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Abstract—Synchronized spontaneous low frequency 

fluctuations of the so called BOLD signal, as measured by 

functional Magnetic Resonance Imaging (fMRI), are known to 

represent the functional connections of different brain areas. 

Dynamic Time Warping (DTW) distance can be used as a 

similarity measure between BOLD signals of brain regions as an 

alternative of the traditionally used correlation coefficient and the 

usage of the DTW algorithm has further advantages: beside the 

DTW distance, the algorithm generates the warping path, i.e. the 

time-delay function between the compared two time-series. In this 

paper, we propose to use the relative length of the warping path as 

classification feature and demonstrate that the warping path itself 

carries important information when classifying patients according 

to cannabis addiction. We discuss biomedical relevance of our 

findings as well. 
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I.  INTRODUCTION  

The increasing interest in methods that can be used to analyse 

brain networks may be attributed to various factors such as the 

enormous costs related to the treatment of brain disorders, 

large-scale research projects (such as the BRAIN initiative and 

the European Human Brain Project), and the increasing 

computational power that allows to process large amount of 

data describing brain activity.  

Despite the recent advances in brain research, in case of many 

drugs, its effect on the organisation of the brain is largely 

unknown. One of such drugs is cannabis. The importance of 

understanding its effect on brain networks is underlined by the 

fact that its potential clinical use is being debated in several 

countries. Therefore, in this study, we focus on machine 

learning techniques that are able to identify differences between 

brain connectivity patterns of cannabis users and non-users, and 

to reveal insights about the effect of cannabis usage on brain 

function.  

One of the state-of-the-art methods to capture brain activity is 

functional magnetic resonance imaging (fMRI), which captures 

the change of blood-oxygen-level, the so called BOLD signal. 

Synchronised spontaneous low frequency fluctuations of the 

BOLD signal during rest has been shown to represent the 

functional networks of brain areas [1]–[3]. Traditionally, 

resting-state brain networks are analysed with techniques that 

imply static zero-lag linear dependence between brain regions, 

i.e. the strength of functional connectivity between any pair of 

voxels is usually characterized by the Pearson correlation 

coefficient of the two measured signals [1]. Other methods for 

revealing functional networks like independent component 

analysis [4] are similarly popular in the neuroimaging 

community, yet they still rely on measures of linear 

dependence.  

Recently, growing number of neuroimaging studies have 

suggested that functional networks display dynamic changes in 

connectivity strength [5]–[7], as well as varying phase 

difference (nonzero time-lag) between regions [8]. To address 

these problems, Dynamic Time Warping (DTW) distance [9] 

can be used as an alternative measure of similarity between 

BOLD signals [10], since DTW is able to handle non-stationary 

processes and it results in more stable functional connectivity 

patterns than correlation. Beside DTW distance, the DTW 

algorithm computes the warping path as well, which encodes 

the dynamic time-delay structure between any two compared 

time-series. In case of BOLD signals, the warping path itself 

can contain relevant information about the relationship of the 

brain areas. 

Recent studies [11]–[13] show that resting-state functional 

connectivity has great potential as a biomarker of several type 

of drug addictions. We hypothesise that descriptive scalar 

features of the warping path, in particular, the length of the 

warping path may hold potentially relevant information about 

the dynamics of the relationship.  

In this study, we empirically validate the above hypothesis and 

propose to use classification features based on the length of 

warping path for the task of distinguishing cannabis users from 

non-users. Furthermore, we interpret our results from the 

biomedical point of view as well.  

The rest of the paper is organized as follows: Section II reviews 

the background that is necessary to understand our work, 

Section III describes our approach, while in Section IV we 

present the results of the experimental evaluation. Section V 

discusses the relevance of our findings from the biomedical 

point  of  view.  Finally,  our conclusions are presented in 

Section VI.  



II.   BACKGROUND 

In this section, we review major techniques on which our 

proposed approach relies.   

A. Dynamic Time Warping 

Dynamic Time Warping is a distance measure that takes 

potential shifting and elongations into account when comparing 

two time series. DTW was originally designed for speech 

recognition [9]. In the last decades it was shown to work 

exceedingly well for time series classification [14], [15], thus it 

became one of the most prominent time series distance 

measures in the machine learning community, see e.g. [16] and 

the references therein. 

DTW is an edit distance, i.e., when comparing two time series, 

it calculates the “cost” of transforming one of the time series 

into the other one. Calculation of the DTW distance of two time 

series of length l1 and l2, can be implemented by filling-in the 

entries of an l1 x l2 matrix. This approach is illustrated in Fig. 1. 

Each entry of the matrix corresponds to the distance between 

two prefixes of the time-series. The entries can be filled-in 

column-by-column and row-by-row, in order to fill an entry 

D(i,j) of the matrix, we use the following rule:    

𝐷(i,j) = ‖t1(i)-t2(j)‖ + min(𝐷(i-1,j-1), 𝐷(i-1,j), 𝐷(i,j-1)) (1) 

where t1(i) denotes the i-th value in time series t1 and t2(j) 

denotes the j-th value in time series t2. Once the matrix is filled, 

the value in the entry D(l1,l2) is the DTW-distance of the two 

time series.  

Fig. 1. A, Calculation of DTW distance by filling in the DTW matrix. Elements 

of x1 correspond to rows, while elements of x2 correspond to columns of the 
matrix; w denotes the size of the warping window, the maximal allowed time-

lag between two matched time series element. The optimal warping path is 

highlighted with dark grey. B, Formula to calculate entry (i,j): distance of x1(i) 

and x2(j) plus the minimum of the matrix entries (i-1,j), (i-1,j-1), (i,j-1).  

C, Optimal matching of the elements of x1 and x2 revealed by the DTW matrix. 

Adapted with permission from [16]. 

 

In order to speed-up DTW-calculations, it is enough to calculate 

the cells close to the main diagonal of the matrix [9]. This 

corresponds to limiting the shifting that is allowed between 

matched positions of the two time series by applying a warping 

window. For example, when calculating only the marked 

entries in Fig. 1A, the size of the warping window is w = 2.   

Once the matrix is filled, starting from D(l1,l2), by considering 

which of the neighboring entries has led to the minimum in Eq. 

(1), we can construct the warping path, or, equivalently, the 

matching between the positions of the time series, see Fig. 1C 

for an example.  

B. K-nearest neighbors (KNN)  

We treat the classification according to cannabis addiction as a 
binary classification task with class labels “0” and “1”. As we 
will describe in Section III, we map brains into a vector space 
which allows to use any conventional vector classifier to solve 
the classification task.  

Due to its simplicity and theoretical performance guarantees, K-
nearest neighbors (KNN) is one of the most popular classifiers 
[17]. KNN classifies unknown objects based on its K nearest 
neighbors which are determined using the Euclidian distance in 
our case.   

We used adaptive threshold KNN classification. Let us denote 
the instance to be classified by x. Its predicted class label �̅�𝑁(𝑥) 
is calculated as follows: 

 
 �̅�𝑁(𝑥) = {

0, 𝐼𝐹 ‖{𝑥𝑖: 𝑥𝑖 ∈ 𝑁𝑘(𝑥) ∧ 𝑦𝑖 = 0}‖  ≥ 𝑡
1  𝑂𝑇𝐻𝐸𝑅𝑊𝐼𝑆𝐸                                 

 
(2) 

where 𝑁𝑘(𝑥) is the set of nearest neighbors of 𝑥, 𝑦𝑖  denotes the 
class label of 𝑥𝑖 and 𝑡 is a hyper parameter.  

The number of nearest neighbors, K, can be seen as a 
regularization term: larger values of K reduce the effect of noise 
on the classification, but they could result in high bias, whereas 
low values of K may lead to overfitting.  

We applied hyper parameter learning to determine appropriate 
values of K and t, see also Section IV.C. When evaluating the 
accuracy of classification, in order to calculate ROC curves, we 
need the continuous output of the classifier, by which we mean 
the ratio of nearest neighbors from the class labeled “1”.   

C. LASSO regression 

The Least Absolute Shrinkage and Selection Operator (LASSO) 
is a regularized regression method that performs feature 
selection, which enables it to deal with high dimensional 
datasets [18].  

The class label predicted by LASSO, denoted as �̅�(�⃑�) can be 
calculated as follows:   

 �̅�(𝑥) = { 0, 𝐼𝐹 �⃑�𝑇�⃑�  ≤ 0
 1  𝑂𝑇𝐻𝐸𝑅𝑊𝐼𝑆𝐸 

 (3) 

where 𝑥 ⃑⃑⃑ ⃑ ∈  ℝ𝑑 is an instance and vector �⃑�  ∈  ℝ𝑑 is the 
parameter of the model, the values of which are determined 
during training. In particular, LASSO’s objective is to find the 

parameter vector �⃑� that minimizes the sum of squared errors and 
the regularization term: 

 �⃑� = 𝑎𝑟𝑔 min
�⃑⃑⃑�

1

𝑁
‖�⃑� − 𝑿�⃑�‖

2

2
+ 𝜆‖�⃑�‖

1
 (4) 

where N is the number of examples, 𝑿 ∈  ℝ𝑁𝑥𝑑 matrix contains 
the cases, d is the number of features (for the sake of simplicity, 
𝑥0 and 𝜃0 represents the bias term and its weight), �⃑�  ∈  ℝ𝑁 
contains the desired output values, and 𝜆 ∈  ℝ is a hyper 
parameter controlling the regularization, or equivalently, the 
sparsity of the resulting model. Before regression we normalized 
the input matrix X by setting each column’s standard deviation 
to 1 and mean to 0. 

 



With continuous output of LASSO in case of a test instance �⃑� 

we mean the product �⃑�𝑇�⃑� .  

III. OUR APPROACH 

We assume that the brain (or that part of it on which the domain 

expert’s analysis focuses) is segmented into regions of interest 

(ROIs) and the activity of the brain is given for each of the ROIs 

as function of time. We propose to calculate DTW between the 

time series associated with the ROIs and to characterize the 

phase shift between each pair of ROIs by the relative length of 

the warping path. With relative length of the warping path, we 

mean the difference between the actual length of the warping 

path and the main diagonal. This allows us to describe the 

brain’s dynamic behavior as a vector containing a component 

for each pair of ROIs. In other words: we map fMRI data into a 

vector space. We note that we map fMRI data of various 

subjects into the same vector space. Thus, conventional 

classifiers may be trained. Subsequently, these classifiers may 

be used to classify new patients. 

Due to the complexity of the data, such as the relatively high 

amount of features compared to the usual number of subjects, 

we propose to use the two classifiers described in Section II. 

We choose the LASSO regression based classifier, since it is 

able to perform well in high-dimensional feature spaces and 

yields biologically interpretable results in terms of selected 

features, and KNN with adaptive threshold for to its simplicity 

and good performance, even though kNN is known to be 

affected by the curse of dimensionality. To address this issue in 

future work, application of some extensions of kNN classifiers, 

e.g. hubness-aware kNN [16] should be considered. 

 

IV. EXPERIMENTAL EVALUATION 

A. Data and preprocessing 

In order to assist reproducibility and to perform classification 

of fMRI data according to a standard protocol, we downloaded 

a preprocessed public resting-state fMRI database from the 

1000 Functional Connectomes Project, Addiction Connectome 

Preprocessed Initiative. In our study we used the MTA 1 dataset 

with the ANTS registered, no scrubbing, no global signal 

regression preprocessing pipeline. Detailed description of the 

preprocessing strategy is available at the homepage of the 

dataset (http://fcon_1000.projects.nitrc.org/indi/ACPI/html/). 

The downloaded dataset contains 126 subjects’ resting-state 

data as well as phenotypic information including cannabis 

addiction (62 addicted, 64 non-addicted subject). 

We used a functional atlas of FIND Lab consisting of 90 

functional regions of interest (ROI) [19] to obtain 90 

functionally meaningful averaged BOLD signals per subject. In 

the downloaded data, one ROI (Basal Ganglia 4) included no 

meaningful measurement for any of the 126 subjects, therefore 

we used the remaining 89 ROIs, resulting in 3912 individual 

connectivity features for classification.  

The aforementioned 89 ROIs correspond to 89 time series that 

capture the activities of the brain in various regions. From these 

89 time series we calculated full connectivity matrices with 

DTW, i.e., we calculated the DTW matrix between each pairs 

of time series. When calculating DTW, we set the size of the 

warping window to 100 s corresponding to 50 time-points. This 

is in accordance with the fact that the time-series in the publicly 

available version of the data are bandpass filtered with 0.01 Hz 

lower cut-off frequency.  

B. Baselines 

As baseline we used classification based on DTW distance 

(without considering the warping path) and Pearson correlation. 

For the later baseline, we mapped resting-state-fMRI (rs-fMRI) 

data into a vector space in the same way as in case of our 

approach, with the only difference that we calculated the 

Pearson correlation between each pair of time series and used 

the Pearson correlations as features describing the connectivity 

between ROIs. In case of the other baseline, we simply used the 

standard DTW distance instead of the relative path length. 

C. Experimental Protocol 

We performed experiments according to the leave-one-subject-

out cross-validation protocol with both KNN and LASSO 

classifiers.  

In both cases, in each round of the cross-validation, the values 

of the hyper parameters 𝜆, K and t were determined using the 

training data only. In particular, we performed an internal 

cross-validation on the training data in order to select values of 

hyper parameters that maximize macro-averaged F-measure. 

We note that the macro-averaged F-measure converges to the 

accuracy, when the two classes are balanced (like in our case), 

and the number of positive and negative labels predicted by the 

classifier are also equalized. Therefore, searching for 

hyperparameters that maximize macro-averaged F-measure 

essentially corresponds to maximizing accuracy.  

For KNN, K was learned from the set of odd numbers between 

1 and 10, and we checked thresholds 𝑡 ∈ {1, … , 𝐾}. For 

LASSO, 𝜆 was learned from the interval between 0.0005 and 

0.5. 

D. Performance metrics 

To assess the performance of the proposed classification 

approach as well as the baselines, we calculated accuracy, the 

area under the receiver operator characteristic curve (AUC) and 

F-measure.  

We define accuracy as the ratio of correctly classified subjects. 

When calculating AUC, we considered the class of cannabis 

addicts as the “positive” class and used the continuous output 

of the classifiers (see also Section II for the description of how 

the continuous output was calculated).  

We calculated F-measure, i.e., the harmonic mean of precision 

and recall, for both classes and averaged the F-measures of the 

two classes. This led to a macro-averaged F-measure which we 

used to assess the quality of the classifiers.  

In order to test if the differences between our approach and the 

baselines are statistically significant, we used the binomial test 

suggested by Salzberg [20].  



 
Fig. 2. The pipeline of our compound model: data preprocessing, classification 
and evaluation.  

 

E. Classification results 

For simplicity, we only report results for macro-averaged F-

measures obtained with KNN and LASSO classification in 

Table I. However, we observed similar trends when we used 

accuracy and ROC as evaluation metrics.  

TABLE I.  CLASSIFICATION RESULTS OF CANNABIS ADDICTION 

Average F-measure 
Classification methods 

LASSO KNN 

Correlation coeff. 0.27 0.50 

DTW distance 0.47 0.42 

Relative-path-length 0.62 0.64 

 

For both classification methods, the best performance was 

achieved with the relative-path-length features. Classifiers 

using the proposed relative-path-length features significantly 

(p<0.05) outperform both the classifiers based on correlation 

and the ones based on DTW distance. 

The ROC curves of the classifiers using the proposed relative 

path length features are plotted on Fig. 3.  
 

 

F. Stability of selected features 

By assigning zero weights to a subset of features, the LASSO 

classifier applies feature selection: we consider a feature as 

“selected” if has a non-zero weight.  Next, we  examine  which                

 
 

 
Fig. 3. ROC curves of the path-length based classifiers. A, ROC curve and AUC 

value of the LASSO classifier based on path-length features B, ROC curve and 
AUC value of the KNN classifier based on path-length features. 

 

features  are  selected  and  how  stable  is  the  set  of  selected 

features. We considered a feature stable, if it was selected at 

least 100 times out of the 126 cycles (~80%) of leave-one-

subject-out cross-validation. While the proposed relative path 

length based classifier has 61 stable features, DTW distance 

yields 13 and correlation only 4. It is important to note that the 

number of stable features does not correspond to the total 

number of selected features in the cross-validation cycles, e.g. 

the number of selected features range between 26 and 159 with 

relative-path-length-based classifiers, 9 and 97 with DTW 

distance based classifiers and 1 and 182 in case of correlation 

based classifiers.  Considering the results presented in Table I, 

the number of stable features is closely linked to the 

classification performance of LASSO.  

Fig. 4 shows stability of selected feature sets in more detail.  



 
Fig. 4. The stability of the selected features based on correlation, DTW distance 

and warping path-length. Considering the 126 cycles of leave-one-out 
crossvalidation, we count how many features appear at least n-times among the 

selected features. The vertical axis shows n, while the horizontal axis displays 

the number of features that appear at least n-times among the selected features. 
The threshold of 100 selection is represented with the black dashed line.  

 

The 61 features stably selected by relative-path-length-based 

LASSO classifier represents a brain network that contains ROI 

connections with the most different dynamics between addicted 

and non-addicted subjects. This connectivity pattern is 

visualized in Fig. 5.  

 
Fig. 5. A, Graph representation of the Cannabis network based on pathlength. 
The coloring and sizeing of nodes corresponds to the degree of the given node 

(pink – low degree, green – high degree). B, The same network mapped back 

to functional ROIs, the colosing corresponds to the degree of the given node. 

V. DISCUSSION 

KNN and LASSO classification results suggest that in cannabis 

classification, information about the dynamics of the 

relationship of the ROIs is more valuable than in case of other 

connectivity measures such as correlation.   

We note that in the general case, DTW distance and the length 

of the warping path are not independent. Consider the case of 

random time-series: longer path means more editing steps, and 

as the two series cannot be meaningfully matched this will 

result in higher DTW distance. On the other hand, in case of 

connections where the two time-series are highly linearly 

correlated, the warping path will almost exactly follow the main 

diagonal, resulting in very short path-length and in case of a 

good match, a relatively low DTW distance too. Consequently, 

DTW distance and the length of warping path may be highly 

correlated in the general case.  

However, the length of the warping path itself contains 

additional information about the relationship in those 

connections, where a good match is achievable, but the time-

delay structure between the signals is dynamically changing. In 

such cases, the DTW distance is rather small, whereas the 

warping path is relatively long. This hypothesis is supported by 

the finding, that while the overall correlation of DTW distances 

and warping path-lengths within subjects is 0.99±3e-5, the 

same correlation calculated from only those 61 features that 

were invariably selected by LASSO in warping path based 

cannabis classification is only 0.57±0.11, implying that LASSO 

de facto chooses connections where warping path-length 

contains information beyond DTW distance value. 

The cannabis network identified by the LASSO algorithm can 

be also interesting from the clinical point of view. The pattern 

of selected functional ROIs include several cognitive control 

and sensory processing related areas that have been reported to 

be associated with cannabis use [12], [21], [22], including 

connections which were found to be stronger in addicted 

subjects, resulting in both lower DTW distance and shorter 

path-length values due to some compensatory mechanisms 

[22], and connections that were shown to be weaker due to the 

general neural desynchronization reported in cannabis use [23] 

increasing the length of the warping path. 

 

VI. CONCLUSIONS 

Classification of brain activity patterns according to regular 

usage of cannabis is not only important because of the potential 

social impact of the explanations derived from the models 

learned by the classifiers, but also a challenging task from the 

machine learning point of view, because cannabis usage was 

reported to have only a minor effect in terms of conventional 

connectivity measures [24]. Therefore, we proposed a 

compound model using features based on the relative length of 

the DTW warping path for the classification of cannabis 

addiction. As shown by our experimental results, such features 

may be considered as a feasible descriptor of connectivity 

dynamics that may distinguish cannabis users from subjects 

who do not use cannabis regularly. Furthermore, we 

demonstrated that the model may contribute to reveal 



biomedically relevant knowledge about brain functionality. We 

envision that features based on the length of the warping path 

may be used for other classification tasks related to brain 

functionality as well, such as classification tasks related to other 

types of addiction.  

In future multi-task learning experiments, where other type of 

mental disorders, like ADHD, autism or Alzheimer’s disease 

are examined beside addiction, intelligent combination [25], 

[26] of connectivity strength features like correlation and DTW 

distance, and features representing the connectivity dynamics 

like the length of the warping path should be considered. As 

classifiers based on different feature sets have different 

domains of competence, application of these combined models 

have great potential. 
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