I to TiBA-IV) for the Tithonian part (Főzy 

et al., 2011). Range charts showing the distribution of the complete ammonoid and belemnite fauna 

were presented in Főzy et al. (2011). 

From the Lókút section Grabowski et al. (2010a) published detailed calpionellid biostratigraphic 

data. Their lowermost samples analysed were assigned to the Early Tithonian Parastomiosphaera 

malmica Zone, whereas the overlying 3 m of the Szentivánhegy Limestone Formation belongs to the 

Chitinoidella Zone (Fig. 2). Two samples containing Chitinoidellidae together with a few specimens of 

Praetintinnopsella sp., were placed in the Praetintinnopsella Zone. Higher upsection, the remanei 

Subzone (or A1), and the intermedia (or A2) Subzone of the Crassicollaria Zone is identified (Grabowski 

et al., 2010a). The calpionellid assemblage of the next bed is mainly composed of Calpionella alpina 

and Crassicollaria parvula and was therefore assigned to the Early Berriasian alpina Subzone of the 

Calpionella Zone (Grabowski et al., 2010a). Therefore, Grabowski et al. (2010a) place the Tithonian-

Berriasian boundary (and thus the Jurassic–Cretaceous boundary) at the Crassicollaria/Calpionella 

zonal boundary, following the criteria of Remane et al. (1986). In comparing the Lókút ammonite 

assemblages with calpionellid data, a general agreement is demonstrated where the data overlap. For 

example, the first appearance of chitinoidellids coincides with the base of the Microcanthum Zone (e.g., 

Benzaggagh et al., 2010). 

Within the Hárskút HK-II section, the first beds above the radiolarite provided ammonites (Fig. 

5) characteristic of the latest Kimmeridgian Beckeri Zone. Higher up the complete succession from the 

Hybonotum to the Ponti Zone was documented by Főzy (1990). Similarly to Lókút, the Upper Tithonian 
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seems less complete, or at least not as well documented by means of ammonites. The Durangites and 

Microcanthum Zones could not be separated (Főzy, 1990). Although the upper part of the section 

yielded only very poorly preserved ammonites, Horváth and Knauer (1986) recognised all of the 

Mediterranean standard ammonite subzones, including the Jacobi, Grandis, Occitanica and Boissieri 

Zones (Fig. 3). Horváth and Knauer (1986) also recognised the presence of minor gaps on the basis of 

successive faunas, particularly in the Grandis Zone as well as within the Occitanica and Boissieri Zones. 

The calpionellid assemblages identified by Horváth and Knauer (1986 ) at Hárskút (Fig. 3) 

allowed the recognition of the intermedia Subzone of the Crassicollaria Zone as well as the Berriasian 

alpina, elliptica, simplex and oblonga Subzones. Therefore, Horváth and Knauer (1986) place the 

Tithonian/Berriasian boundary at the Crassicollaria/Calpionella zonal boundary, following the criteria 

of Remane et al. (1986). In comparison with calpionellid data from Lókút, a general agreement is seen, 

as the same succession of calpionellid assemblages have been identified, significantly also across the 

Jurassic–Cretaceous boundary.  

An integrated stratigraphic analysis of the overlying, higher part of the Lower Cretaceous 

(Berriasian–Hauterivian), exposed in the HK-12 section, was carried out by Főzy et al. (2010). They 

identified the Calpionella Zone at the base of the section, and a nearly complete sequence spanning 

the Occitanica to Boissieri ammonite zones. The overlying Lower Valanginian strata are condensed, but 

yielded rich assemblages from the Pertransiens and Campylotoxus zones. Stable isotope analyses 

revealed a well-defined positive δ13C excursion in the Valanginian strata, identified as the Weissert 

event. These data are integrated with those reported in this study from the Tithonian and Berriasian of 

Hárskút HK-II section.  
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4.2. Calibration with magnetostratigraphy 

Grabowski et al. (2010a) recently published integrated magneto- and biostratigraphies of the 

upper part of the Lókút section. The observed 6 reverse and 5 normal polarity intervals were 

correlated with magnetochrons M21r through to M18r spanning the Jurassic-Cretaceous boundary. On 

the basis of calpionellid biostratigraphy, Grabowski et al. (2010a), place the Jurassic–Cretaceous 

boundary between beds no. 44 and 45, and based on reference sections (e.g., Ogg et al., 1991; Houša 

et al., 2004) the boundary therefore appears in the middle part of normal polarity magnetosubzone 

M19n2n (Fig. 2). Consequently, Grabowski et al. (2010a), correlate the magnetic polarity intervals from 

the Jurassic–Cretaceous boundary down and up the section. This approach indicates that the 

magnetozone M19r occurs entirely within the intermedia subzone (A2) in the Upper Tithonian, which is 

consistent with other studies (e.g., Ogg et al., 1991). Likewise the M21n2n/M21r magnetosubzones fall 

within the Fallauxi Zone, in agreement with Ogg and Hinnov (2012a). For the Hárskút section no 

magnetostratigraphic data are available. 

4.3 Stable carbon and oxygen isotope stratigraphy  

Measurements of the carbon isotope composition of bulk carbonate yielded positive δ13C 

values throughout the sections examined. At Lókút, values around 2.5‰ characterise the lower, 

Kimmeridgian part of the section, followed by a gradual negative shift, reaching a minimum of 0.0‰ 

within the Lower Berriasian. Higher up-section, a return towards more positive values up to 0.7‰ is 

observed.  iostratigraphic data (Vigh, 1984; Főzy et al., 2011;  rabowski et al., 2010a) together with 

magnetostratigraphic data (Grabowski et al., 2010a) allow us to accurately place the low point seen in 

the carbon isotope curve within these schemes. This minimum appears in the upper part of 
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magnetosubzone M19n2n and towards the middle of calpionellid Zone B (i.e. the alpina Subzone) (Fig. 

2). The oxygen isotope data at Lókút are more variable and range from ~ 0.0 to -3.2‰. The highest 

δ18O values occur at the base of the section. Although showing a degree of scatter, isotope values 

become increasingly more negative, reaching -3.2‰ towards the top of the section. 

At Hárskút (HK II), there is overall more isotopic variability (Fig. 3). Carbon isotope values of 

around 1.5‰ characterise the lower (Upper Kimmeridgian) part of the section, followed by a gradual 

negative shift, reaching a minimum of 0.9‰ within the Lower  erriasian. Following this, a return 

towards more positive values is once again observed. At the top of the section, carbon isotope values 

of 1.7‰ are recorded. The oxygen isotope data are much more variable in this section, too, and range 

from ~ -1.8 to 0.3‰. The most positive δ18O values occur close to the base of the section and show 

significant scatter; oxygen isotope values become increasingly more negative towards the top of the 

section. 

5. Discussion 

5.1. Towards a new global δ13C stack 

In order to place the newly obtained stable isotope data from Lókút and Hárskút into a broader 

context, we compiled 31 published Late Jurassic-Early Cretaceous carbon isotope curves, covering the 

Oxfordian to Hauterivian interval (Fig. 6, Table 1). From the literature we gleaned those carbonate 

carbon isotope data which have adequate stratigraphic constraints, so that magneto and/or bio-

chronostratigraphic calibration and correlation is possible. Reference was made to biostratigraphic 

schemes (e.g., Hoedemaeker, 1991; Remane, 1986; Wimbledon et al., 2011) that allow Tethyan–Boreal 

correlations as well as correlations to magnetostratigraphic data. All stratigraphic data were evaluated, 
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so that the compilation of Gradstein et al. (2012) (e.g., Ogg and Hinnov, 2012a; 2012b) could be used. 

Hence, the top of the Jurassic is the base of chron M18r with a the numerical age of 145.0 Ma. These 

carbon isotope data are dominated by pelagic basinal locations, within Tethys and the Atlantic Ocean 

(Table 1, Fig. 7). These successions have often been focused upon because of one or more of the 

following: their completeness, the fine grained pelagic carbonate sediments suitable for isotope work, 

lack of or limited diagenesis and available biostratigraphy and/or magnetostratigraphy.  

Despite the differences in amplitude and offsets in absolute δ13C values, there is in general a 

good agreement of long-term δ13C trends in all the sections compared, correlated on the basis of their 

biostratigraphic and/or magnetostratigraphic framework. There are similar trends in our data from 

Hungary compared with datasets from other Tethyan, Atlantic and Pacific locations (Weissert and 

Channell, 1989; Weissert and Mohr, 1996; Katz et al., 2005; Coimbra and Olóriz, 2012; Žák et al., 2011). 

Given the large distances between the sites (Fig. 7) it is notable that the overall shape the δ13C curves 

are similar in some intervals. The δ13C decline through the Late Jurassic and across the Jurassic–

Cretaceous boundary, stable values in the Berriasian and a major Early Cretaceous positive δ13C 

excursion, i.e. the Valanginian Weissert event, are clearly recognisable in all sections covering this 

interval. With respect to the isotope data from Lókút Hill (Fig. 2), the δ13C decline through the Late 

Jurassic is distinct.  

Differences in absolute values and amplitude most likely reflect a number of factors including 

local influences on the water chemistry such as nutrient levels and primary productivity, fluvial 

influences supplying isotopically lighter and more variable DIC, sediment reworking, and the varying 

contribution of diagenetic cements. Other differences arise potentially from low sampling resolution or 
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analysis of poorly constrained or correlated sections. Those sections that show generally high 

amplitude δ13C shifts (e.g., La Chambotte, eastern France) are potentially affected by a combination of 

sedimentology, diagenesis and the influence of varying supply of isotopically light DIC (Morales et al., 

2013). As La Chambotte represents platform lagoonal and open-marine facies (Morales et al., 2013) 

high amplitude δ13C variation is to be expected. Another noisy record is derived from the 

stratigraphically well constrained Kimmeridgian of the Swiss Jura (Colombié et al., 2011). Although, 

Colombié et al. (2011) showed that a long-term negative trend characterizes the entire Kimmeridgian 

interval studied (consistent for example with the Lókút section) the high-frequency changes in δ13C 

most probably result from a mix of diagenetic and local environmental effects (Colombié et al., 2011). 

Few δ13C records across the Jurassic–Cretaceous boundary have been derived from organic 

carbon (e.g., Wortmann and Weissert, 2000; Morgans-Bell et al., 2001; Falkowski et al., 2005; Nunn et 

al., 2009; Hammer et al., 2012). The highly detailed curve for the Kimmeridge Clay in Dorset (Morgans-

Bell et al., 2001) ends within the Lower Tithonian, but a declining trend from the Kimmeridgian to 

Tithonian is evident. Likewise a declining marine δ13Corg trend is seen in DSDP site 534A data reported 

by Falkowski et al. (2005) from the Tithonian, before a pronounced positive event is seen associated 

with the Valanginian (Patton et al., 1984). Those Late Jurassic and Early Cretaceous δ13Corg data derived 

from woody material and charcoal (Nunn et al., 2009, 2010; Pearce et al., 2005; Gröcke et al., 2005) 

also reveal a long-term decline in carbon-isotopes through the Late Jurassic and a positive Valanginian 

excursion closely matching the marine carbon-isotope curves. Notably a lack of data is apparent for the 

latest Tithonian and earliest Berriasian. 
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In order to separate the anomalous, the regional and the global trends, an average δ13Ccarbonate 

stack was developed (Fig. 8), based on the sections compared and presented here (Fig. 6). The new 

global δ13C stack (Fig. 8) is used to visualise and identify those globally synchronous shifts in δ13C that 

can be applied for global correlation. The δ13C stack does not include any estimated or calculated 

average, but instead shows all data of the curves with a grey envelope indicating the range of absolute 

values. Using the available magnetostratigraphy and biostratigraphy as tie-points for alignment of the 

records, the curves were plotted onto the same scale, adjusted to the data from DSDP 534A of 

Tremolada et al. (2006), Bornemann and Mutterlose (2008) and Katz et al. (2005) in order to visualize 

similarities and differences. Some error may be incorporated here, particularly for shorter isotope 

records, even when combined biostratigraphy is available, as for example magnetostratigraphic 

resolution may be not fine enough to allow for multiple tie-points or variable sediment accumulation 

rates need to be estimated. Notably the data from Lókút and Hárskút do not fall outside of the stack. 

These data (from Lókút and Hárskút) are from a pelagic settings, consistently seen elsewhere. Although 

carbon isotope data from shallower marine settings (e.g., Colombié et al., 2011) also see similar trends 

attesting to the robustness of the carbon isotopic signal.  

The stack clearly shows a decline in δ13C throughout the Late Jurassic–Early Cretaceous, 

reaching a minimum in the Early Cretaceous in magnetochron M12, near the base of the Campylotoxus 

Zone (see also Weissert et al., 1998). The positive excursion in the Valanginian, (the Weissert event), is 

plainly evident. Our data from Hárskút (Fig. 3) clearly reveals the positive excursion in the Valanginian 

(see Főzy et al., 2010). The width of the grey envelope partly reflects the sampling density within the 

data set, and additional data could certainly modify the picture. Nevertheless, for intervals with similar 

data coverage, the outline of the envelope and its width may help evaluate the relative importance of 
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and reproducibility of possible global isotopic trends. The well constrained Valanginian event contrasts 

with much of the earlier record, in particular the Early Tithonian, where the width of the grey envelope 

is larger, potentially reflecting local influences on the water chemistry, sediment reworking, diagenesis 

combined with stratigraphic uncertainty. Hence, aside from the well-defined Valanginian event, 

chemostratigraphic correlation using the δ13C record from the Late Jurassic–earliest Cretaceous is 

challenging due to relatively stable δ13C values, a broad envelope, compounded by a slope too slight.  

 In comparison, the composite Late Jurassic–Early Cretaceous δ13C curve in GTS 2012 shows little 

more than the Valanginian Weissert event and slightly elevated values in the Late Tithonian (Ogg and 

Hinnov, 2012a; 2012b). A largely unvarying carbon isotope profile through this interval within the GTS 

2012 appears at odds with the records summarized herein. The generalized curves in GTS 2012 were 

derived from Jenkyns et al. (2002) for the Late Jurassic and Föllmi et al. (2006) for the Early Cretaceous, 

the latter in turn relies solely on data reported by Emmanuel and Renard (1993) for the Berriasian and 

earliest Valanginian, and Hennig et al. (1999) for most of the Valanginian and earliest Hauterivian. In 

comparison, our compilation includes numerous other sources for a more reliable composite curve. 

The lack of variation through the Jurassic–Cretaceous boundary is therefore not particularly useful in 

adding to the characterisation of the boundary. The low point and return to more positive values seen 

in our data from Lókút and Hárskút appearing in the upper part of magnetosubzone M19n2n and 

towards the middle of calpionellid Zone B (the Alpina Subzone) (Figs. 2, 3) is not resolved in the δ13C 

stack. Likewise, the positive  oreal δ13C shift immediately above the Jurassic–Cretaceous boundary 

correlated to Tethyan records recorded by Dzyuba et al. (2013) is also not resolvable in the δ13C stack.  

5.2. Comparison and interpretation of δ13C trends  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 18 

Our newly obtained stable isotope data from Lókút and Hárskút (Figs. 2, 3), taken together with 

the δ13C stack, as noted above, shows a shifts towards negative values throughout the Late Jurassic–

Early Cretaceous, reaching a minimum in the Early Cretaceous. Mechanisms proposed to cause global 

shifts towards negative carbon isotope values include changes in productivity and organic carbon burial, 

increases in volcanic activity and episodic rapid methane release from gas hydrates contained in 

marine sediments. Large negative excursions in marine carbonate δ13C are often associated with 

period boundaries and mass extinctions (Kump, 1991). Given the typically abrupt nature of isotope 

excursions related to inferred methane fluxes (e.g., Menegatti et al., 1998), this mechanism appears 

unlikely in the studied interval. Changes in carbon isotopes may, however, be related to ecological 

crises culminating in the disappearance of macro- and microfaunas. The Jurassic–Cretaceous boundary 

was earlier considered to be one of the major mass extinction events during the Phanerozoic (Sepkoski 

and Raup, 1986) with groups such as corals, brachiopods, bivalves, ammonites and fish all affected. As 

noted above, subsequent work has downgraded the boundary to a minor extinction event at most 

(Alroy, 2008). However, some recent studies have found evidence for a real diversity trough within 

terrestrial dinosaurs and marine reptiles (e.g., Mannion et al., 2011). The Jurassic–Cretaceous 

boundary interval is also characterized by significantly elevated extinction and origination rates in 

calcareous nannoplankton (Roth, 1987; Bown, et al., 2004; Bown, 2005; Tremolada, et al., 2006). 

Tremolada et al. (2006) document high abundances of late middle Tithonian oligotrophic taxa such as 

Nannoconus spp. and Conusphaera spp. correlating with low δ13C values. Oligotrophic conditions in the 

Tethyan seaway have been linked to drier climates and a sea level low during the latest Jurassic (e.g., 

Hallam et al., 1991; Abbink et al., 2001; Ruffell et al., 2002b; Schnyder et al., 2006)(Fig. 8), reduced 

runoff and reduced nutrient fluxes to the oceans, lowering the fertility of surface waters (e.g., Weissert 
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and Channell, 1989). Hence, the sea-level fall during the latest Jurassic to early Berriasian (e.g., Haq, 

2014) may in part correlate with aridity, lower inputs of nutrients and the gradual negative δ13C shift. A 

kaolinite minimum is known from all over Europe and associated with a major Late Jurassic “dry event” 

(e.g., Hallam et al. 1991, Abbink et al. 2001; Rameil, 2005; Schnyder et al., 2006). Rameil (2005), 

inferred from cyclostratigraphy, the duration of the dry phase, as defined on the Jura platform, to be 

8.4 Ma (Fig. 8). However, both field observations and sedimentary log interpretation, suggest that the 

drier phase can be subdivided into a dry phase sensu stricto lasting about 2.8 Ma, followed by a longer 

transition phase (Rameil, 2005). However, the decline in δ13C seen is not a short interval associated just 

with the Jurassic–Cretaceous boundary but one that begins in Oxfordian times and continues into the 

Early Valanginian. The change to once again more positive carbon isotopes in the Early Cretaceous 

Tethyan seaway in the Valanginian is therefore interpreted as a change to increasingly nutrient-rich 

conditions and enhanced carbon cycling (Weissert and Channell, 1989). The similarity of the δ13Corg 

trends derived from woody material and charcoal, noted above, to the marine carbonate δ13C stack 

clearly supports the notion that the surface ocean and atmosphere behaved as coupled reservoirs at 

this time. 

In contrast, the Sr isotope record for this interval (Fig. 8) (e.g., Jones et al., 1994; McArthur et al., 

2004; Bodin et al., 2009; Wierzbowski et al., 2012) shows a trend towards more radiogenic values from 

a long-term low at the Callovian-Oxfordian boundary to a peak in the Barremian. This variation in Sr-

isotopes possibly reflects a change in the balance of flux from relatively non-radiogenic Sr derived from 

mid-ocean ridge hydrothermal activity to relatively radiogenic Sr derived from continental weathering 

(including changes in both total riverine flux and the isotopic composition of the flux). The 87Sr/86Sr low 

in the middle Oxfordian is, however, not seen as correlatable with an obvious pulse of ocean crust 
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production (e.g., Rowley, 2002) or with the formation of a large igneous province. Wierzbowski et al., 

(2012) do call upon fast oceanic crust spreading and opening of new ocean basins during the 

Bathonian– Callovian-Oxfordian related to the breakup of Gondwana to account for the Callovian-

Oxfordian minimum 87Sr/86Sr ratios observed (Fig. 8). Indeed, the data Cogné and Humler (2006) do 

possibly point to higher overall seafloor spreading rates for the Late Jurassic. Notably, the Paraná–

Etendeka large igneous province is Valanginian-Hauterivian in age with volcanic activity starting at 

134.6 ± 0.6 Ma or at 134.3 ± 0.8 Ma (Thiede and Vasconcelos, 2010; Janasi et al., 2011) coincident with 

the onset of the Weissert Event (Martinez et al., 2015). The Sr-isotope data at this time (Fig. 8) does 

not show any inflections in the curve (McArthur et al., 2001). Indeed, investigations regarding the 

spreading and production rates of oceanic ridges (e.g., Rowley, 2002; Cogné and Humler, 2006) show 

fairly constant production rates of oceanic crust during the Cretaceous. If rates of ocean floor 

production do not change substantially, then hydrothermal Sr fluxes should also be relatively invariant 

over long time scales. The implication is that the source of Sr from continental weathering is likely to 

be a major factor governing the evolution of marine 87Sr/86Sr. Indeed, phosphorus flux rates (Föllmi, 

1995) which are dependent on continental weathering rates, show a decrease from a high values in the 

Late Jurassic, to a low through the Jurassic–Cretaceous boundary, and a subsequent increase through 

into Hauterivian times. Likewise high sediment fluxes to the central North Atlantic Ocean during the 

latest Jurassic to Early Cretaceous (post the Late Jurassic “dry event”) are also observed (e.g., Thiede 

and Ehrmann, 1986). Episodes of increased hydrothermal activity are, however, not necessarily directly 

related to rates of ocean-crust production and phenomena as ridge jumps or changes in ridge 

orientation may substantially increase hydrothermal venting by additional fracturing of oceanic crust 
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and consequent greater access of seawater to hotter, fresher material at the ridge axis (Jones and 

Jenkyns, 2001).  

The relatively short-lived arid episode (or dry phase sensu stricto, Rameil, 2005) and possible 

linked short-term sea-level fall and rise (e.g., Haq, 2014 ) appears not to be reflected in the Sr-isotope 

curve. The short duration of arid conditions and presumed reduction in continental weathering and 

change in 87Sr/86Sr ratios, is unlikely to be resolvable over such a short timescale as inputs and outputs 

of Sr are possibly buffered too well by the large oceanic reservoir of Sr (Richter and Turekian, 1993). 

Likewise, short-term ocean fertilisation, productivity and carbon burial events, appear also not to be 

reflected in either the Sr-isotope or the carbon isotope curves. For example, deposition of significant 

petroleum source rocks of Late Jurassic and Early Cretaceous age, known from Arabian-Iranian region, 

West Siberia, the North Sea, Greenland Sea (Klemme and Ulmishek, 1991) and Mexico (the Casita Fm, 

Adatte et al., 1996) are evidently not expressed within the δ13C record (Weissert and Mohr, 1996; Price 

and Rogov, 2009; Föllmi, 2012). Paradoxically, evidence for widespread organic matter deposition in 

the marine environment during the Valanginian is rather scarce, yet the Valanginian does show a 

pronounced positive carbon isotope excursion (e.g., Lini et al., 1992; Channell et al., 1993; Bersezio et 

al., 2002; Erba et al., 2004; Duchamp–Alphonse et al., 2007; Sprovieri et al., 2006; Littler et al., 2011, 

Figs. 6, 7). Hence simple models of transient positive carbon isotope excursions associated with burial 

and sequestration of isotopically light marine carbon (12C) may not be fully applicable for this interval. 

Likewise, given the evolutionary rise of the modern plankton groups through Late Jurassic–Early 

Cretaceous time one would anticipate an overall increase in δ13C values in marine carbonates (e.g., 

Falkowski et al., 2004).  
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The type of carbon burial (organic vs. carbonate carbon), accumulation rates, and areal 

distribution of facies may instead be important factors with respect to changes in the carbon isotopic 

signature of the Jurassic and Cretaceous oceans (Weissert, 2011; Föllmi, 2012). Mass balance models 

for the Cretaceous (Locklair et al., 2011) suggest that elevated rates of carbonate burial (burying 

relatively isotopically heavy carbon) could have dampened changes in δ13CDIC expected from elevated 

organic carbon burial rates (Weissert and Mohr, 1996; Föllmi, 2012). Indeed through the Late Jurassic-

Early Cretaceous transition elevated rates of carbonate burial and preservation are observed (e.g., 

Mackenzie and Morse, 1992; Berner and Mackenzie, 2011). For example, during the Late Jurassic 

carbonate sedimentation became dominant over wide parts of the northern Tethys (Rais et al., 2007), 

with the expansion and development of new reef sites (Leinfelder et al., 2002; Cecca et al., 2005). 

Likewise, the surge of diversification of calcareous nannoplankton at the Jurassic-Cretaceous boundary 

interval involved the evolution of three large and heavily calcified genera that would have greatly 

increased the transfer and burial efficiency of carbonate (Tremolada et al., 2006). In terms of the areal 

distribution, widespread biogenic deep-water carbonate sedimentation (Zeebe and Westbroek, 2003) 

within a well-mixed ocean at this time would provide means to maintain a steady state between 

carbonate-mineral burial (Locklair et al., 2011) and weathering, buffering changes in carbon cycling. In 

contrast, earlier ocean systems (before pelagic calcifiers became increasingly abundant) were 

dominated by biogenic shallow-water carbonate precipitation perhaps explaining why in the 

Palaeozoic, Triassic and Early Jurassic carbon isotope anomalies (e.g., Payne et al., 2004; Hesselbo et al., 

2007) have amplitudes of up to 6 ‰ or more. 

Certainly organic carbon burial occurred during the Late Jurassic and Early Cretaceous, but 

within marginal seas (e.g., Wignall and Hallam, 1991; Hantzpergue et al., 1998; Price and Rogov, 2009). 
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Deposition in marginal seas would have been initiated as eustatic sea-level peaked in the 

Kimmeridgian–early Tithonian, followed by a lowstand across the Jurassic-Cretaceous boundary, 

followed by a slight rise, and fall again in the Valanginian–Hauterivian (Hallam, 2001; Haq, 2014) (Fig. 8). 

However, carbon burial within marginal seas evidently did not impact significantly on the global ocean 

chemistry, due to the possibly relatively small size of marginal seas compared to the global ocean and 

through efficient ocean mixing. Indeed, the Late Jurassic was a time of progressive fragmentation of 

Pangaea (Dercourt et al., 1994) and new oceanic gateways were formed and in particular, the opening 

of the Hispanic Corridor, connecting the Pacific to the Atlantic Ocean (Ziegler, 1988). Although the first 

shallow-water connection between the Tethys/Atlantic Ocean and the Pacific Ocean is dated as 

Pliensbachian–Toarcian (Aberhan, 2001) the continuous deepening of the Hispanic Corridor associated 

with a first order sea-level rise, allowed significant water mass exchange between the two basins 

during the Late Jurassic (Riccardi, 1991; Stille et al., 1996; Hallam, 2001, Fig. 7). Studies on reef 

development (Leinfelder et al., 2002) for example confirm the establishment of a first true seaway 

around the Callovian–Oxfordian boundary. 

It has also been suggested that a decrease in organic carbon burial on the continent (Föllmi, 

2012) may also have played a role in buffering the δ13C record. The dominance of arid conditions on 

the continent (e.g., Hallam et al., 1991; Schnyder et al., 2006) may have precluded major organic 

carbon production and preservation. Indeed relatively large amounts of coal deposition in the earlier 

part of the Jurassic is followed by a decline through the Jurassic–Cretaceous boundary (e.g., Bluth and 

Kump 1991). Conversely, Westerman et al., (2010) and Kujau et al., (2012) for example, call for 

continental organic carbon burial (i.e. coal deposition) to explain the Valanginian carbon cycle 

perturbation. If, as noted above, the surface ocean and atmosphere behaved as coupled reservoirs at 
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this time, this would not preclude continental organic carbon burial as a viable means to affect carbon 

cycling. 

5.3. Oxygen isotopes and palaeoenvironmental change 

 The preservation of primary δ13C values during carbonate diagenesis is quite typical, and is 

likely due to the buffering effect of carbonate carbon on the diagenetic system, as this is the largest 

carbon reservoir (e.g., Scholle and Arthur, 1980). Fluid-rock interactions during diagenesis, however, 

commonly result in a change in oxygen isotope ratios leading to relatively light δ18Ocarb values (Hudson, 

1977). Hence, with respect to the oxygen isotope data, a diagenetic overprint affecting the samples 

analysed and results cannot be excluded. Nevertheless, the oxygen isotope data from both sites in 

Hungary do show a similar pattern. Furthermore, given that the isotopic trends are the same as that 

seen from diagenetically screened belemnites from Lókút (Főzy et al., 2011) we are confident that the 

trends do reflect a primary signal, independent of diagenesis. Increasingly negative δ18O values are 

often correlated with elevated temperatures in environmental settings where continental ice volume is 

at a minimum and evaporation or freshwater inputs are minor factors. Similar trends have been 

observed elsewhere (e.g., Tremolada et al., 2006; Price and Rogov, 2009; Grabowski et al., 2010b), but 

not universally as other studies found opposite trends (e.g., Emmanuel and Renard, 1993; Padden et al., 

2002). Larger datasets through the Late Jurassic and into the Cretaceous, based on the isotopic 

composition of fossil belemnites and brachiopods (e.g., Veizer, et al., 1999; Gröcke et al., 2003; 

Wierzbowski, 2004; McArthur et al., 2007; Riboulleau et al., 1998; Bodin et al., 2009, 2015; Price and 

Rogov 2009; Dera et al., 2011; Alberti et al., 2012; Price et al., 2000; 2011; 2013; Meissner et al., 2015), 

also show a similar trends (Fig. 8). The data compiled in Figure 7 are derived from data from a range of 
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low and mid Tethyan palaeolatitudes and should, therefore, be less affected by regional (e.g., salinity-

driven) isotopic variation. Nevertheless trends can also be linked to other factors, for example variation 

in terrestrial water bodies and sea level variations (e.g., Föllmi 2012). If, interpreted in terms of 

temperature, the data point to Oxfordian warming and a further peak in the middle Tithonian 

separated by a temperature plateau. Oxfordian warming and a temperature peak in the middle 

Tithonian is consistent with TEX86 temperature data of Jenkyns et al. (2012). A possible Late Berriasian 

cooling event is seen (a shift to more positive δ18O values), followed by cooling through the Valanginian. 

The Hauterivian shows a return to warmer conditions. Shorter term trends through the Jurassic-

Cretaceous boundary interval are less clear as belemnite oxygen isotope data in this compilation are 

fewer and the 95% confidence interval is greater. The scatter in values here means trends must be 

interpreted with caution. Notably, despite some considerable change in oxygen isotopes through the 

Late Jurassic and Early Cretaceous, any recognisable correlation with the δ13C curve is lacking. For 

example, during the pronounced Valanginian shift to more positive carbon isotope values (the 

Weissert event), temperatures continue to fall, but as part of a longer term trend. The TEX86 data of 

Littler et al. (2011), also showed little recognisable correlation of temperature with the δ13C curve for 

the Valanginian.  

Of note is that the transition from arid to humid climates through the Late Jurassic and Early 

Cretaceous may have been associated with the net transfer of water to the continent owing to the infill 

of dried-out groundwater reservoirs in internally drained inland basins (Föllmi, 2012) and thereby 

affecting the oxygen isotope of seawater. The prominent Late  erriasian shift to more positive δ18O 

values, could conceivably be related to the observed arid to humid climate transition, short-term sea-

level fall (Fig. 8) and a net transfer of water towards the continent (e.g., Föllmi, 2012). Recently, 
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Wendler et al. (2016) also demonstrated that aquifer eustasy represents a viable alternative to explain 

sea level fluctuations and consequently variation in the oxygen isotope of seawater.  

 

6. Conclusions  

The δ13C data from Hungary are consistent with other isotope stratigraphies and indicate that 

the Lókút and Hárskút sections record global events, as reflected in a stack of 30 individual carbon 

isotope curves. Aside from the well-defined Valanginian event, chemostratigraphic correlation using 

the δ13C record is challenging due to relatively stable δ13C values showing a slope which is too slight. 

The Berriasian minimum and the return to more positive values seen in our data from Lókút and 

Hárskút is not resolved in the global δ13C stack. Oxygen isotopes point to warming through the Late 

Jurassic interval, broadly in agreement with larger datasets through the Jurassic and Cretaceous, based 

on the isotopic composition of fossil belemnites and brachiopods. This latter dataset point to a 

stepwise cooling through the Valanginian. Notably, despite large changes in temperature through the 

Late Jurassic and Early Cretaceous any recognisable correlation with the δ13C curve is lacking. 

The Late Jurassic δ13C decline has been explained by increasingly oligotrophic conditions in the 

Tethyan seaway (e.g., Weissert and Channell, 1989), whilst more positive carbon isotope values in the 

Valanginian are ascribed to increasingly nutrient-rich conditions and enhanced carbon cycling and 

burial. However, the Jurassic–Cretaceous boundary interval is also characterized by elevated rates of 

calcareous nannoplankton turnover and enhanced organic carbon deposition that it is not expressed 

within the δ13C record. The type of carbon burial (organic vs carbonate carbon), accumulation rates, 

and areal distribution of facies may be the key, whereby elevated rates of carbonate burial (including 
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large and heavily calcified calcareous nannoplankton, Tremolada et al., 2006) could have buffered 

changes in δ13CDIC expected from elevated weathering and increased organic carbon burial rates 

(particularly in marginal seas). We envisage also well-mixed parts of the ocean, perhaps as a result of 

connections established between the Tethys and Central Atlantic, and the full opening of the Hispanic 

Corridor effectively linking the Atlantic and Pacific Oceans. This scenario reconciles the apparently 

contradictory trends in carbon and strontium isotopes. The strontium isotope data through the 

Jurassic-Cretaceous interval points to a longer term intensification of weathering (and a decreasing 

contribution of non-radiogenic hydrothermal Sr), which would have presumably increased the transfer 

of elements such as silica and phosphorus from the continents to the oceans (e.g., Föllmi, 1995) 

resulting in increased productivity. An increased transfer of elements is consistent with the observation 

of high sediment fluxes to the central North Atlantic Ocean during the latest Jurassic to Early 

Cretaceous (post the Late Jurassic “dry event”). However, there is a background evolutionary rise of 

the modern plankton groups, notably organic-walled phytoplankton (i.e. dinoflagellates) and 

calcareous nannoplankton (coccolithophores) in Late Jurassic–Early Cretaceous time (Falkowski et al., 

2004). Therefore the effectiveness of the biological carbon pump and export of carbonate carbon is 

expected to gradually increase. The carbon isotope trend is thus all the more remarkable, as its forcing 

counterbalances the effects of the “Mesozoic plankton revolution”.  
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Figure captions 

 

Fig. 1. Location and palaeogeographic setting of the studied sections. A: Location of Lókút Hill and 

Hárskút in the Bakony Hills of the Transdanubian Range in western Hungary. B: Palaeogeographic 

setting of the Transdanubian Range (TR) and neighbouring units within a reconstructed Tithonian (Late 

Jurassic) western Tethyan palaeogeography (after Csontos and Vörös, 2004). 

Fig. 2. Integrated biostratigraphy, magnetostratigraphy and carbon and oxygen isotope stratigraphy 

from the Lókút section. The measured log and samples are referenced using the bed numbers of Vigh 

(1984). Ammonite zones for the Kimmeridgian and Tithonian follow the zonation scheme by Enay and 

Geyssant (1975) and Geyssant (1997). LRF = Lókút Radiolarite Formation. Pm. = Parastomiosphaera 

malmica Zone.  elemnite assemblages are from Főzy et al. (2011).  

Fig. 3. Integrated stratigraphy of the Hárskút HK-II section showing the ammonite and calpionellid 

biostratigraphy (from Horváth and Knauer, 1986, Főzy, 1990) and carbon and oxygen isotope curves. 

Abbreviations: Kim. = Kimmeridgian, Occit. = Occitanica Zone; Boiss. = Boissieri Zone. 

Fig. 4. Representative and age-diagnostic Late Jurassic ammonites from the Lókút section. Inventory 

numbers of the Department of Paleontology and Geology of the Hungarian Natural History Museum 

are prefixed by INV. All figures are natural size. 

1. Haploceras verruciferum (Zittel, 1869), INV.2014.76, Bed LH 122, Semiforme Zone. 

2, 3. Simoceras biruncinatum (Zittel, 1869), INV.2014.75, Bed LH 133, Fallauxi Zone. 
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4, 5. Trapanesites adelus (Gemmellaro, 1872), INV.2014.77, Bed LH 110-111, Compsum Zone (?). 

Fig. 5. Representative and age-diagnostic Late Jurassic ammonites from the Hárskút (HK-II) section. 

Inventory numbers of the Hungarian Geological and Geophysical Institute are prefixed by J. All figures 

are natural size. 

1. Haploceras verruciferum (Zittel, 1869), J 10923, Bed 60, Semiforme Zone. 

2. Semiformiceras fallauxi (Oppel, 1865), J 10875, Bed 54, Fallauxi Zone. 

3, 4. Haploceras carachtheis (Zeuschner, 1846), J 10908, Bed 49, Fallauxi Zone. 

5. Semiformiceras semiforme (Oppel, 1865), J 10870, Bed 59, Semiforme Zone. 

6. Simoceras admirandum (Zittel, 1869), J 10965, Bed 48, Fallauxi Zone. 

7. Semiformiceras birkenmajeri Kutek & Wierzbowski, 1986, J 10367, Bed 62, Darwini Zone. 

8, 9. Ptychophylloceras ptychoicum (Quenstedt, 1847), J 10683, Bed 44, Fallauxi Zone. 

10, 11. Anaspidoceras neoburgense (Oppel, 1863), J 10371, Bed 64, Darwini Zone. 

12. Haploceras elimatum (Oppel, 1865), J 10600, Bed 51, Fallauxi Zone. 

13, 14. Lytogyroceras subbeticum Olóriz, 1978, J 10976, Bed 42, Ponti Zone. 

15, 16. Discosphictoides cf. rhodaniforme Olóriz, 1978, J 10363, Bed 59, Semiforme Zone. 

Fig. 6. Summary of global carbonate δ13C correlations for the Late Jurassic-Early Cretaceous. Global 

correlation of δ13C data is based on 31 published Late Jurassic-Early Cretaceous records from the 

Boreal Realm, Atlantic Ocean and Tethys. The δ13Ccarb data are from bulk sediments except for the 
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Subpolar Urals and North Siberia composite data derived from belemnites from Dzyuba et al. (2013) 

and Price and Mutterlose (2004). The data from Cardador, Southern Spain (Coimbra et al., 2009) and 

Montclus, Vocontian Basin (Morales et al., 2013) is shown as a 3-point moving average. For each 

location a number is provided which corresponds to the section number in Table 1. Numeric ages (a 

linear scale), magnetostratigraphy and Tethyan Ammonite Zones are from GTS 2012 (Ogg and Hinnov, 

2012a; 2012b). 

Fig. 7. Global and regional (inset) Late Jurassic palaeogeographic reconstruction (modified from Blakey, 

2015) showing the distribution of localities used to generate of the δ 13C stack. For each location a 

number is provided which corresponds to the section number in Table 1. Location H = location of 

Hungarian sites. 

Fig. 8. A global δ 13C stack calibrated with magnetostratigraphy. The δ13Ccarb data are from bulk 

sediments as shown in detail in Fig. 6, excluding data from the Subpolar Urals and North Siberia 

(Dzyuba et al., 2013; Price and Mutterlose, 2004) and excluding the data from La Chambotte (Morales 

et al., 2013) and the Kimmeridgian data from the Swiss Jura (Colombié et al., 2011). Belemnite oxygen 

isotope data from sources cited within the text; the Sr isotope record from Jones et al. (1994); 

McArthur et al., (2004) and Bodin et al., (2009); humid and arid phases from Hallam et al. (1991) and 

Ruffell et al. (2002b) with Jurassic “dry event” transition phase (from Rameil, 2005) and eustatic sea-

level curve from Haq (2014). Numeric ages, magnetostratigraphy and Tethyan Ammonite Zones are 

from GTS 2012 (Ogg and Hinnov, 2012a; 2012b). 
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Table 1 Numbered location, stratigraphical range, magneto and/or bio-chronostratigraphic control, 

lithology and source reference for published Late Jurassic-Early Cretaceous carbon isotope curves. 

Location Stratigraphical 
span 

Stratigraphic 
control 

Lithology Reference 

1. Długa Valley, 
Poland 

Late Oxfordian–
Early Tithonian 

radiolaria and 
calcareous 
dinoflagellates 

nodular limestones 
and radiolarites 

Jach et al., 
(2014) 

2. ODP 1149B, 
Pacific Ocean 

Valanginian–Early 
Hauterivian 

radiolaria and 
calcareous 
dinoflagellates 

radiolarian chert 
and nannofossil 
chalk and marls 

Erba et al., 
(2004) 

3. ODP Site 603, 
Atlantic Ocean 

Late Berrisian-
Early Hauterivian 

nannofossils and 
magnetostratigraphy 

nannofossil 
limestone and 
mudstones 

Littler et al., 
(2011) 

4. Terminilletto, 
central Italy 

Late Oxfordian-
Late Tithonian 

radiolaria limestone and 
cherts 

Bartolini et 
al., (1999) 

5. Gresten 
Klippenbelt, 
Austria 

Tithonian–Early 
Berriasian  

ammonites, 
calpionellids, 

nannofossils, 
magnetostratigraphy 

pelagic marl-
limestone cycles 

Lukeneder et 
al., (2010) 

6. Cuber, 
Mallorca, 
Spain 

Late Oxfordian–
Early Berriasian 

ammonites bedded and nodular 
marly limestones 

Coimbra and 
Olóriz, (2012) 

7. Berrias, France Berriasian ammonites 
calpionellids 

pelagic limestones Emmanuel  
and Renard, 
(1993) 

8. Subpolar 
Urals/North 
Sibera  

LateTithonian–
Late Valanginian 

ammonites, 
magnetostratigraphy 

belemnites Dzyuba et 
al., (2013); 
Price & 
Mutterlose, 
(2004) 

9. Montsalvens, 
Switzerland 

Late Oxfordian–
Tithonian 

ammonites nodular limestones 
with chert 

Padden et 
al., (2002) 

10. Gemmi, 
Switzerland 

Late Oxfordian–
Tithonian 

ammonites nodular limestones 
with chert 

Padden et 
al., (2002) 

11. Gorges du 
Pichoux, Swiss 
Jura 

Kimmeridgian– 
Early Tithonian 

ammonites lime mudstones Colombié et 
al., (2011) 

12. Capriolo, Italy Berriasian– nannofossils, marly limestones Lini et al., 
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Hauterivian magnetostratigraphy with chert (1992) 

13. Cardador, 
Betic 
Cordillera, 
Spain 

Oxfordian–
Tithonian 

ammonites bedded and nodular 
limestones 

Coimbra et 
al., (2009) 

14. Cala Fornells, 
Mallorca, 
Spain 

Oxfordian–Early 
Tithonian  

ammonites bedded and nodular 
marly limestones 

Coimbra & 
Olóriz, (2012) 

15. Breggia, 
Switzerland 

Berriasian–
Hauterivian 

nannofossils, 
magnetostratigraphy 

pelagic limestone 
with chert  

Bersezio,et 
al., (2002) 

16. Angles, France Late Berriasian–
Early Hauterivian 

ammonites, 
nannofossils, 
calpionellids 

marl–limestone 
alternations 

Duchamp–
Alphonse et 
al., (2007) 

17. Hlboča 
Slovakia 

Tithonian–Early 
Valanginian 

calpionellids, 
magnetostratigraphy 

nodular limestone, 
cherty limestones 

Grabowski et 
al., (2010b) 

18. DSDP 105, 
Atlantic Ocean 

Tithonian–
Valanginian 

nannofossils limestone and 
claystones 

Tremolada et 
al. (2006); 
Brenneke, 
(1978) 

19. DSDP 534A, 
Atlantic Ocean 

Early Tithonian–
Hauterivian 

nannofossils, 
magnetostratigraphy 

limestone and 
claystones 

Tremolada et 
al. (2006); 
Katz et al. 
(2005) 

20. Frisoni, Italy Late 
Kimmeridgian– 
Early Berriasian  

calpionellids, 
magnetostratigraphy 

nodular limestone 
and thin bedded 
limestones  

Weissert  
and Channell 
(1989) 

21. Brodno, 
Western 
Carpathians, 
Czech 
Republic 

Tithonian–Early 
Berriasian 

Calpionellids, 
nannofossils, 
magnetostratigraphy 

pelagic limestones  Michalik et 
al., (2009) 

22. Xausa, Italy Late 
Kimmeridgian– 
Berriasian 

calpionellids, 
magnetostratigraphy 

nodular limestone 
and thin bedded 
limestones 

Weissert  
and Channell 
(1989) 

23. Valle del Mis, 
Italy 

Tithonian–Early 
Berriasian 

calpionellids, 
magnetostratigraphy 

nodular marly 
limestone and thin 
bedded limestones 

Weissert  
and Channell 
(1989) 

24. Guppen –
Heuberge, 
Switzerland 

Late Oxfordian– 
Early Berriasian 

ammonites, 
calpionellids 

nodular and micritic 
limestones 

Weissert and 
Mohr, (1996) 

25. Bucegi 
Mountains, 

Early Valanginian–
Early Hauterivian 

ammonites, 
nannofossils 

pelagic limestones  Barbu, 
(2014) 
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Romania 

26. La Chambotte, 
France 

Early Berriasian–
Early Valanginian 

foraminifera, 
calpionellids,  

shallow-water 
limestones 

Morales et 
al., (2013) 

27. Montclus, 
France 

Early Berriasian–
Early Valanginian 

ammonites, 
nannofossils 

hemipelagic marl-
limestones 

Morales et 
al., (2013) 

28. Puerto Escano, 
Spain 

Tithonian–Early 
Berriasian 

calpionellids, 
ammonites, 
magnetostratigraphy 

limestones and 
nodular limestones  

Zak et al., 
(2011) 

29. San Lucas, 
Mexico 

Berriasian–
Valanginian 

calpionellids Marls and 
limestones 

Adatte et al., 
(2001) 

30. Umbria, Italy Berriasian–
Hauterivian 

calpionellids, 
magnetostratigraphy 

limestones Sprovieri et 
al., (2006) 

31. Pusiano, 
Northern Italy 

Berriasian–
Hauterivian 

Nannofossils, 
magnetostratigraphy 

Pelagic limestones Channell et 
al., (1993) 
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Figure 1 
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Figure 8 
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Highlights 

We present a new carbon isotope global stack for the Jurassic-Cretaceous boundary 

The data  provide an archive tracking  the evolving carbon cycling cycle 

Data indicate a lack of carbon isotope variation across the Jurassic–Cretaceous (system) boundary 

The carbon isotope trends counters the effects of the “Mesozoic plankton revolution”.  


