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MONOTONICITY PROPERTIES OF

THE BESSEL-STRUVE KERNEL

Árpád Baricz, Saiful R. Mondal, and Anbhu Swaminathan

Abstract. In this paper our aim is to study the classical Bessel-Struve

kernel. Monotonicity and log-convexity properties for the Bessel-Struve
kernel, and the ratio of the Bessel-Struve kernel and the Kummer conflu-

ent hypergeometric function are investigated. Moreover, lower and upper
bounds are given for the Bessel-Struve kernel in terms of the exponential

function and some Turán type inequalities are deduced.

1. Introduction and statements of the main results

Bessel and Struve functions arise in many problems of applied mathematics
and mathematical physics. The properties of these functions were studied by
many researchers in the past years from many different point of views. In
this paper we consider the so-called Bessel-Struve kernel function Sν , which is
defined by the series

Sν(x) =
∑
n≥0

Γ(ν + 1)Γ
(
n+1

2

)
√
πn!Γ

(
n
2 + ν + 1

)xn,
where ν > −1. The significance of this function is that it is a particular case
when λ = 1 of the unique solution Sν(λx) of the initial value problem

Lνu(x) = λ2u(x), u(0) = 1, u′(0) =
λΓ(ν + 1)
√
πΓ(ν + 3

2 )
,

where for ν > − 1
2 the expression Lν stands for the Bessel-Struve operator

defined by

Lνu(x) =
d2u

dx2
(x) +

2ν + 1

x

(
du

dx
(x)− du

dx
(0)

)
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with an infinitely differentiable function u on R. Recently the Bessel-Struve ker-
nel and the so-called Bessel-Struve intertwining operator have been the subject
of some research from the point of view of the operator theory, see [4, 5, 6]
and the references therein. In these papers the Bessel-Struve intertwining op-
erator (which is actually a topological isomorphism from the space of infinitely
differentiable functions on R into itself, see [6]) has been studied extensively,
and some of the properties of the Bessel-Struve kernel were useful in these in-
vestigations. For example, in the proof of [4, Theorem 3.15] it was used the
inequality Sν(x) < ex, where ν > − 1

2 and x > 0, in order to show that some
series related to the Bessel-Struve intertwining operator are convergent and it
is possible to characterize the mean-periodic functions on the space of entire
functions and to characterize the continuous linear mappings from the above
space into itself which commute with the Bessel-Struve operator. Motivated
by these results, in this paper our aim is to study the classical Bessel-Struve
kernel. By using some classical tools our aim is to investigate the monotonicity
and log-convexity properties for the Bessel-Struve kernel, and of the ratio of
the Bessel-Struve kernel and the Kummer confluent hypergeometric function
Φ(a, c; ·), defined by the infinite series

Φ(a, c;x) =
∑
n≥0

Γ(a+ n)Γ(c)

Γ(c+ n)Γ(a)

xn

n!
.

Moreover, by using the auxiliary function

Sν,a(x) =
∑
n≥0

Γ(ν + 1)Γ
(
n+1

2

)
(a)n√

πn!Γ
(
n
2 + ν + 1

) xn
n!

our aim is to deduce a Turán type inequality for the Bessel-Struve kernel. The
results presented in this paper may be used to deduce many lower and upper
bounds for the Bessel-Struve kernel, which may be useful in the study of the
Bessel-Struve intertwining operator. For example part (b) of the next theorem
yields Sν(x) < S− 1

2
(x) = ex for ν > − 1

2 and x > 0, which was used in the

proof of [4, Theorem 3.15]. Some more tight bounds are shown in Theorem 2
below.

Our first main result reads as follows.

Theorem 1. Let ν, µ > −1. The following assertions are true:

(a) If µ ≥ ν, then x 7→ Sµ(x)/Sν(x) is decreasing on (0,∞).
(b) The function ν 7→ Sν(x) is decreasing and log-convex on (−1,∞) for

each fixed x > 0.
(c) The function x 7→ xS′ν(x)/Sν(x) is increasing on (0,∞) for each fixed

ν > −1.
(d) The function x 7→ Sν(x) is log-convex on (0,∞) for each fixed ν > − 1

2 .
(e) The function ν 7→ S′ν(x)/Sν(x) is decreasing on (−1,∞) for each fixed

x > 0.
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(f) The function ν 7→ ϕν−1(x)/ϕν(x) is decreasing on (0,∞) for x > 0,
where ϕν(x) = x2νSν(x).

(g) The function ν 7→ (ϕν(x))
1/ν

is decreasing on (0,∞) for each fixed
x > 0.

(h) The function x 7→ Sν(x)/Φ(a, c;x) is decreasing on (0,∞) for a ≥ c > 0
and ν ≥ − 1

2 .
(i) The function x 7→ Sν(x)/Φ(a, a+ 1;x) is increasing on (0,∞) for ν ∈(

0, 1
2

]
and a ∈ [0, 2ν].

(j) The function x 7→ Sν(x)/Φ(a, a+ 1;x) is decreasing on (0,∞) for ν >
1
2 and a ≥ 2ν.

(k) The function a 7→ Sν,a(x) is strictly log-concave on (0,∞) for x > 0
and ν > −1.

It is important to mention here that from the above main result many in-
equalities can be deduced. For example, parts (b) and (f) imply a reversed
Turán type inequality, while part (k) implies a Turán type inequality. Moreover,
following the proof of part (b) it can be shown that the function ν 7→ Sν,a(x)
is decreasing and log-convex on (−1,∞) for each fixed a, x > 0. This result
yields also in particular a Turán type inequality. All of these inequalities can
be written in the following chain of inequalities

Sν,a−1(x)Sν,a+1(x) ≤ S2
ν,a(x) ≤ Sν−1,a(x)Sν+1,a(x),

where x > 0, a > 1, ν > −1 on the left-hand side, and x > 0, a, ν > 0 on the
right-hand side.

Finally, by using the Chebyshev integral inequality we can get some other
inequalities and bounds for the Bessel-Struve kernel which can be useful in the
study of the Bessel-Struve intertwining operator.

Theorem 2. The Bessel-Struve kernel satisfies the following inequalities:

(a) If ν ≥ 1
2 and x > 0, then xSν(x) ≤ ex − 1 and it is reversed when

−1 < ν < 1
2 .

(b) If ν ≥ 3
2 and x > 0, then Sν−1(x)Sν+1(x) ≤ S 1

2
(x)S2ν− 1

2
(x) and it is

reversed when ν ∈
(

1
2 ,

3
2

)
.

(c) If ν > − 1
2 and x > 0, then

Sν(x) < e
x2

4(ν+1) +
xΓ(ν + 1)
√
π Γ
(
ν + 3

2

)e x2

4(ν+2) .

(d) If ν ≥ − 1
2 and x > 0, then

(1.1) e

xΓ(ν+1)
√
π Γ(ν+ 3

2 ) < Sν(x) < 1− Γ(ν + 1)
√
πΓ
(
ν + 3

2

) (1− ex).

2. Proofs of the main results

The following result of Biernacki and Krzyż [3] will be used in the sequel.
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Lemma 1 ([3]). Consider the power series f(x) =
∑
n≥0 anx

n and g(x) =∑
n≥0 bnx

n, where an ∈ R and bn > 0 for all n. Further suppose that both series

converge on |x| < r. If the sequence {an/bn}n≥0 is increasing (or decreasing),
then the function x 7→ f(x)/g(x) is also increasing (or decreasing) on (0, r).

We note that the above lemma still holds when both f and g are even, or
both are odd functions.

Proof of Theorem 1. (a) By using the definition of the Bessel-Struve kernel we
have

Sµ(x)

Sν(x)
=

∑
n≥0 cn(µ)xn∑
n≥0 cn(ν)xn

, where cn(α) =
Γ(α+ 1)Γ

(
n+1

2

)
√
πn!Γ

(
n
2 + α+ 1

) .
With notation wn = cn(µ)/cn(ν) we have

wn+1

wn
=

Γ
(
n
2 + ν + 3

2

)
Γ
(
n
2 + µ+ 1

)
Γ
(
n
2 + µ+ 3

2

)
Γ
(
n
2 + ν + 1

) .
On the other hand, we know that the Euler gamma function is log-convex
on (0,∞), or equivalently the digamma function x 7→ ψ(x) = Γ′(x)/Γ(x) is
increasing on (0,∞). This implies that the function φ : (−1,∞) → (0,∞),
defined by

φ(µ) =
Γ
(
n
2 + µ+ 1

)
Γ
(
n
2 + µ+ 3

2

) ,
is decreasing since for µ > −1 and n ∈ {0, 1, . . . } we have

φ′(µ) = φ(µ)

(
ψ
(n

2
+ µ+ 1

)
− ψ

(
n

2
+ µ+

3

2

))
< 0.

Consequently, for µ ≥ ν and n ∈ {0, 1, . . . } the next inequality is valid

Γ
(
n
2 + µ+ 1

)
Γ
(
n
2 + µ+ 3

2

) ≤ Γ
(
n
2 + ν + 1

)
Γ
(
n
2 + ν + 3

2

) ,
which is equivalent to wn+1 ≤ wn. In other words, the sequence {wn}n≥0

is decreasing and appealing to Lemma 1 it follows that x 7→ Sµ(x)/Sν(x) is
decreasing on (0,∞).

(b) It is known that the infinite sum of decreasing functions is also decreasing
and the infinite sum of log-convex functions is also log-convex. Thus, to show
that ν 7→ Sν(x) is decreasing and log-convex on (−1,∞) it is enough to show
that ν 7→ cn(ν) is decreasing and log-convex on (−1,∞) for each fixed n ∈
{0, 1, . . . }. Since the digamma function is increasing and concave on (0,∞) we
obtain for all ν > −1 and n ∈ {0, 1, . . . } that

∂ log cn(ν)

∂ν
= ψ(ν + 1)− ψ

(n
2

+ ν + 1
)
≤ 0 ≤ ψ′(ν + 1)− ψ′

(n
2

+ ν + 1
)

=
∂2 log cn(ν)

∂ν2
.
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Thus, for all n ∈ {0, 1, . . . } the coefficients ν → cn(ν) are decreasing and log-
convex on (−1,∞) and consequently ν 7→ Sν(x) is decreasing and log-convex
on (−1,∞) for each fixed x > 0.

(c) Let dn(ν) = ncn(ν). Then by using the infinite series of the Bessel-Struve
kernel the quotient xS′ν(x)/Sν(x) can be written as

xS′ν(x)

Sν(x)
=

∑
n≥0 dn(ν)xn∑
n≥0 cn(ν)xn

.

It is clear that the sequence {dn(ν)/cn(ν)}n≥0 = {n}n≥0 is increasing, and

hence by using Lemma 1 it follows that the function x 7→ xS′ν(x)/Sν(x) is
increasing on (0,∞).

(d) By using the integral representation (see for example [6])

(2.1) Sν(x) =
2Γ(ν + 1)
√
πΓ
(
ν + 1

2

) ∫ 1

0

(1− t2)ν−
1
2 extdt,

where ν > − 1
2 , and the well-known Hölder-Rogers inequality for integrals for

x, y > 0, ν > − 1
2 and λ ∈ [0, 1] we get

Sν(λx+ (1− λ)y)

=
2Γ(ν + 1)
√
πΓ
(
ν + 1

2

) ∫ 1

0

(1− t2)ν−
1
2 e(λx+(1−λ)y)tdt

=
2Γ(ν + 1)
√
πΓ
(
ν + 1

2

) ∫ 1

0

(
(1− t2)ν−

1
2 ext

)λ (
(1− t2)ν−

1
2 eyt

)1−λ
dt

≤ 2Γ(ν + 1)
√
πΓ
(
ν + 1

2

) (∫ 1

0

(1− t2)ν−
1
2 ext

)λ(∫ 1

0

(1− t2)ν−
1
2 eytdt

)1−λ

= (Sν(x))λ(Sν(y))1−λ,

that is, Sν is log-convex on (0,∞) for each ν > − 1
2 .

(e) This is a direct consequence of part (a). We know that if µ ≥ ν, then
x 7→ Sµ(x)/Sν(x) is decreasing on (0,∞). But this is equivalent to Sν(x)S′µ(x)−
S′ν(x)Sµ(x) ≤ 0 which can be rewritten as S′µ(x)/Sµ(x) ≤ S′ν(x)/Sν(x).

(f) First observe that the Bessel-Struve kernel satisfies the following recur-
rence relation

xS′ν(x) = 2νSν−1(x)− 2νSν(x),

which can be verified by using the series representation. In view of this and
part (e) we have that

ν 7→ ϕν−1(x)

ϕν(x)
=
Sν−1(x)

x2Sν(x)
=

1

x2
+

1

2ν
· S
′
ν(x)

xSν(x)

is decreasing on (0,∞) as a product of two positive and decreasing functions.
(g) Consider the function g : (0,∞)→ R given by

g(x) = µ log(ϕν(x))− ν log(ϕµ(x)), µ ≥ ν > 0.
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Now, using the definition of ϕν , the function g can be rewritten as g(x) =
µ log(Sν(x))−ν log(Sµ(x)). Since Sν(x)→ 1 as x→ 0, it follows that g(x)→ 0
as x→ 0. Thus, to prove the assertion it is enough to show that g is increasing
on (0,∞). But, by using part (f) and the fact that ϕ′ν(x) = 2νxϕν−1(x) we
have for µ ≥ ν > 0 and x > 0

g′(x) = µ
ϕ′ν(x)

ϕν(x)
− ν

ϕ′µ(x)

ϕµ(x)
= 2xνµ

(
ϕν−1(x)

ϕν(x)
− ϕµ−1(x)

ϕµ(x)

)
≥ 0.

Alternatively, this part can be proved by showing that ν 7→ logϕ
1
ν
ν (x) =

log x2 + 1
ν logSν(x) is decreasing on (0,∞) for each x > 0 as a product of two

positive and decreasing functions. Here we used part (b) and the fact that Sν
in fact maps (0,∞) into (1,∞) and thus logSν(x) is positive for each ν > −1
and x > 0.

(h) Recall that the Bessel-Struve kernel and the Kummer confluent hyper-
geometric functions have the representation

Sν(x) =
∑
n≥0

cn(ν)xn and Φ(a, c;x) =
∑
n≥0

dn(a, c)xn,

where

cn(ν) =
Γ(ν + 1)Γ

(
n+1

2

)
√
πn!Γ

(
n
2 + ν + 1

) and dn(a, c) =
(a)n

(c)nn!
=

Γ(c)

Γ(a)

Γ(a+ n)

Γ(c+ n)n!

with ν > −1, a, c > 0. We would like to apply Lemma 1, and for this we
consider the sequence {wn}n≥0, defined by

wn =
cn(α)

dn(a, c)
=

Γ(ν + 1)Γ(a)√
πΓ(c)

ρ(n), where ρ(x) =
Γ
(
x+1

2

)
Γ(x+ c)

Γ
(
x
2 + ν + 1

)
Γ(x+ a)

.

Since the digamma function is increasing on (0,∞) in view of

ρ′(x)

ρ(x)
=

1

2
ψ

(
x+ 1

2

)
+ ψ(x+ c)− 1

2
ψ
(x

2
+ α+ 1

)
− ψ(x+ a)

it follows that for ν ≥ − 1
2 and a ≥ c > 0 the function ρ is decreasing on (0,∞)

and thus the sequence {wn}n≥0 will be also decreasing. Applying Lemma 1 this
implies that indeed the function x 7→ Sν(x)/Φ(a, c;x) is decreasing on (0,∞)
for a ≥ c > 0 and ν ≥ − 1

2 .
(i) and (j) The increasing property of ψ yields

1

2
ψ

(
x+ 1

2

)
≥ 1

2
ψ
(x

2
+ ν
)

for ν ≤ 1
2 and x > 0. The well-known difference equation for the digamma

function

ψ(x+ 1)− ψ(x) =
1

x
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implies

1

2
ψ
(x

2
+ ν
)
− 1

2
ψ
(x

2
+ ν + 1

)
= − 1

x+ 2ν
and

ψ(x+ a+ 1)− ψ(x+ a) =
1

x+ a
.

Now, changing c by a+ 1 for 0 ≤ ν ≤ 1
2 and a ∈ [0, 2ν] we get

ρ′(x)

ρ(x)
=

1

2
ψ

(
x+ 1

2

)
− 1

2
ψ
(x

2
+ ν
)

+
1

2
ψ
(x

2
+ ν
)
− 1

2
ψ
(x

2
+ ν + 1

)
+ ψ(x+ a+ 1)− ψ(x+ a)

≥ 1

x+ a
− 1

x+ 2ν
=

2ν − a
(x+ a)(x+ 2ν)

≥ 0,(2.2)

which implies that ρ is increasing on (0,∞). Thus, the sequence {wn}n≥0 is
also increasing, and applying Lemma 1 it follows that indeed the function
x 7→ Sν(x)/Φ(a, a+ 1;x) is increasing on (0,∞) for ν ∈

(
0, 1

2

]
and a ∈ [0, 2ν].

On the other hand if ν > 1
2 , the inequality (2.2) is reversed

ρ′(x)

ρ(x)
≤ 1

x+ a
− 1

x+ 2ν
=

2ν − a
(x+ a)(x+ 2ν)

≤ 0,

when a ≥ 2ν. Thus, the function ρ is decreasing on (0,∞) and consequently
{wn}n≥0 is also decreasing. Applying again Lemma 1 the proof of part (j) is
complete.

(k) Owing to Karp and Sitnik [7] we know that if we let

f(a, x) =
∑
n≥0

fn
(a)n
n!

xn,

where fn > 0 (and is independent of a) and we suppose that b > a > 0, δ > 0,
then the function

φa,b,δ(x) = f(a+ δ, x)f(b, x)− f(b+ δ, x)f(a, x) =
∑
m≥2

φmx
m

has positive power series coefficient φm > 0 so that a 7→ f(a, x) is strictly
log-concave for x > 0 if the sequence {fn/fn−1} is decreasing. In what follows
we shall use this result for the function Sν,a. For this let

fn =
Γ(ν + 1)Γ

(
n+1

2

)
√
πn!Γ

(
n
2 + ν + 1

) .
Thus, it is enough to show that the sequence bn = {fn/fn−1} is decreasing. A
calculation gives

bn =
Γ
(
n+1

2

)
Γ
(
n+1

2 + ν
)

nΓ
(
n
2

)
Γ
(
n
2 + ν + 1

)
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and thus we need to show that the function ξ : (0,∞)→ R, defined by

ξ(x) =
Γ
(
x+1

2

)
Γ
(
x+1

2 + ν
)

xΓ
(
x
2

)
Γ
(
x
2 + ν + 1

) ,
is decreasing for ν > −1. Logarithmic differentiation gives

ξ′(x)

ξ(x)
=

1

2
ψ

(
x+ 1

2

)
+

1

2
ψ

(
x+ 1

2
+ ν

)
− 1

2
ψ
(x

2

)
− 1

2
ψ
(x

2
+ ν + 1

)
− 1

x
.

By using again the known fact that the digamma function is increasing on
(0,∞), and also the fact that it has the series form

ψ(y) = −γ − 1

y
+
∑
k≥1

y

k(y + k)
(2.3)

for ν > −1 and x > 0 it follows that

ξ′(x)

ξ(x)
<

1

2
ψ

(
x+ 1

2

)
− 1

2
ψ
(x

2

)
− 1

x

= −γ
2
− 1

x+ 1
+

1

2

∑
k≥1

x+ 1

k(x+ 1 + 2k)
+
γ

2
+

1

x
+

1

2

∑
k≥1

x

k(x+ 2k)
− 1

x

= − 1

x+ 1
+

1

2

∑
k≥1

1

k
−
∑
k≥1

1

x+ 1 + 2k
− 1

2

∑
k≥1

1

k
+
∑
k≥1

1

x+ 2k

=
∑
k≥0

1

x+ 2k + 2
−
∑
k≥0

1

x+ 2k + 1

= −
∑
k≥0

1

(x+ 2k + 2)(x+ 2k + 1)
< 0.

Thus ξ is indeed decreasing, and hence by using the above result of Karp and
Sitnik for the function

a 7→ Sν,a(x) =
∑
n≥0

fn
(a)n
n!

xn,

the conclusion follows. �

Let us recall the well-known Chebyshev integral inequality [8, p. 40], which
will be used in the proof of the second main results: If f, g : [a, b] → R are
synchronous (both increase or decrease) integrable functions, and p : [a, b]→ R
is a positive integrable function, then∫ b

a

p(t)f(t)dt

∫ b

a

p(t)g(t)dt ≤
∫ b

a

p(t)dt

∫ b

a

p(t)f(t)g(t)dt.(2.4)

The inequality (2.4) is reversed if f and g are asynchronous.
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Proof of Theorem 2. (a) Let us consider the functions p, f, g : [0, 1] → R de-
fined by

p(t) = 1, f(t) =
2Γ(ν + 1)
√
πΓ
(
ν + 1

2

) (1− t2)ν−
1
2 , g(t) = ext, x > 0.

Clearly g is increasing and f is decreasing for ν ≥ 1
2 and increasing for |ν| < 1

2 .
Since ∫ 1

0

p(t)f(t)dt =
2Γ(ν + 1)
√
πΓ
(
ν + 1

2

) ∫ 1

0

(1− t2)ν−
1
2 dt = Sν(0) = 1,

∫ 1

0

p(t)g(t)dt =

∫ 1

0

extdt =
ex − 1

x
= S 1

2
(x),

the Chebyshev integral inequality (2.4) implies

Sν(x) =

∫ 1

0

p(t)dt

∫ 1

0

p(t)f(t)g(t)dt <
ex − 1

x
.

The inequality is reversed for |ν| < 1
2 as f and g both are increasing. We can

see that with the use of the Chebyshev integral inequality we were not able to
cover the case when ν ∈

(
−1,− 1

2

)
. However, by using part (b) of Theorem 1

we have that Sν(x) ≤ S 1
2
(x) for ν ≥ 1

2 and x > 0, while for −1 < ν < 1
2 the

above inequality is reversed.
(b) This part can be obtained by another careful use of the Chebyshev

integral inequality (2.4). In this case we consider the functions p, f, g : [0, 1]→
R defined by

p(t) = ext, f(t) =
2Γ(ν + 2)
√
πΓ
(
ν + 3

2

) (1− t2)ν+ 1
2 , g(t) =

2Γ(ν)
√
πΓ
(
ν − 1

2

) (1− t2)ν−
3
2 .

Then we have∫ 1

0

p(t)f(t)dt =
2Γ(ν + 2)
√
πΓ
(
ν + 3

2

) ∫ 1

0

ext(1− t2)ν+ 1
2 dt = Sν+1(x),∫ 1

0

p(t)g(t)dt =
2Γ(ν)

√
πΓ
(
ν − 1

2

) ∫ 1

0

ext(1− t2)ν−
3
2 dt = Sν−1(x),∫ 1

0

p(t)dt =

∫ 1

0

extdt = S 1
2
(x),∫ 1

0

p(t)f(t)g(t)dt =
2Γ(ν + 2)
√
πΓ
(
ν + 3

2

) 2Γ(ν)
√
πΓ
(
ν − 1

2

) ∫ 1

0

ext(1− t2)2ν−1dt

= S2ν− 1
2
(x).

Since for ν ≥ 3
2 both f and g are decreasing, the required inequality follows

from (2.4).
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(c) First we show that the Bessel-Struve kernel can be represented by using
the modified Bessel and Struve functions of the first kind. Namely, for ν > −1
we have

(2.5) Sν(x) = 2νΓ(ν + 1)x−ν (Iν(x) + Lν(x)) ,

where Iν and Lν stand for the modified Bessel and Struve functions of the first
kind. To see this observe that

xνSν(x) =
∑
m≥0

Γ(ν + 1)Γ
(
m+ 1

2

)
√
π(2m)!Γ (m+ ν + 1)

x2m+ν

+
∑
m≥0

Γ(ν + 1)Γ(m+ 1)
√
π(2m+ 1)!Γ

(
m+ ν + 3

2

)x2m+1+ν .

The Legendre duplication formula

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z)

shows that

Γ
(
m+ 1

2

)
√
π(2m)!

=
1

22mm!
and

Γ(m+ 1)√
π(2m+ 1)!

=
1

22m+1Γ
(
m+ 3

2

) ,
which implies that

xνSν(x)

2νΓ(ν + 1)
=
∑
m≥0

(
1
2x
)2m+ν

m!Γ (m+ ν + 1)
+
∑
m≥0

(
1
2x
)2m+ν+1

Γ
(
m+ 3

2

)
Γ
(
m+ ν + 3

2

)
= Iν(x) + Lν(x).

Now, we shall use (2.5) together with the following inequalities [1, 2]:

Iν(x) <
xν

2νΓ(ν + 1)
e

x2

4(ν+1) , ν > −1,

Lν(x) <
2Γ(ν + 2)
√
πΓ
(
ν + 3

2

)Iν+1(x), ν > −1

2
.

For ν > − 1
2 and x > 0 we have

Sν(x) < 2νΓ(ν + 1)x−ν

(
Iν(x) +

2Γ(ν + 2)
√
πΓ
(
ν + 3

2

)Iν+1(x)

)

< e
x2

4(ν+1) +
xΓ(ν + 1)
√
π Γ
(
ν + 3

2

)e x2

4(ν+2) .

(d) To prove the right-hand side of the inequality (1.1) we consider the
function

ζν(x) = Sν(x)− Γ(ν + 1)
√
πΓ
(
ν + 3

2

)ex.
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By using the series of Sν we get

ζ ′ν(x) = S′ν(x)− Γ(ν + 1)
√
πΓ
(
ν + 3

2

)ex(2.6)

=
Γ(ν + 1)√

π

∑
n≥0

(
Γ(n2 + 1)

Γ(n2 + ν + 3
2 )
− 1

Γ(ν + 3
2 )

)
xn

n!
.

Since the digamma function is increasing, the function t 7→ Γ( t2 +1)/Γ( t2 +ν+ 3
2 )

is decreasing on (0,∞) for each fixed ν ≥ − 1
2 . Thus for x > 0 each term of the

series in (2.6) are nonpositive and hence ζ ′ν(x) ≤ 0, which implies that ζν is
decreasing on (0,∞) for each fixed ν ≥ − 1

2 . Thus, we have that ζν(x) < ζν(0),
which gives the right-hand side of (1.1).

Now, to prove the left-hand side of (1.1), it is enough to show that the
function λν : (0,∞)→ R, defined by

λν(x) = e
− xΓ(ν+1)

√
πΓ(ν+ 3

2
)Sν(x),

is increasing. A logarithmic differentiation of λν yields

λ′ν(x)

λν(x)
=
S′ν(x)

Sν(x)
− Γ(ν + 1)
√
πΓ(ν + 3

2 )
.(2.7)

By using the infinite series of the Bessel-Struve kernel the quotient S′ν(x)/Sν(x)
can be written as

S′ν(x)

Sν(x)
=

∑
n≥0 αn(ν)xn∑
n≥0 βn(ν)xn

,

where

αn(ν) =
Γ(n2 + 1)Γ(ν + 1)
√
πn!Γ(n2 + ν + 3

2 )
and βn(ν) =

Γ(n+1
2 )Γ(ν + 1)

√
πn!Γ(n2 + ν + 1)

.

In view of the notation

ων(t) =
Γ( t2 + 1)Γ( t2 + ν + 1)

Γ( t+1
2 )Γ( t2 + ν + 3

2 )
,

a careful use of the series (2.3) for the digamma function yields

2
ω′ν(t)

ων(t)
= ψ( t2 + 1) + ψ( t2 + ν + 1)− ψ( t2 + ν + 3

2 )− ψ( t2 + 1
2 )

= −
∑
m≥0

1

m+ t
2 + ν + 1

−
∑
m≥0

1

m+ t
2 + ν + 1

+
∑
m≥0

1

m+ t
2 + ν + 3

2

+
∑
m≥0

1

m+ t+1
2

=
∑
m≥0

(ν + 1
2 )(m+ t

2 + ν
2 + 1)

(m+ t
2 + ν + 3

2 )(m+ t+1
2 )(m+ t

2 + 1)(m+ t
2 + ν + 1)

≥ 0,
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where t > 0 and ν ≥ − 1
2 . Thus t 7→ ων(t) is increasing on (0,∞) and in partic-

ular the sequence {αn(ν)/βn(ν)}n≥0 is increasing for ν ≥ − 1
2 . Consequently,

by using Lemma 1 it follows that the function x 7→ S′ν(x)/Sν(x) is increasing
on (0,∞) for ν ≥ − 1

2 . Note that for ν > − 1
2 this result it is also proved in

Theorem 1, part (d). Summarizing, we have

S′ν(x)

Sν(x)
≥ S′ν(0)

Sν(0)
=

Γ(ν + 1)
√
πΓ(ν + 3

2 )
,

which together with (2.7) yield λ′ν(x) > 0 and thus the proof is complete. �
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