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Expiratory flow limitation can develop in parallel with the progression of COPD, and as a consequence, dynamic 
hyperinflation and lung mechanical abnormalities can develop. Dynamic hyperinflation can cause increased 
breathlessness and reduction in exercise tolerance. Achievement of critical inspiratory reserve volume is one of the 
main factors in exercise intolerance. Obesity has specific lung mechanical effects. There is also a difference 
concerning gender and dyspnoea. Increased nerve activity is characteristic in hyperinflation. Bronchodilator therapy, 
lung volume reduction surgery, endurance training at submaximal intensity, and heliox or oxygen breathing can 
decrease the degree of dynamic hyperinflation.
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One of the main symptoms in chronic obstructive pulmonary disease (COPD) is dyspnoea, 
and initially it is manifested during exercise and later at rest with the progression of the 
disease. Dyspnoea leads to exercise intolerance in parallel with physical inactivity, and as a 
consequence, disability may develop (28). The main causes of exercise intolerance may be 
lung mechanical abnormalities and patient’s deconditioning (28). 

Dyspnoea is characterised by an increase in the following factors: respiratory work/
effort ratio, breathing load, end-expiratory lung volume (EELV) related dynamic 
hyperinflation, intrinsic positive end-expiratory pressure (PEEP) related elastic effort, and 
neurological sensation (Fig. 1) (28). Dyspnoea manifestation is often associated with dynamic 
hyperinflation (DH) in patients with COPD from moderate to severe obstruction (26, 28, 29, 
35, 42). The discrepancy between respiratory centre induced respiratory muscle work and 
muscle load, and capacity related lung volume changes lead to neuromechanical dissociation 
(Fig. 2). The consequence of this process is the development of dynamic hyperinflation as a 
cause of chronic and exertional dyspnoea (28).
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Fig. 1. Schematic representation of contributing factors that worsen dyspnoea

Fig. 2. Schematic representation of inputs to respiratory drive and dyspnoea.  
Discrepancy between ventilator drive and respiratory muscles’ capacity and load related respiratory  

muscle function

The aim of this review is to understand the mechanisms inducing dyspnoea, lung 
mechanical changes in COPD and the importance of DH. We will have an overview about the 
reduction of dynamic hyperinflation by pharmacotherapy, and the importance of complex 
pulmonary rehabilitation improving the quality of life in COPD, and how it delays dynamic 
hyperinflation.

Anatomical characteristics in COPD

COPD is a structural and functional disorder of the lungs, which has an effect on lung 
parenchyma and lung mechanics (2, 5, 21, 41). As a basic feature of emphysema, the alveolar 
wall can be destroyed and the surface of gas exchange can reduce. Elastic recoil of the lungs 
can reduce because of destruction in the alveolar attachment and as a consequence static 
hyperinflation can develop (2, 21, 41). Airway resistance is increased in COPD, and as a 
consequence, flow limitation can develop (2, 21, 41). Flow limitation is progressive; it has 
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association with chronic inflammation of the airways in response to noxious particles and 
gases (2). Flow limitation can be demonstrated by flow-volume curves. Tidal flow-volume 
curve can achieve the maximum flow-volume curve during exercise showing flow limitation 
(Fig. 3). Chest wall compartments such as the upper and lower rib cages and abdominal 
compartments, and rib cage distortion are changing during exercise. These factors have an 
effect on exercise but with no strong relationship with dyspnoea (5).

Fig. 3. Maximum and tidal flow-volume curves during exercise with and without flow limitation.  
The inner dotted line shows flow-volume curves at rest, and the dashed line shows it at maximal exercise.  

Panel A without and panel B with flow limitation. Flow limitation during exercise in COPD (Adapted from 
reference 34, reprinted with the permission of Dovepress. Copyright © 2014 Dovepress)  

Abbreviations are the following: COPD: chronic obstructive pulmonary disease, IC: inspiratory capacity

Mechanisms to hyperinflation

In hyperinflation, the respiratory system’s relaxation volume can move to a higher level 
because of parenchymal destruction of emphysema, which increases lung compliance (29). 
In the case of expiratory flow limitation, EELV can also dynamically change and vary with 
the time constant for emptying (the product of resistance and compliance) of the respiratory 
system. DH therefore refers to this temporary and variable increase in EELV (28, 29). In 
flow-limited patients, EELV is a continuous dynamic variable, which depends on expiratory 
flow limitation and breathing pattern. DH in flow-limited patients is a consequence: as 
ventilation increases and expiratory duration decreases, there is not enough time to allow 
EELV to decline to its baseline resting value. Finally, inspiration begins before expiration is 
complete and DH is the result (28, 29).

In asthma, DH may develop because of active braking by the ribcage muscles during 
expiration but there is no evidence for the same phenomenon in COPD (29). As a potential 
mechanism, DH during induced bronchoconstriction may develop asthma as a result of 
afferent sensory feedback from vagal airway mechanosensors activated by dynamic airway 
compression during expiration (29). In this situation, mechanosensors can stimulate 
inspiratory muscle activation before expiration is complete and as a consequent EELV can 
increase. Induced dynamic airway compression in COPD at rest and during exercise (22, 29) 
has been shown to consistently have a tachypneic influence on breathing and it can be 
speculated that airway mechanoreceptor afferent input may similarly influence the control of 
EELV during exercise (29).
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Significant DH has been recorded in the following clinical situations: mechanical 
ventilation in patients with asthma and COPD, methacholine induced bronchoconstriction in 
asthma, COPD acute exacerbation, metronome-paced hyperventilation in COPD, and during 
the increased ventilation of weight bearing or cycle exercise in patients with COPD and 
cystic fibrosis (29).

Transpulmonary pressure

The pressure difference between lung surface and the entrance of the airways is transpulmonary 
pressure, which equals the difference between alveolar pressure and the intrapleural pressure 
in the lungs at a pause of breathing (45).

Since atmospheric pressure is relatively constant, pressure in the lungs must be higher 
or lower than atmospheric pressure for flowing air between the atmosphere and the alveoli 
(45). Elastic recoiling of the lungs can generate the pressure needed to flow air. In physiological 
conditions, the transpulmonary pressure is always positive; intrapleural pressure is always 
negative and relatively high, while alveolar pressure moves from a slightly positive value to 
a slightly negative one during breathing (45). At any lung volume, the transpulmonary 
pressure is equal and opposite of the elastic recoil pressure of the lungs (45).

There is a difference between inhalation and exhalation in transpulmonary pressure vs. 
volume curve (usually plotted as volume in function of pressure). The lung volume at any 
given pressure during inhalation is lower than the lung volume at any given pressure during 
exhalation (45).

Respiratory work

Respiratory work can be generated by the respiratory muscles during inspiration and 
expiration. Respiratory work needs to be produced because of elastic resistance and flow-
resistive forces of the thorax and lungs (24). At rest, the respiratory muscles require about 
0.5–1.0 mL of oxygen per ventilation litre. With increasing ventilation, the oxygen cost per 
unit of ventilation becomes progressively greater. It has been estimated that 10% or more of 
the total oxygen uptake is needed for respiratory work during heavy exercise (24). 

Intensity of dyspnoea

The intensity of dyspnoea depends on the respiratory effort (pleural pressure/maximal 
inspiratory pressure) and the duration of inspiration. Different ratios can be used to 
characterise inspiratory effort during exercise. Oesophageal pressure/maximal inspiratory 
pressure (Peso/Pim) ratio (43), and tidal volume/vital capacity ratio (VT/VC) as a respiratory 
neuromechanical index can be used (18, 25). In special cases, gas exchange abnormalities 
lead to critical arterial hypoxaemia and hypercapnia, which are in a direct or indirect way 
causing dyspnoea during exercise (28). These factors depend on each other, and a complex 
integrity to breathing discomfort can develop (28). Mechanical factors, such as acute dynamic 
hyperinflation has an effect on breathing severity during exercise (28). Studies show that 
bronchodilator therapy, lung volume reduction surgery, or oxygen breathing reduce 
hyperinflation and dyspnoea (Fig. 4) (6).

It is difficult to evaluate the potential effect of dynamic hyperinflation on respiratory 
symptoms, including VT restriction negative effect, pressure change in the chest and functional 
weakness of inspiratory muscles (10, 26). Dynamic hyperinflation as a potential dyspnoea 
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inducing mechanism has an effect on inspiratory load, induction of inspiratory muscle 
fatigue, chemoreceptor stimulation with carbon-dioxide (CO2) retention and arterial 
desaturation (Fig. 5) (26). In previous studies, healthy subjects and interstitial lung disease 
patients have shown that the limitation of VT increment has an association with increased 
respiratory work (effort), which is related to dyspnoea intensity and inspiratory difficulty in 
COPD (10, 18, 26). The bronchodilator effect on VT increment and reduction in dyspnoea 
support the hypothesis that VT restriction is an important and potential reversible dyspnoea 
factor (26).

Fig. 4. Schematic representation of different mechanisms to reduce hyperinflation

Fig. 5. Pathophysiological consequences of dynamic hyperinflation
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Lung mechanical abnormalities

Lung mechanical abnormalities are specific. Irreversible airway obstruction and expiratory 
flow limitation (EFL) during tidal breathing lead to a swing in intrathoracal gas volume (35). 
End-expiratory lung volume (EELV) is increasing with the progression of the disease. As 
flow limitation is achieved, more respiratory work with more respiratory energy is needed 
(35). Because of the increasing respiratory rate and reduction in exhalation time, lung 
volumes do not normalize during exercise, and increasing EELV with dynamic hyperinflation 
can develop (6, 35, 42, 46). These factors significantly increase dyspnoea, and the quality of 
life worsens (6, 35, 48).

At rest and during exercise, dynamic hyperinflation induces dyspnoea, which may lead 
to neuromechanical dissociation (36). The favourable effect of bronchodilator treatment in 
moderate to severe COPD patients reduces chronic and exertion dyspnoea with the reduction 
of starting EELV and IC increases (36). These factors correlate more strongly with the degree 
of dyspnoea and exercise tolerance compared to forced expiratory volume in one second 
(FEV1) (36).

Critical inspiratory reserve volume and exercise tolerance

The increment of dynamic hyperinflation and decrease in inspiratory reserve volume (IRV = 
TLC (total lung capacity)-EELV) increase dyspnoea and reduce exercise tolerance in COPD 
patients (15). Physical activity in patients with COPD decreases with dynamic hyperinflation 
during exercise. Dynamic hyperinflation worsens dyspnoea on exercise and quality of life 
(15). As dynamic hyperinflation increases, IRV can fall below a critical level in daily life (7, 
15). IRV and the degree of dyspnoea have no linear relationship in patients with moderate to 
severe COPD. At a certain level of IRV, there is an inflection point, where the dyspnoea 
significantly increases. This inflection point is 0.3–0.5 litre in IRV, and from this level tidal 
volume (VT) cannot further exceed (7, 9). However, achievement of critical VT and IRV has 
a significant effect on the intensity of dyspnoea and exercise tolerance independently from 
the degree of dynamic hyperinflation (10).

O’Donnell et al. have focused on the mechanical effect in relation with critical dyspnoea 
and IRV in constant work rate test (CWR) (26). The hypothesis has been that in the early 
phase of exercise, hyperinflation has a favourable effect on respiratory sensation in terms of 
reducing expiratory flow limitation (27). However, by achieving critical IRV, the intensity of 
dyspnoea significantly increases with the increasing respiratory effort (Pes/Ptot, VT/VC) 
(26). Based on the critical mechanical restriction theory, in hyperinflated patients the main 
factors are the intensity of dyspnoea, ventilation, breathing pattern, operative lung volumes, 
Pes-dependent dynamic respiratory mechanics and dyspnoea-IRV inflection point (28).

Difference of lung mechanics during exercise between healthy subjects  
and COPD patients

Tidal volume in parallel with ventilation is needed to increase during exercise. In healthy 
subjects, because of absence of flow limitation, end-expiratory lung volume (EELV) can 
decrease and end-inspiratory lung volume (EILV) can increase, but it does not achieve the 
critical inspiratory reserve volume (IRV) volume (500 mL) (Fig. 6) (7, 29, 34). In COPD 
patients, as a consequence of flow limitation, EELV and EILV increase, and IRV value can 
reduce to a critical interval (< 500 mL) (Fig. 6) (7, 29, 34).
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Fig. 6. Operational lung volumes during exercise in healthy subjects and COPD patients. On the compliance 
curves the small ellipsis (A) represents the volume at rest and the large ellipsis (B) in healthy subjects  

(upper panel), and the small ellipsis (C) represents the volume at rest and the large ellipsis (D) in patients  
with COPD. (Adapted from reference 6, reprinted with the permission of the Elsevier. Copyright © 2014 Elsevier) 

Abbreviations are the following: EELV: end-expiratory lung volume, EILV: end-inspiratory lung volume,  
IRV: inspiratory reserve volume, TLC: total lung capacity

Obesity and lung mechanics, dynamic hyperinflation

In COPD, especially in the bronchitis phenotype, obesity is an important comorbidity. Obese 
patients even without an airway disease have restrictive lung disease with the reduction of 
respiratory system compliance (11, 31). At low static lung volume, an increment in airway 
resistance and expiratory flow limitation are manifested in obese patients. Otherwise, lower 
resting and exercise-induced EELV and increased ERV are manifested with increased resting 
IC in obese patients (11, 29) (Fig. 7). In relation with EELV, a dynamic change in lung 
volumes leads to natural relaxation volume of the respiratory system, which can correct the 
negative mechanical effect of obesity. Obesity and COPD have a combined mechanical effect 
on EELV, but this effect exponentially decreases with BMI increment (11, 31). Obesity in 
COPD does not have a negative effect on resting IC, symptom-limited peak oxygen uptake 
(VO2) and dyspnoea during exercise (31). In a retrospective analysis in COPD, increased 
BMI does not have a negative effect on resting IC, exercise time in a CWR test, and the 
degree of dyspnoea during exercise (31).
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Fig. 7. Lung mechanisms of normal-weight and obese patients with COPD during exercise  
(Adapted from reference 31, reprinted with the permission of the American Physiological Society.  

Copyright © 2013 American Physiological Society). Healthy subjects show the lowest  
(difference between EELV, EILV and TLC is bigger) results, and then it is a bit higher in obese COPD patients, 

and the highest dynamic hyperinflation can be seen in normal-weight patients with COPD.  
Abbreviations are the following: NW: normal-weight COPD patient, OB: obese COPD patient,  

Control: age- and gender-matched healthy control, TLC: total lung capacity, EELV: end-expiratory lung volume, 
EILV: end-inspiratory lung volume, VT: tidal volume, Pes: oesophageal pressure,  

open circle: normal-weight COPD patients, closed circle: obese COPD patient, square: healthy control

The effect of obesity on respiratory muscles/mechanical factors is difficult to predict 
during exercise, because it depends on the combined effect of many factors (11, 31). It has a 
potentially negative effect on respiratory muscles with increased elastic load of the respiratory 
system; it increases metabolic and respiratory load, and increases airway dysfunction and 
resistance at lower absolute lung volumes (31). As a potential positive effect at lower EELV, 
the length of the diaphragm can be longer, and because of increased elastic strength, the 
elastic recoil can improve (11, 31). Ora et al. have shown that there is correlation between 
increased static elastic strength, reduced EELV, maintained or increased IC, increasing 
intraabdominal pressure and improving function of the diaphragm in COPD (31). These 
obesity-dependent physiological differences did not increase in terms of neuromechanical 
dissociation of the respiratory system and dyspnoea during exercise compared to normal 
weight COPD patients (31).



171

Acta Physiologica Hungarica 102, 2015

Dyspnoea and exercise in COPD 171171

Correlation between desaturation during exercise and dynamic hyperinflation

Desaturation during exercise (ED) in COPD can be a predictive factor of mortality (47). The 
main pathophysiological factors are ventilation-perfusion mismatch and drop of mixed 
venous oxygen saturation related desaturation during exercise in COPD (47). A higher value 
of diffusion capacity (DLCO) and resting oxygen saturation mostly do not predict desaturation 
during exercise. Dynamic hyperinflation has a correlation with lower oxygen and increased 
exhaled CO2 content (47). These processes have a correlation with higher ventilation-
perfusion mismatch and lower mixed venous oxygen content, and they lead to dynamic 
hyperinflation related oxygen uptake increment in the respiratory muscles (47).

Inspiratory muscle training and dynamic hyperinflation

Inspiratory muscle training (IMT) is adjuvant therapy in pulmonary rehabilitation, especially 
in patients with weak respiratory muscles (8, 32). IMT has a positive effect on dyspnoea, but 
it has a controversial effect on exercise tolerance (8, 32, 37). In an outpatient IMT training 
study, the capacity of inspiratory muscles, exercise tolerance, dyspnoea and inspiratory 
fraction ([IF] = IC/ total lung capacity [TLC]) have been measured (8, 32). IMT decreased 
dynamic hyperinflation, dyspnoea, and exercise tolerance increased (8, 32).

Nerve activity and dynamic hyperinflation in COPD

There is an increased nerve activity at rest in COPD (40). There are several factors in the 
background of increased nerve activity of the respiratory muscles. These factors involve 
increased airway resistance, pathological gas exchange, respiratory muscle weakness and 
high respiratory load. High inspiratory nerve activity, especially in functionally weak 
inspiratory muscles leads to increased respiratory load (Fig. 8) (24, 40). Work sensation/
effort neurological afferentation includes sensation of the cortical and bulbar motor centres 
(23, 32), and afferentation of respiratory and skeletal muscles through mechanical and 
metabolic receptors to the sensory cortex (40).

Fig. 8. Relationship between brain respiratory system and respiratory muscles in terms of initiation of muscle 
contraction and generation of tension in muscle fibres
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Dyspnoea in the two genders

Female patients with asthma and COPD perceive more severe dyspnoea at the same 
ventilatory, exercise and metabolic load (9, 10, 12, 14). In female patients with COPD, other 
factors than the respiratory ones should be evaluated in the background of dyspnoea (10, 12). 
In general, the differences between genders at absolute and relative exercise tolerance are 
based on the different body size (9, 10, 12).

Dynamic airway compression and dynamic hyperinflation

Dynamic airway compression can develop in most of the patients with severe COPD (<40 
%pred) during exercise, which can be characterized by flow-volume loops (Fig. 9) (22, 44). 
In this group, dynamic hyperinflation develops in an earlier phase (22, 44). Patients with 
dynamic airway compression can achieve higher dyspnoea at a lower ventilation level, lower 
exercise tolerance and tidal volume (22, 44). 

Fig. 9. Expiratory limb of the flow-volume curve of a COPD patient with severe obstruction (FEV1: 29 %pred) 
(left side at rest, right side at peak exercise). On the right side of the figure, dynamic airway compression can be 
detected with a concave shape change manifestation (RAR < 0.5). RAR: rectangular area ratio (area under the 

curve/ rectangular area). V max: maximal flow, V EE: end-expiratory flow

Physiological mechanisms to reduce dynamic hyperinflation

Activity limitation is multifactorial in COPD; dynamic ventilatory mechanics play an 
important role. The aim of the therapy is to reduce reversible lung hyperinflation leading to 
reduction in dyspnoea and improvement in exercise tolerance (1, 28). 

Reduction of hyperinflation is the main mechanism of improvement in exercise tolerance 
and physical activity in COPD. Based on four physiological mechanisms, interventions can 
improve exercise tolerance in relation with reduction in dynamic hyperinflation (1, 6). An 
increment of expiratory airflow or reduction in breath rate, and an increase in expiratory time 
can improve dynamic hyperinflation (1, 6). Bronchodilators and heliox reduce airway 
resistance and increase expiratory flow speed (Fig. 4) (1, 6). Oxygen supplementation and 
rehabilitation interventions reduce breath rate and increase expiratory time (Fig. 4) (1, 6, 28). 
The combination of different interventions leads to further favourable effects (1, 6). 
Tiotropium and oxygen treatment in combination with rehabilitation have additional 
favourable effects (6).
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High intensity endurance training and dynamic hyperinflation

High intensity endurance training at a certain level of exercise (isotime) reduces dynamic 
hyperinflation (33). Dynamic training reduces dynamic hyperinflation and improves 
submaximal exercise tolerance in connection with a reduction in breath rate (33). Lactic acid 
threshold (LAT) and ventilation response improve (13, 33). These results underline the 
favourable effect of training on the quality of life of patients in a severe stage as well (13, 33).

Bronchodilators and dynamic hyperinflation

Tiotropium (6), salmeterol (27), indacaterol (4), aclimidium (20), and glycopyrronium (3) 
have a bronchodilator effect and reduce dynamic hyperinflation (Fig. 4), and improve 
dyspnoea and exercise tolerance. 

Heliox and dynamic hyperinflation

Heliox compared to room air during exercise reduces dynamic hyperinflation at isotime (17). 
The effect of Heliox on dynamic hyperinflation is parallel with the favourable cardiovascular 
response and reduction in heart rate (17). Heliox can improve peripherial oxygen delivery in 
patients with COPD during exercise (Fig. 4) (19). 

Oxygen and exercise tolerance

Oxygen in a dose-dependent way (maximal effect at FiO2: 0.5) improves physical tolerance 
in connection with the reduction in breathing rate and improvement in dynamic hyperinflation 
(38). Oxygen can improve exercise tolerance because of the lower ventilatory requirement 
induced by oxygen supplementation (Fig. 4) (30, 39).

Lung volume reduction surgery

Lung volume reduction surgery reduces dynamic hyperinflation leading to improvement in 
maximal exercise tolerance and physical activity (Fig. 4) (16, 34). Oxygen pulse increases as 
a favourable hemodynamic effect (16, 34).

In summary, dynamic hyperinflation worsens the quality of life in COPD patients. 
Increased symptoms (dyspnoea and reduced physical activity) are manifested with the 
progression of the disease. Dyspnoea has a connection with the change in lung mechanics 
and chest pressure. The aim of the therapy is the reduction of dynamic hyperinflation, which 
can be achieved by bronchodilator therapy, submaximal dynamic training, heliox or oxygen 
breathing, and lung volume reduction surgery. 
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