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Abstract This article explores a new strategy for forecasting of earthquake energy

release in the seismogenic zones of the world. A total of 41 active seismogenic zones are

identified with the help of past seismicity data. The magnitudes of individual events

occurred in each zone are converted into seismic energy using an empirical relation. The

annual earthquake energy time series is constructed by adding the energy releases of all the

events in a particular year. The technique of principal component analysis is employed for

the regionalization of these seismogenic zones using seismic energy time series. The

annual energy time series of seismogenic zones are decomposed into finite number of

intrinsic mode functions (IMFs) using ensemble empirical mode decomposition technique.

The periodicities of the IMFs and their contribution to the total variance of the earthquake

energy release are examined. The artificial neural network technique is used for modeling

and forecasting the energy-time series of seismogenic zones. The model is verified with an

independent subset of data and validated using statistical parameters. The forecast of the

annual earthquake energy release in each seismogenic zone is provided for the year 2015.

Keywords Earthquake forecasting � Seismic energy time series � Principal component

analysis � Empirical mode decomposition � Artificial neural network

1 Introduction

Earthquake prediction is an active topic in among researchers. As a complex physical

phenomenon, it is very intricate to predict the magnitude and location of future event.

Although epicentre of earthquakes seems to be random, the occurrence of earthquakes is

more in the plate boundaries. The plate intersections are experiencing more number of

earthquakes which are known as interplate events (Bolt 2005). But some of the plate
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boundaries have more number of earthquakes than other boundaries as an indication of

high seismic activity. These intersections are experiencing most of the large earthquakes

(Mw C 7) and deeper earthquakes. These regions are called as seismogenic zones of the

world. Hence it is necessary to study the seismicity pattern of these regions and it will of

interest to forecast the future earthquake occurrence in these seismogenic regions.

The seismogenic regions with correlation among themselves can be grouped together. An

advantage of such a grouping is that the time series data of seismogenic zones of same group,

instead of individual zone data, could be used for effective forecasting. This grouping

clearly reduces the size of the data to be handled in forecasting. Additionally, it also

enhances some of the signals present on larger spatial scales (Nicholson, 1986). Identifi-

cation of homogeneous zones, also called regionalization, can be attempted with the yearly

or monthly data. The criterion adopted for delineating the groups can be based on variety of

measures, such as means, coefficients of variation and correlation coefficients (CC). In the

present study, principal component analysis (PCA) is used for the regionalization of global

seismogenic zones using annual seismic energy time series. Principal components analysis

is a multivariate statistical technique used to find a few mutually orthogonal linear com-

binations of the original variables which capture most of the variability present in the data. It

is possible to capture the large part of the variance with a small number of components. This

methodology has been widely used in meteorology (Kutzbach 1967; Overland and

Preisendorfer 1982; Ehrendorfer 1987). Iyengar and Basak (1994) have used PCA technique

to group the regions with homogeneous variability of monsoon rainfall.

In recent decades, investigating the seismic activities on global level has improved

significantly because of the global seismograph networks. It is physically meaningful to

express earthquake size in terms of released seismic energy than magnitude. Tsapanos and

Liritzis (1992) studied the correlation in seismic energy release of three seismic regions

namely Chile, Kamchatka and Mexico. Tsapanos (1998) evaluated the seismic hazard for

eleven regions of the world using the released strain energy. Recently, Varga et al. (2011)

analyzed the declustered catalogue of large earthquakes (M C 7.0) occurred from 1960 to

2011 and reported that the latitude distribution of the released seismic energy is bimodal

with respect to the equator. Since the PCA technique is promising technique, it can be used

to study the seismicity pattern of seismogenic zones. Telesca et al. (2004) have applied

PCA approach to analyze the short-term variability of geoelectrical field measured at

southern Italy. This analysis has proven that the PCA approach can be used for monitoring

seismic areas. An approach based on the PCA has been used to study the distinctive

characteristics of few earthquakes by Srivastava and Bhattacharya (1998). Differences in

the mechanism of earthquakes were broadly supported by their seismicity patterns. Kavitha

and Raghukanth (2015) have investigated the seismic energy release by considering the

whole globe as a single unit. The regional level predictions are in great demand among

common public, government agencies and policy makers due to their significance. Hence it

is important to explore the seismic activities in a smaller spatial scale.

In this study, an effort is taken to understand the seismicity pattern of seismogenic zones

and to forecast the earthquake occurrence in these seismogenic zones with the help of PCA

technique. The ISC–GEM Global Instrumental Reference Earthquake Catalogue (http://

www.isc.ac.uk/iscgem/index.php) has been utilized in the present study. A total of 41

active seismogenic zones are identified from tectonic plate boundaries using of past

seismicity data. The events occurred in a particular seismogenic zone are separated from

the main catalogue and thus a separate catalogue is prepared for each seismogenic zone.

Choy and Boatwright (1995) empirical relation is used to convert the magnitudes of

individual events in the catalogue of seismogenic zones into released seismic energy. The
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annual seismic energy time series of seismogenic zones are constructed by adding the

energy releases of all the events in a particular year. The empirical mode decomposition

technique is used to extract finite number of intrinsic mode functions (IMFs) from the

seismic energy time series. The influence of solar and lunar cycles on earthquake occur-

rence of each seismogenic zone is confirmed by the estimated periodicities and percentage

variances of IMFs. In the present article, PCA is used for the regionalization of global

seismogenic regions. The principal components are estimated from the annual seismic

energy series of 41 seismogenic zones. The significance of principal components is esti-

mated by the methodology proposed in detail by Preisendorfer et al. (1981). The significant

principal components which have important signals of seismic energy release are identified

in the present study. It helps to arrange zones in relation to their connection with these

signals. In turn, this automatically ranks the regions also in terms of their importance to the

annual seismic energy release. The derived PCs are used to organize 41 seismogenic zones

into 16 groups. Due to the complexities involved, the auto regressive models are used for

modeling and forecasting the earthquake energy data. The IMF1 and the remaining part of

the data are modeled separately by artificial neural network (ANN). The time series data of

all seismogenic zones of a group, instead of individual zone data, is used for effective

modeling. The proposed model is also validated using data which is excluded in the

modeling period. The efficacy of the model has been verified by three statistical param-

eters, the root mean square (RMS) error r(e), CC and performance parameter (PP). It is

found that the developed model is efficient in forecasting the annual earthquake energy

release of the seismogenic zones with a known error band.

2 Seismicity data

The first step of earthquake forecasting is the collection of good quality seismicity data

with a long span of period. In the year 2013, the International Seismological Centre (http://

www.isc.ac.uk/) has released the ISC–GEM Global Instrumental Reference Earthquake

Catalogue spanning from 1900 to 2009. This catalogue consists of 18,809 events with

magnitudes MW C 5.5 all over the world. Events are reported in Moment magnitude scale

(MW) to maintain consistency. In the present article, this catalogue is updated till

December 2014 using the recent seismicity data collected from ISC seismograph network.

To estimate the exact amount of seismic energy released from a region, it is important to

consider all the events occurred in that particular region. Hence the events with small

magnitudes are also included in the catalogue. The events with different magnitude scales

are converted into Moment magnitude using the same empirical relation used by ISC–

GEM catalogue. The updated catalogue contains a total of 4,893,609 events with magni-

tude MW C 1 spanning from 1900 to 2014. The events occurred before 1950 are omitted

because there is no complete information about small magnitude events. The final cata-

logue has 4,880,684 events (MW C 1) spanning from 1950 to 2014.

In the Fig. 1, the final catalogue is shown as a function of magnitude and time to ensure

the magnitude completeness. Though the catalogue has short span (65 years), it is complete

and homogenous. The events with all magnitude range are covered with reasonable

increments from 1950 to 2014. Although there are some gaps from 1950 to 1960, it can be

attributed to the lack of instruments in that period. There are 1108 events with magnitude

Mw C 7 and 61 events with magnitude Mw C 8. The final catalogue has 5 events with

magnitudes Mw C 9. The ‘1960 Valdivia earthquake’ with magnitude Mw 9.6 is the largest
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earthquake of the catalogue. The 1952 Kamchatka earthquake (MW 9.0), 1964 Alaska

earthquake (MW 9.2), 2004 Sumatra–Andaman earthquake (MW 9.2) and 2011 Japan

Earthquake of magnitude MW 9.1 are other large events in the catalogue. The catalogue

consist of 90.7 % of shallow events (\70 km), 8.2 % of intermediate events (70–300 km)

and around 1 % of deep events ([300 km).

Bird (2003) has developed the boundaries of present tectonic plates on Earth. The

digital boundaries of these 52 plates (14 major and 32 minor plates) were presented in this

model. By superimposing the epicenters of earthquakes on these plate boundaries, it is

clear that seismic activity in the plate intersections is much higher than interior of tectonic

plates (Fig. 2). Most of the large earthquakes (Mw C 7) were occurred on these inter-

sections only. Hence it will be interesting to study the seismicity pattern of these plate

intersections. Although Bird (2003) demarcated 52 plate boundaries, some of them have

very low seismic activity. So it is important to identify the plate boundaries with high

seismic activity. In the present article, the intersection between any two tectonic plates is

considered as the ‘seismogenic zone’. For example, the intersection between Indian plate

and Eurasian plate is named as ‘zone 1’ and ‘zone 2’ is the intersection between Indian

plate and Arabian plate. The Demarcation of seismogenic zone 1 using plate boundary and

past seismicity is shown as example in the Fig. 3. The width of the seismogenic zones is

different for each seismogenic zone based on the distribution of past events near the plate

boundary. The minimum width is kept as 120 km on either side of the plate boundary. It

can be observed from the Fig. 3 that the clusters of epicentres of past events very near to

the plate boundary are considered as margin for seismogenic zones. The tectonic plates

with very small area and the tectonic plates with very low seismic activity in the past are

merged with the nearby seismogenic zones. It can be observed from the Figs. 2, 4 that the

zones with very low seismic activity and intersections of very small tectonic plates are

ignored. For example, the intersections between Sunda plate and Yangtze plate, Yangtze

plate and Amur plate, Nazca plate and Cocos plate are eliminated. In the similar fashion, a

total of 41 seismogenic zones are identified all over the globe and shown in the Fig. 4. All

the 41 seismogenic zones are listed in the Table 1 along with their parenting plates. The

events occurred inside these seismogenic zones are separated from the events occurred in

Fig. 1 Final Catalogue spanning from 1950 to 2014
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the interior of tectonic plates. All over the globe, 66 % (3,220,870 earthquakes) of events

are occurred in these 41 seismogenic zones. Whereas remaining 34 % (1,659,814 earth-

quakes) of events are occurred in other parts of the world. The zone 4 (intersection between

Sunda plate and Philippine plate), zone 12 (Nazca plate-South American plate), zone 37

(North American plate-pacific plate), zone 38 (Okhotsk plate-pacific plate), zone 39

(Australian plate-Sunda plate) are the very active seismogenic zones. These seismogenic

zones have more number of earthquakes as an indication of high seismic activity. Most of

the deep earthquakes ([300 km) are accumulated only on these zones. From the past

seismicity it is clear that, these regions are capable of producing large and deep earth-

quakes. The seismic activity is expected to be continuous in these 41 seismogenic zones.

Hence it is necessary to study the seismicity pattern of these seismogenic zones.

3 Seismic energy time series

The magnitudes of individual events in the final catalogue (Fig. 1) are isolated and it is not

physically meaningful to sum up for constructing a continuous time series. Hence it is

convenient to convert the magnitudes into seismic energy and then sum up to create a

continuous time series. The earthquakes occurred inside a particular seismogenic zone are

singled out from the final catalogue (Fig. 1) and thus a separate catalogue is prepared for

each seismogenic zone. The number of events in each of the seismogenic zone is listed in

Table 1. The earthquake catalogue of India–Eurasian collision zone (zone 1) is shown in

Fig. 5a. It can be observed from the figure that the catalogue is not homogeneous for all

magnitudes. To obtain reliable results, the minimum magnitude of completeness (Mc)

defined as the lowest magnitude above which 100 % of the events in a given region are

detected has to be estimated. The magnitude of completeness (Mc) completeness of cat-

alogue of each seismogenic zone is estimated by the procedure suggested by Wiemer and

Wyss (2000). The maximum curvature method is used to determine Mc from the frequency

Fig. 3 Demarcation of seismogenic zone 1 using plate boundary and past seismicity
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Table 1 List of seismogenic zones and the performance of the modeling and forecasting strategy for annual
seismic energy time series of seismogenic zones

Zone
number

Zone name No. of
earthquakes

Mc Modeling period
(1955–2004)

Forecasting
period
(2005–2014)

Expected
seismic
energy
in 2015 (J)

rm CCm PPm rf CCf PPf

1 Indian–Eurasian 11,957 4.5 0.72 0.83 0.69 0.97 0.81 0.64 1.33 9 1014

2 Arabian–Indian 134 5.0 0.61 0.87 0.76 0.84 0.90 0.77 4.62 9 109

3 Somalian–Indian 2065 5.0 0.73 0.88 0.77 0.78 0.82 0.55 1.06 9 1011

4 Sunda–Phillippines 710,828 5.0 0.49 0.88 0.77 0.88 0.73 0.53 8.58 9 1014

5 Phillippines–pacific 54,953 4.5 0.68 0.84 0.71 0.77 0.80 0.64 1.17 9 1016

6 pacific–Australian 176,392 6.0 0.81 0.90 0.77 0.94 0.79 0.63 3.96 9 1015

7 Antarctican-
African

1120 6.0 0.73 0.90 0.81 0.87 0.85 0.58 1.86 9 1013

8 Somalia–African 29,445 4.0 0.61 0.92 0.84 0.99 0.78 0.55 5.74 9 1013

9 Somalia–Antarctica 2376 6.0 0.66 0.94 0.88 0.50 0.88 0.75 2.67 9 1013

10 Africa–North
America

3328 4.0 0.68 0.90 0.80 0.73 0.64 0.38 3.78 9 1013

11 North America–
South America

961 3.5 0.89 0.87 0.72 0.98 0.70 0.49 6.16 9 1011

12 Nazca–South
America

101,424 4.0 0.98 0.83 0.68 0.97 0.59 0.40 3.22 9 1016

13 South America-
Africa

5957 5.0 0.55 0.96 0.92 0.53 0.80 0.64 2.06 9 1014

14 Nazca–Antarctica 2079 5.5 0.45 0.96 0.93 0.72 0.74 0.54 6.49 9 1013

15 Somalian–Arabian 6163 5.0 0.76 0.85 0.72 0.95 0.61 0.41 6.68 9 1014

16 Somalian–Astralian 2420 5.5 0.66 0.91 0.82 0.97 0.65 0.45 1.79 9 1013

17 Nazca–North
American

74,200 3.0 0.93 0.87 0.75 0.78 0.90 0.78 4.57 9 1014

18 Australian–
Antarctican

5610 4.0 0.39 0.95 0.91 0.61 0.63 0.38 6.70 9 1013

19 Nazca-pacific 4411 6.0 0.43 0.97 0.95 0.58 0.59 0.42 3.40 9 1013

20 African–Eurasian 65,461 3.5 0.88 0.91 0.82 0.99 0.63 0.39 7.45 9 1013

21 Sunda–Indian 4854 6.5 0.98 0.88 0.74 0.97 0.65 0.39 2.04 9 1015

22 Indian–Australian 581 6.0 0.98 0.82 0.67 0.99 0.67 0.43 3.67 9 1013

23 Eurasian–Okhotsk 1008 6.5 0.86 0.93 0.82 0.93 0.81 0.59 4.00 9 1012

24 Okhotsk-Amur 132,386 5.5 0.84 0.93 0.86 0.91 0.66 0.41 1.99 9 1014

25 African-Arabian 29,917 5.0 0.90 0.89 0.79 0.89 0.57 0.44 6.46 9 1011

26 Arabian–Eurasian 15,656 4.0 0.63 0.89 0.78 0.92 0.92 0.72 9.82 9 1016

27 Eurasian–Anatolia 102,000 4.5 0.92 0.90 0.78 0.93 0.74 0.53 1.30 9 1015

28 Anatolia–Arabian 12,305 5.0 0.62 0.94 0.84 0.95 0.71 0.49 3.15 9 1012

29 African–Anatolia 37,962 5.0 0.62 0.90 0.81 0.89 0.41 0.31 1.19 9 1011

30 Antarctican–South
America1

122 5.0 0.58 0.90 0.81 0.99 0.82 0.64 1.84 9 1011

31 South America–
Scotia

6195 4.5 0.93 0.90 0.81 0.97 0.45 0.35 9.89 9 1013

32 Antarctican–South
America2

421 5.0 0.89 0.90 0.81 0.93 0.56 0.36 3.90 9 1013
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magnitude distribution. The magnitude of completeness is taken as the magnitude when the

negative slope trend of the data stabilizes to approximate a straight line. The Mc value for

the seismogenic zone 1 is obtained as Mw 4.5, as shown in Fig. 5b. The obtained mag-

nitude completeness (Mc) of all the 41 seismogenic zones are reported in the Table 1. The

events above Mc in all the 41 catalogues are converted from the moment magnitude MW to

seismic Moment Mo using the empirical relation (Hanks and Kanamori 1979).

log10 Moð Þ ¼ 3=2 Mw þ 6:0ð Þ: ð1Þ

Then, the seismic moments are converted into seismic energy (ES) using the empirical

equation derived by Choy and Boatwright (1995).

ES ¼ 1:6� 10�5Mo: ð2Þ

The seismic energy releases of individual events in a particular year are added and the

yearly seismic energy time series is constructed from 1950 to 2014 for all the 41 seis-

mogenic zones. In order to model the small oscillations in the time-series, the log(ES) time

series which has no sharp peaks is used in the present article. The annual seismic energy

time series for the Indian–Eurasian collision zone is shown in Fig. 5c. From the Fig. 5c,

the peaks in energy time series can be related to the large earthquakes occurred in those

specific years. The peak in the year 1950 corresponds to Assam earthquake of magnitude

MW 8.6. The time series got a peak in the year 2005 because of the Kashmir earthquake of

magnitude MW 7.5. The peak in the year 2013 corresponds to Pakistan earthquake of

magnitude Mw 7.6. The average annual seismic energy release is calculated 3.79 9 1015 J

with the standard deviation of 2.80 9 1016 J. The non-stationary nature of the annual

earthquake energy time series can be observed from the Fig. 5c. Skewness and kurtosis are

Table 1 continued

Zone
number

Zone name No. of
earthquakes

Mc Modeling period
(1955–2004)

Forecasting
period
(2005–2014)

Expected
seismic
energy
in 2015 (J)

rm CCm PPm rf CCf PPf

33 Scotia–Antarctican 1519 4.5 0.84 0.91 0.82 0.96 0.52 0.42 1.57 9 1012

34 Okhotsk-North
American

2946 4.0 0.78 0.90 0.81 0.85 0.76 0.53 2.84 9 1011

35 pacific-Antarctican 2457 5.0 0.58 0.95 0.90 0.56 0.63 0.39 1.52 9 1014

36 Eurasian–North
American

17,123 4.0 0.47 0.91 0.83 0.64 0.81 0.64 8.32 9 1013

37 North American–
pacific

1,115,346 2.5 0.79 0.91 0.80 0.39 0.93 0.84 7.28 9 1014

38 Okhotsk–pacific 365,890 5.0 0.70 0.92 0.84 0.89 0.80 0.64 1.73 9 1014

39 Sunda–Australian 61,016 6.0 0.73 0.86 0.73 0.92 0.76 0.55 1.37 9 1016

40 Australian–
Phillippines

31,306 6.0 0.80 0.79 0.62 0.78 0.85 0.69 5.10 9 1015

41 Eurasian–Amur 18,576 4.0 0.63 0.95 0.90 0.96 0.57 0.29 4.24 9 1013

Mc agnitude completeness, rm root mean square error in modelling period, CCm correlation coefficient for
modelling period, PPm performance parameter for modelling period, rf root mean square error in forecasting
period, CCf correlation coefficient for forecasting period, PPf performance parameter for forecasting period
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Fig. 5 a Catalogue of seismogenic zone 1. b Estimation of magnitude completeness for seismogenic zone
1. 5 c Annual seismic energy time series of seismogenic zone 1
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higher-order statistical characteristics of a time series. The skewness is an indicator of the

symmetry in the probability density function of the amplitude of time series. It measures

deviation from a Gaussian distribution. The skewness will be zero, if the time series has

equal number of small and large amplitudes. The skewness of the earthquake energy time

series is estimated as 7.9 which indicate that the process is Non-Gaussian. The positive

skewness indicates that data is right-skewed which is because of the 1950 Assam earth-

quake of magnitude MW 8.6. Kurtosis is a measure of whether the time series is peaked or

flat compare to a normal distribution. The Kurtosis of the energy time series is 62.89. The

time series with high kurtosis have a distinct peak near the mean and have thicker tails.

There is high probability for extreme values. Hence Kurtosis value also confirms the Non-

Gaussian nature of the time series.

4 Ensemble empirical mode decomposition

The annual seismic energy time series of seismogenic zones are appear to be non-linear

and non-stationary (Fig. 5c). The non-stationary nature of the seismic energy time series is

confirmed by many authors in the past (Liritzis and Tsapanos 1993). Therefore it is more

scientific to use the Hilbert Huang Transform (HHT) proposed by Huang et al. (1998)

which is capable of analyzing non-stationary data. The HHT is more adaptive to data since

it does not use any predetermined function forms. The HHT consists of empirical modal

decomposition (EMD) and Hilbert Transform. The EMD is a decomposition algorithm

used to decompose the data into basis functions called IMFs. The extracted IMFs are

adaptive, complete and orthogonal functions. Wu and Huang (2009) developed ensemble

empirical mode decomposition (EEMD) technique to circumvent the mode mixing prob-

lem in EMD technique. In the EEMD technique, a white noise of finite amplitude is added

to the data then EMD technique is used to extract the IMFs. An IMF is a narrow band time

series with number of extremas and number of zero crossings differs by at most one. It has

slowly varying frequency and amplitude. The mean value of the envelopes defined by the

local maxima and minima of an IMF is zero. The IMFs are extracted from the data using a

sifting process which consists of an interpolation method for constructing envelopes and a

stopping criterion. The algorithm for extracting IMFs from the data using EEMD technique

is as follows: First, white noise of finite amplitude [wh(t)] is added to the data ES(t) which

lead to the new data E(t). Then the consecutive maxima and minima in E(t) are identified to

construct the lower and upper envelopes by cubic splines. The average of the positive and

negative envelopes h(t) is determined at every time step. This average which is the local

mean of the data is subtracted from the data to get E1(t) = E(t)–h0(t). This new data E1(t) is

treated as in the previous step E2(t) = E1(t)–h1(t). This process is repeated n times till the

sieved data En(t) becomes an IMF (i.e. IMF1). To extract the IMF2, the IMF1 is subtracted

from the data E(t) and the whole shifting process is repeated. In a similar way, IMF3,

IMF4… are extracted until the sieved data shows no oscillations. After extracting all the

IMFs the entire EMD procedure is repeated M times by adding a different white noise time

series to the data, where M is called as an ensemble number. An ensemble of IMFs will be

generated through this process and the ensemble mean of these IMFs will lead to the final

empirical modes. In the present article, two important parameters, the ratio of the standard

deviation of the white noise to that of data and the ensemble number have to be fixed

before the sifting process. The ratio of the standard deviation of added noise to that of data

should not be too low to introduce enough changes in the extremas of the decomposed
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data. In contrast, very high ratio will lead to physically insignificant IMFs. Similarly, very

high ensemble number needs higher computation cost whereas smaller number will not be

enough for the cancellation of noise in IMFs. In the present article, the ratio is taken as 2

and ensemble number is fixed as 5000 by trial and error in order to maintain consistency. A

total of 6 IMFs are obtained from each time series using the fixed parameters.

In Fig. 6, all the six IMFs along with the energy time series of seismogenic zone 1 are

shown as sample. The IMFs are shown in the order in which they are extracted. It can be

noted from the Fig. 6 that the IMFs are having equal number of extremas and zero

crossings and its envelopes are also symmetric with respect to zero line. The last IMF

(IMF6) indicates the trend of the earthquake energy time series of seismogenic zone 1. It is

clear from the Fig. 6 that the energy release in the year 1950 (Assam earthquake MW 8.6)

controls the shape of all the IMFs. The sum of all the six IMFs will lead to the annual

earthquake energy time series of seismogenic zone 1.

The derived IMFs of all seismogenic zones are having similar properties of sine or

cosine waves. Hence it is easy to estimate their time period by counting the number of

extrema in an IMF. In this fashion, the periods of all IMFs of 41 seismogenic zones are

calculated and their minimum and maximum ranges are given in Table 2 along with the

mean values. It can be observed from the Table 2 that the estimated periods of seismic

energy time series of seismogenic zones are in the range of 2.5–3, 4.5–6, 8.5–12, 14–20,

17–22 and 21–32 years. Liritzis and Tsapanos (1993) have also reported the dominant

periods of global earthquake energy time series as 3(±0.5), 4.5, 6.5, 8–9, 14–20 and

31–34 years. It can be noted that their periods are almost same as the periods observed in

the present study. The periods of IMFs of few seismogenic zones are listed in Table 3.

Another important statistical parameter called percentage variance, which is the ratio of

variance of each IMF to the data variance is also estimated for all seismogenic zones and

included in Tables 2 and 3. The percentage of variance of IMF indicates the contribution of

each IMF to annual earthquake energy release of particular zone. The spatial distribution of

the periods of first four IMF’s and their percentage variance are reported in Figs. 7, 8, 9

and 10. It can be observed from the Fig. 7a that period of first IMF varies from 2.53 to 3

with an average value of 2.75 years. The seismogenic zone 29 has the maximum period of

IMF1 (3.01 years) whereas zone 13 shows the minimum period of IMF1 (2.53 years). The

IMF2 has periods from 4.83 to 5.93 with a mean value of 5.28 years (Fig. 8a). The

minimum period of IMF2 (4.83 years) is observed for the seismogenic zones 22 and 38.

The maximum period of IMF2 is estimated as 5.93 years for the seismogenic zone 3. The

periodicity of IMF3 of 41 seismogenic zones oscillating from 8.55 years to 10.89 years

(Fig. 9a). The minimum period of IMF3 is estimated for seismogenic zone 19 and the

maximum value is estimated for the zone 38. The time period of IMF4 varies from 13.83 to

20.37 years respectively (Fig. 10a). The average time period of IMF4 of all seismogenic

zones is estimated as 18.03 years. The minimum time period is observed for zone 8

whereas the seismogenic zone 9 has maximum time period of IMF4. It is clear from the

Table 2; Figs. 7, 8, 9 and 10 that the IMF1 is the predominant mode with an average period

of 2.75 years is contributing more than 50 % (Fig. 7b) to the annual seismic energy for all

the seismogenic zones. The IMF1 of the seismogenic zone 24 provides major contribution

(76.02 %) towards annual seismic energy release. The IMF1 of the zone 19 has low

contribution (33.76 %) to the seismic energy release. The IMF2 is the second important

mode which has around 17 % (Fig. 8b) contribution with an average period of 5 years. The

IMF2 of seismogenic zone 22 and 12 have minimum and maximum contributions

respectively when compared to other seismogenic zones. The IMF3 is contributing about

6–20 % (Fig. 9b) and its period oscillates around 11 years which is same as 11 years
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period of sunspot cycle (http://sidc.oma.be/sunspot-data/). The IMF3 of seismogenic zone

20 has very low contribution (5.8 %). The IMF3 of zone 12 contributed around 20 % which

is higher than other seismogenic zones. The IMF4 has contribution in the range of 3–11 %

(Fig. 10b) with an average time period of 18 years. This period can be related with the

Lunar standstill cycle of 18.6 years. The IMF4 of seismogenic zone 16 has very less con-

tribution (3 %) whereas zone 32 has maximum percentage variance (11 %). The IMF5 is

contributing around 5 % with an average period of 21 years. The time period and per-

centage variance of IMFs remain constant while considering the whole globe as a single

zone or separate seismogenic zones (Kavitha and Raghukanth 2015). This consistency

emphasizes the influence of sun spot and lunar standstill cycles on earthquake occurrences

in these seismogenic zones. The IMFs of the earthquake energy time series are simple and

well-behaved compare to the data. Hence it would be interesting to forecast the IMFs

instead of the complex time series. But 41 separate models have to be developed to forecast

the seismic energy release of seismogenic zones. The correlated zones can be grouped

together and the single forecasting model can be used for all zones in a group. This grouping

can be done with the help of PCA technique and it is explained in the next section.

5 Regionalization of seismogenic zones using PCA

The seismogenic zones correlated among themselves can be grouped together which is

known as regionalization. The time series data of seismogenic zones of same group,

instead of individual zone data, could be used to improve the forecasting. Moreover, it

Table 2 Range of period and
percentage variances of IMFs of
seismic energy time series of 41
seismogenic zones

S.no IMFs Period (years) Percentage variance (%)

Min. Mean Max. Min. Mean Max.

1 IMF1 2.53 2.75 3.01 33.76 52.47 76.02

2 IMF2 4.83 5.28 5.93 7.22 16.91 26.94

3 IMF3 8.55 10.81 10.89 5.85 10.23 19.51

4 IMF4 13.83 18.03 20.37 3.18 8.14 10.55

5 IMF5 17.12 20.85 22.13 2.81 5.17 8.71

6 IMF6 21.33 28.09 32 2.42 10.28 23.79

Table 3 Periods and percentage variances of IMFs observed for seismic energy time series of few seis-
mogenic zones

IMFs Zone 1 (Indian–Eurasian) Zone 3 (Somalian–Indian) Zone 37 (North American–
pacific)

Period (years) Per. vari. (%) Period (years) Per. vari. (%) Period (years) Per. vari.(%)

IMF1 2.62 44.30 2.72 49.31 2.81 45.11

IMF2 5.72 16.13 5.93 15.14 5.41 17.50

IMF3 10.45 12.48 10.67 10.52 10.86 12.41

IMF4 17.40 7.62 18.50 8.74 17.15 9.25

IMF5 22.13 5.27 20.75 4.61 21.44 4.71

IMF6 32.00 16.59 32.00 13.04 32.00 12.66
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enhances the signals in the data on larger spatial scales (Nicholson 1986). In the present

article, the log(Es) time-series of 41 seismogenic zones are used for regionalization. If the

seismic energy release at zone i (i = 1,2,…m) in the year t (t = 1,2,…n) is Sit, the

covariance matrix of the data is

Cij ¼
1

N

� �Xn

t¼1

sitsjt; ð3Þ

where sit, the centred data of zone i, is

sit ¼ Sit � qið Þ; ð4Þ

where

qi ¼
1

N

� �Xn

t¼1

Sit: ð5Þ

The eigenvalues kj and corresponding eigenvectors {/ij} of the symmetric matrix Cij

are derived. The jth principal component for year t is

Pjt ¼
Xn

i¼1

sit/ij j ¼ 1; 2; . . .mð Þ: ð6Þ

The eigenvalues are normalized as

kj ¼ mkj

� �.Xm

j¼1
kj: ð7Þ

Here, Eq. (4) represents an orthogonal decomposition of the seismic energy release.

Hence the principal components pjt should be carrying the temporal signatures that present

in the actual data. It is important to decide how many of these PCs are significant. Then

those can be related to the zonal seismic energy release data to arrive at homogenous

groups. The amount of the variance of data explained by a principal component indicates

its importance. The first 10 principal components are explained more than 90 % of the data

variance, which are significant principal components. Figure 11 shows the time series of 10

significant principal components.

sit ¼
Xm

j¼1

Pjt/ij: ð8Þ

The first ten pjt series contain the maximum temporal information of sit data. One can do

regionalization depending on how the zone data series and the above pjt series are related

among themselves. The correlation between time series of all 41 seismogenic zones and

the pjt are estimated. All the zones that are maximally correlated with the same sign with

respect to the same principal component are grouped together. Dyer (1975) used similar

approach for identifying homogeneous rainfall regions in South Africa. In the present

study, a significance level is set up as a criterion for the correlation between the principal

components and the seismogenic zones. The PCs are derived from the annual seismic

energy series of seismogenic zones. Since, these two are expected to be correlated. If any

two variables with sample size n to be deducted as correlated, then the minimum level of

significance should be q = ±2/Hn. Here sample size n = 65 and the minimum
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significance limit is |q| C 0.25 (Hays and Winkler 1970). The zones satisfying this crite-

rion are selected and grouped together. When a zone is found to be correlated with more

than one PC, it is assigned to the PC with higher correlation value. Thus all the 41

seismogenic zones are grouped under 16 principal groups. The membership details of

corresponding principal groups are listed in Table 4. It can be noted from the Table 4 that

the first principal group is the biggest group containing 15 seismogenic zones. The second,

sixth and seventh principal groups have three seismogenic zones as members. The first

seismogenic zone (Indian–Eurasian intersection) is in the sixth principal group. The

principal groups 5, 9, 10, 11, 14, 15 and 16 are having single seismogenic zone as member.

The grouped seismogenic zones are shown in the Fig. 12. The seismogenic zones belong to

the same group are colored alike to exhibit the grouping. It is clear from the Fig. 12 that the

demarcated principal groups are not geographically contiguous. But most of the seismo-

genic zones below equator are belong to the first principal group. Popoola and Hammed

(2007) have studied global seismicity pattern by dividing the whole globe into zones of

width 10� with the equator as the centre. They reported that all the zones below equator are

having similar trend with increased seismicity. Their observations are in agreement with

the present study, where most of the zones below equator are correlated among themselves

and belong to the same group. As the correlation among seismic energy release of seis-

mogenic zones is clearly understood, forecasting of the same can be attempted.

6 Forecasting

Various strategies are proposed in the literature for the prediction of earthquakes. But the

forecast of the seismic energy release can directly point out the maximum possible

magnitude of future event. The annual earthquake energy time series of any seismogenic

zone is supposed to have the influences of all the causes within the time series itself. The

Table 4 Membership details of
the principal groups

Group No. of zones Seismogenic zone numbers

1 15 3, 7, 9, 13, 14, 15, 16, 18, 19, 24,
31, 32, 33, 35, 41

2 3 8, 11, 21

3 2 22, 27

4 2 10, 23

5 1 34

6 3 1, 17, 36

7 3 12, 26, 40

8 2 6, 25

9 1 20

10 1 39

11 1 38

12 2 29, 30

13 2 5, 28

14 1 4

15 1 2

16 1 37
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energy time series can be modeled as a function of past values with the help of sufficiently

long data. Hence an autoregressive model which is capable of reproducing the past can be

used to forecast the energy time series a year ahead. As the time series is highly complex, it

is easy to model and forecast the IMFs which are simpler than the data. The forecasted

values of the IMFs can be added to estimate an expected energy release. It is difficult to

find the IMF1 at the end of the data because the envelope on the both sides of the end point

is not defined. To overcome this difficulty, the previous value of the end point can be used

as the next value. But this method is not convincing for forecasting problem. If the data St

is available then IMFs can be extracted only for t = 2, 3, 4 …. n - 1. With the increase in

the distance between each extrema, the extrapolation errors will spread into the signal and

misrepresent the higher IMFs at the end points. Iyengar and Raghukanth (2005) have

modeled the linear and non-linear parts separately to circumvent this end problem of IMFs.

In the present article, this difficulty has overcome by modeling the IMF1 and the remaining

part of the data i.e. Yt = (St-IMF1t) separately. As both the parts of the data are non-linear,

they can be effectively modeled using ANN technique (Wong et al. 2000). Eisner and

Tsanis (1992) have proved that ANN works for modeling and extending the chaotic

trajectories of the Lorenz equation. The ANN has three layers (input, hidden and output

layers) of simple processing units interconnected by acyclic links. Selecting the number of

hidden layers, number of nodes in the hidden layer and type of activation function play a

significant role in model construction.

The seismogenic zones with correlation among themselves are arranged into single

group (Table 4 and Fig. 12). Thus the time series data of all the seismogenic zones in a

particular group can be used for forecasting instead of individual zone data. The correlation

among the time series of zones will enhance the signal in the data and improve the

predictability of the model. Hence, instead of 41 separate ANNs, 16 ANNs for each group

is sufficient to forecast all the 41 seismogenic zones. For the present study, after many

trials, an ANN model with a single hidden layer with five nodes as shown in Fig. 13a is

chosen for modeling the first part of the data. The input layer has five nodes which depend

on the past four values of Yt, an end value of the data St. For the second part of the data that

is Zt = St-modeled (Yt), the same type of ANN model which depends on the past five

values of the Zt is selected as shown in Fig. 13b. The mathematical representation of the

relationship between input parameters (St, Yt-1, Yt-2, Yt-3, Yt-4) and output parameter (Yt)

of first part is as follows,

Yt ¼ biasI
OL þ

X5

l¼1

wI
l � g biasI

HL;l þ wI
1;lSt þ

X5

k¼2

wI
k;lYt�k

 !
: ð9Þ

Hidden Layer
Zt-5

Zt-4

Zt-1

Zt-2

Zt-3 Zt

wk,lII

wlII

Yt

Yt-4

Yt-3

St

Yt-1

Yt-2

wk,lI

wlI

Hidden Layer

(a) (b)

Fig. 13 a ANN architecture for modeling part I (Yt). b ANN architecture for modeling part II (Zt)
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Similarly, the relationship between input parameters (Zt-1, Zt-2, Zt-3, Zt-4, Zt-5) and

output parameter (Zt) of second part is as follows,

Zt ¼ biasII
OL þ

X5

l¼1

wII
l � g biasII

HL;l þ
X5

k¼1

wII
k;lZt�k

 !
; ð10Þ

where biasOL
I and biasOL

II are output layer bias values of part I and part II; wl
I and wl

II are

weight factor between neuron l of the hidden layer and single output neuron for part I and

II; g (�) is a hyperbolic tangent sigmoid transfer function adopted between the input layer

and hidden layer; biasHL,l
I and biasHL,l

II are bias value at neuron l of the hidden layer in

ANN of part I and part II; wk,l
I and wk,l

II are weight factors between the input variables

(k = 1, 2,…,5) and neuron l of the hidden layer in ANN of part I and part II. A linear

function is adapted between hidden and output layer. Thus, this network is equivalent to a

nonlinear autoregressive model. Equations 9 and 10 indicate one output node in the output

layer, which is used for one-step-ahead forecasting. The Levenberg-Marquardt back

propagation training algorithm is implemented for training the model. The 36 unknowns in

Eqs. 9 and 10 are estimated by minimizing the mean square error between the actual data

and the values simulated by the model. The weight factors and bias values of the best-fitted

network for all the seismogenic zones in Group 6 is given as a sample in Tables 5, 6, 7 and

8. The group 6 contains three seismogenic zones that are zone1 (intersection between

Indian plate and Eurasian plate), zone 17 and zone 36. The weight matrix and bias values

between the input layer and hidden layer of ANN model for part I and part II of Group 6

are given in Tables 5, 7 respectively. Similarly, the weight factors and bias value between

the hidden layer and output layer of ANN model for part I are provided in Table 6 and the

same for part II are given in Table 8. These values can be used for modeling annual

seismic energy time series any one of the seismogenic zones in the group 6 using Eqs. 9

and 10.

To demonstrate the ability of the proposed model, the first 50 years (1955–2004) of data

is taken as modeling period and the last 10 (2005–2014) years of data is taken as testing

period. Three statistical parameters are selected for verifying the performance of the

model. First, the RMS error rm(e) is calculated for the model. Second, the CCm between

the original data and the proposed model is checked. Then, the PPm = 1 - (rm
2 /rd

2) is also

verified, where rm
2 is the mean squared error and rd

2 is the variance of actual data. These

three statistical parameters of both ANN model for all the 41 seismogenic zones are

included in Table 1. For an ideal model, rm(e) should be zero and CCm and PPm should be

Table 5 Weight factors and bias values between the input layer and hidden layer in ANN for modeling part
I of Group 6

Weight factors Number of hidden neurons (l)

1 2 3 4 5

w1,l
I 11.0961 -14.8741 -36.9565 -3.0563 3.2496

w2,l
I -101.9641 11.6871 -33.2123 2.7305 8.9608

w3,l
I -21.3657 -5.6051 29.0972 -1.2096 3.8783

w4,l
I 0.6175 -82.6819 -37.6910 -10.6771 -15.9095

w5,l
I -37.9652 -123.3606 -80.6621 58.4872 -28.3047

biasHL
I -6.8350 -58.6693 -65.2335 22.8773 -7.1276
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unity. It can be noted from Table 1 that for most of the seismogenic zones CCm and PPm

are close to unity and rm(e) also near to zero. It indicates the satisfactory performance of

the proposed model. The statistical parameters rf(e), CCf and PPf are calculated for

forecasting period i.e. last 10 (2005–2014) years and included in the Table 1. To be

significant, the CCf should be greater than 0.5. The predictability of the proposed model is

beyond the significant level for most of the seismogenic zones.

In the present article, future seismic energy release of a particular seismogenic zone in a

group is considered to depend on the past seismic energy releases of all other seismogenic

zones in that group. This association enhanced some of the signals present in data, which

leads to the improved performance of the model. The excellent performance of the model

can be observed from the Table 1, particularly from the zone 2, zone 9, zone 17, zone 26

and zone 37. But some the seismogenic zones like zone 29, zone 31 and zone 41 have very

low predictability which can be attributed to the complexities involved in the process and

short modeling period. The largest expected seismic energy release in the forecasting

period is estimated as 4.74 9 1017 J for the seismogenic zone 39 (intersection between

Sunda and Australian plate) in the year 2006. However, the actual seismic energy released

from the seismogenic zone 39 in the year 2006 is 7.46 9 1015 J. One can compare the

expected and actual magnitude of large events in the forecasting period. In the year 2005,

Table 6 Weight factors and bias value between the hidden layer and output layer in ANN for modeling part
I of Group 6

Weight factor Number of hidden neurons (l)

1 2 3 4 5 BiasOL
I

wl
I 6.7562 -0.3057 10.2119 -0.1722 49.7032 -28.3258

Table 7 Weight factors and bias values between the input layer and hidden layer in ANN for modeling part
II of Group 6

Weight factor Number of hidden neurons (l)

1 2 3 4 5

w1,l
II 3.3427 -27.3785 39.5646 -0.7887 14.4044

w2,l
II 9.2116 -26.6067 35.7449 -0.4128 -11.4428

w3,l
II 3.8865 12.1310 31.0907 1.1419 5.4977

w4,l
II -16.2800 -141.2651 39.9519 -0.0091 81.8434

w5,l
II -28.8714 -239.2606 85.0636 6.4297 122.3780

biasHL
II -7.2642 -121.6197 69.3621 2.7426 58.1102

Table 8 Weight factors and bias value between the hidden layer and output layer in ANN for modeling part
II of Group 6

Weight factor Number of hidden neurons (l)

1 2 3 4 5 BiasOL
II

wl
II -20.3593 -0.0806 2.0656 0.1114 -0.0663 -0.2954
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Sumatra earthquake (epicentre 2.07�N, 97.02�E) occurred in seismogenic zone 39. The

expected seismic energy release of the seismogenic zone 39 is estimated as 3.78 9 1016 J

with the standard deviation of 8.85 9 1017 J. The actual magnitude of Sumatra earthquake

is Mw 9.2 whereas the expected magnitude is 8.2. Similarly, 2011 Tohoku earthquake

(epicentre 38.32�N, 142.37�E) occurred in seismogenic zone 38. The expected seismic

energy release for the seismogenic zone 38 is estimated as 2.26 9 1016 J with the standard

deviation of 6.32 9 1017 J and the expected magnitude is Mw 8.1. However, the actual

magnitude of Tohoku earthquake is Mw 9.0. It can be noted that although the model could

not predict exact magnitude, the actual magnitudes are within the known error band. In the

Fig. 14, the modeled and actual energy releases are compared year by year for both

training period and forecasting period to demonstrate the skill of the model. The training

period has the CC of 0.97 which is much higher than significant value of 0.28. The

proposed forecasting strategy is also highly efficient with the CC of 0.84 which is higher

than the significant value of 0.63.

In Fig. 15, the comparison between actual data and predicted earthquake energy time

series of seismogenic zones 1 is shown. The model predicted the exact energy release in

the years 2009, 2010 and 2011. Although there are considerable differences in the years

2005, 2007, 2008 and 2013, the forecasted values are within a known error band. As the

future value depends on the past five values, the time series can be extended by 1 year.

Hence it is possible to find the expected energy release in the year 2015 by extending the

modeled time series. The forecasted value of energy time series is a random variable with

model error as its standard deviation. For the year 2015, the energy release is estimated as

1.33 9 1014 J with the standard deviation of 8.17 9 1014 J. The annual seismic energy

Fig. 14 Comparison between actual energy releases and modeled energy releases during the training (1955
to 2004) and forecasting periods (2005–2014); (dashed line expected line)
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release will be greater than 1.6 9 1016 J if there is a single event with magnitude MW C 8

(Eqs. 1 and 2). Hence there is no possibility of occurrence for the events with magnitude

MW C 8 in the seismogenic zone 1 in year 2015. In the similar fashion, the expected

energy release for the 2015 of all 41seismogenic zones are estimated and listed in the

Table 1. The seismogenic zone 2 is expected to have minimum seismic energy release

(4.62 9 109 J) in the year 2015. It can be noted from the Table 1 that, the seismogenic

zones 12 and 26 have a possibility of occurrence for the event with magnitude MW C 8 in

the year 2015. The seismogenic zone 26 (the intersection between Arabian and Eurasian

tectonic plate) has largest expected seismic energy release in the year 2015. The seismic

energy is estimated as 9.82 9 1016 J with the standard deviation of 3.25 9 1017 J for the

zone 26.

7 Summary and conclusions

This article presents a methodology to understand the seismicity pattern of seismogenic

zones and to forecast the earthquake occurrence of the seismogenic zones with the help of

PCA technique. The ISC–GEM Global Instrumental Reference Earthquake Catalogue

(http://www.isc.ac.uk/iscgem/index.php) has been utilized in the present article. A total of

41 active seismogenic zones are identified from tectonic plate boundaries using past

seismicity. The annual earthquake energy time series is constructed by adding the energy

releases of all the events in a particular year for each seismogenic zone. The EEMD

technique is used to extract six IMFs from the earthquake energy time series. The peri-

odicities and percentage variances of IMFs are estimated for each seismogenic zone. The

correlation of third and fourth IMFs with solar and lunar cycles indicates the influence of

these celestial bodies on earthquake energy release of seismogenic zones. The principal

components are estimated from the annual seismic energy series of 41 seismogenic zones.

The derived PCs are used to organize 41 seismogenic zones into 16 groups. Due to the

complexities involved, the auto regressive models are used for modeling and forecasting

the seismic energy release of seismogenic zones. After several trials, an ANN model with a

single hidden layer and five input nodes has been selected for modeling the data. The time

series data of all seismogenic zones of a group, instead of individual zone data, is used for

Fig. 15 Comparison between actual data and prediction of earthquake energy time series of seismogenic
zone 1

Acta Geod Geophys (2016) 51:359–391 389

123



forecasting the future seismic energy release. This association leads to the improved

performance of the model. The seismic energy release data from 1955 to 2004 has been

used for modeling purpose and the data from 2005 to 2014 has been used for validation

purpose. It is found that the developed model is efficient in forecasting the annual earth-

quake energy release of most of the seismogenic zones with a known error band. The

expected energy release of all seismogenic zones in the year 2015 is estimated by

extending the time series for 1 year. The estimated energy budget will be helpful for the

government agencies and policy makers to know in advance about the earthquake

occurrence with probable magnitude. It is found that the seismogenic zones 22 and 26 have

a possibility of occurrence for events with magnitude MW C 8 in the year 2015. But one

cannot state anything regarding the occurrence of events with magnitudes MW 6 or 7 from

this seismic energy budget. In the proposed model, the annual earthquake energy time

series is used. One can attempt monthly or weekly seismic energy time series as a short

term prediction. The magnitude completeness of the catalogue should be ensured for better

predictability of the model. Instead of taking 50 years as modeling period, whole span of

data can be used to train the model for better performance. In the present study, the model

parameters are held constant throughout the forecasting period which can be updated every

year to enhance the performance. It is important to compile the seismicity data to a greater

extent because long span of data will improve the accuracy of the prediction.
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