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SUMMARY

The synaptic connectivity within neuronal networks
is thought to determine the information processing
they perform, yet network structure-function rela-
tionships remain poorly understood. By combining
quantitative anatomy of the cerebellar input layer
and information theoretic analysis of network
models, we investigated how synaptic connectivity
affects information transmission and processing.
Simplified binary models revealed that the synaptic
connectivity within feedforward networks deter-
mines the trade-off between information trans-
mission and sparse encoding. Networks with few
synaptic connections per neuron and network-activ-
ity-dependent threshold were optimal for lossless
sparse encoding over the widest range of input activ-
ities. Biologically detailed spiking network models
with experimentally constrained synaptic conduc-
tances and inhibition confirmed our analytical pre-
dictions. Our results establish that the synaptic
connectivity within the cerebellar input layer enables
efficient lossless sparse encoding. Moreover, they
provide a functional explanation for why granule cells
have approximately four dendrites, a feature that has
been evolutionarily conserved since the appearance
of fish.

INTRODUCTION

Different regions of the brain exhibit distinct anatomical

structures, cell morphologies, and synaptic connectivities and

perform specific computational tasks. However, linking the

structure to function (Honey et al., 2007) or dysfunction (Dyhrf-

jeld-Johnsen et al., 2007) has proved difficult, because the syn-

aptic connectivity, neuronal properties, and the computations

performed are usually poorly defined. Some notable exceptions

exist in circuits where the function is clear. In the retina, asym-

metric spatial patterns of synaptic input onto starburst amacrine

cells contribute to direction selectivity (Briggman et al., 2011). In

mouse primary visual cortex, neurons with similar orientation

selectivity have been shown to be preferentially connected (Ko

et al., 2011). In pattern generator circuits within the spinal cord,
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distinct neuronal subtypes compute different gaits during lo-

comotion (Talpalar et al., 2013). Despite these advances, the

contribution that synaptic connectivity makes to information pro-

cessing remains unclear in most brain regions.

The cerebellar cortex is particularly well suited to network

structure-function analysis due to its relatively simple three layer

structure, few neuronal cell types, and its well-established role in

motor control (Eccles et al., 1967). Moreover, there is wide

consensus that the cerebellar input layer, or granule cell layer

(GCL), transforms mossy fiber (MF) inputs, conveying sensory

and efferent copy information, into a higher dimensional, sparser

code (Marr, 1969). This increases the separation between the

patterns (Olshausen and Field, 2004), thereby enabling down-

stream cerebellar circuits to perform more effective associative

learning (Albus, 1971; D’Angelo and De Zeeuw, 2009; Marr,

1969; Medina and Mauk, 2000; Schweighofer et al., 2001; Tyrrell

and Willshaw, 1992), adaptive filtering (Fujita, 1982), and binary

addressing (Kanerva, 1988). Three basic properties are required

for divergent feedforward networks to perform effective pattern

separation: (1) information is conserved, (2) the dimensionality

of the output coding is larger than that of the input, and (3)

the output code is sparse. However, the contribution that syn-

aptic connectivity makes to these functions remains poorly

understood.

To investigate how the network structure of the cerebellar

input layer affects its function, we first quantified specific

anatomical properties of the network. We then developed a

simplified model of the GCL that was analytically tractable, al-

lowing us to quantify information transmission and sparse en-

coding in networks with different synaptic connectivities. Finally,

we tested predictions from our analytical approach on the rela-

tionship between network structure and function using bio-

logically detailed network models of spiking neurons, whose

parameters were constrained by experimental measurements.

Our results show that the synaptic connectivity within the cere-

bellar input layer, where GCs receive an average of approxi-

mately four excitatory MF inputs, is well suited for performing

sparse encoding without loss of information.

RESULTS

Quantification of the Cerebellar Input Layer Structure
and Development of a 3D Model of Excitatory Network
Connectivity
Cerebellar MFs form large en passant presynaptic structures

called rosettes that form the core of each synaptic glomerulus,
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Figure 1. Granule Cell and Glomerular Density in the Rat Cerebellum and Construction of a Local Granule Cell Layer Model

(A) Measurements performed in lobule VIa (red area) of a parasagittal slice of cerebellar vermis.

(B) Regions of granule cell layer (GCL) with pairs of sections (left and right) and frames used for the unbiased counting method (cells on green edges are counted

and on red edges excluded).

(C–E) Area of GCL immunolabeled for Kv4.2 (C) showing circular GC somatic outlines, VGAT (D), and VGLUT1 (E).

(F) Overlay of immunolabels for Kv4.2 (red), VGAT (green), and VGLUT1 (blue).

(G) Colabeling of the three markers used to demarcate a glomerulus.

(H) 3D anatomically constrained model of the local GCL network, consisting of a 40-mm-radius ball of glomeruli (red) and GCs (blue) with four dendrites per GC

(black lines).

(I) Distribution of GC dendrite length in the local GCL network model.

(J) Distribution of the number of GC dendrites per MF rosette. (C)–(F) are at the samemagnification, with scale bar on (F) applying to all panels. Scales, 1mm in (A),

20 mm in (B)–(F), and 2 mm in G.
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which also consists of Golgi cell axons, GC and Golgi cell den-

drites, and a glial coat. While quantitative anatomical data are

available on several cellular components across species (Harvey

and Napper, 1988), the rosette-to-GC expansion ratio remains

uncertain. To address this, we combined high-resolution con-

focal microscopy, multicolor immunofluorescence labeling,

and an unbiased counting method to study the properties of

the cerebellar GC layer in rat (Figures 1A and 1B). Immunolabel-

ing for Kv4.2 delineated somatic plasma membranes and the

dendrites of GCs (Figure 1C). GCs had a mean diameter of

6.72 ± 0.13 mm (n = 24) and mean density of 1.9 ± 0.14 3 106

mm�3, similar to that previously reported (Harvey and Napper,

1988). Golgi cell axons and MF rosettes were identified with
VGAT and VGlut1 immunolabeling, respectively (Figures 1D

and 1E). Colabeling for all three molecules was used to identify

glomeruli (Figures 1F and 1G), which occupied 28.8% ± 2.3%

of the input layer volume and occurred at a density of 6.6 ±

1.5 3 105 mm�3 (Figure S1 available online; Tables S1 and S2).

The local glomeruli-to-GC and thus rosette-to-GC ratio is there-

fore 1:2.9.

We examined the likely spatial extent of a local GC layer

network by building a 3D anatomical model ofMF-GC connectiv-

ity (Figure 1H), using our measured parameters together with ex-

isting measurements of MF rosette spacing (20 mm parasagittal

and 60 mm mediolateral; Sultan, 2001). The claw-like ending of

each GC dendrite contacts a single MF rosette. GC dendrites
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Figure 2. Schematic Representation of the

Uniform Binary Network Model

(A) Schematic diagram showing binarymossy fiber

(MF) synaptic inputs (red) and a linear thresholding

binary granule cell (GC, blue) with a single MF

synaptic connection per dendrite (blue lines). GC

output is 1 if the sum of its MF input values is equal

to the threshold or greater and 0 otherwise.

(B) Uniform binary network model is a random

bipartite graph consisting of binary MFs and linear

threshold GC units. Network with 3 MF synaptic

connections per GC (d = 3), shown only for the

three central GCs for clarity. N events, encoded as

binary MF input patterns, are transformed into a

binary GC output patterns. GC population en-

tropy is calculated from the distribution of output

patterns.
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rarely exceed 30 mm (e.g., 4% in the cat; Palay and Chan-Palay,

1974; Palkovits et al., 1972), making the likelihood of a GC being

innervated by two or more rosettes from the same MF low (Livet

et al., 2007). The number of GCdendrites is therefore equal to the

number of MF synaptic connections per GC (d). Moreover, the

MFs that converge onto a GC typically arise from multiple pre-

cerebellar nuclei (Huang et al., 2013). To recreate these condi-

tions, model GCs were placed at random in a sphere at the

measured anatomical density within a central subfield of MFs

to minimize edge effects (Figure 1H). Each model GC made syn-

aptic connections to randomly selected MF rosettes, with the

constraint that the dendritic length should be close to 15 mm.

In practice, they rarely exceeded 20 mm (Figure 1I), as observed

experimentally. Since the maximum distance between two GCs

that could share the same MF input was�40 mm, the largest ball

of tissue that could be expected to have independent inputs was

80 mm in diameter, which is comparable to the thickness of the

GC layer in rodents. Our anatomically constrained model of

this ‘‘local GCL network’’ contained 176 MF synaptic rosettes

and 509 GCs (Figure 1H). For an average of four dendrites per

GC (Eccles et al., 1967), a single MF rosette made synaptic con-

nections with an average of 12 different GCs (Figure 1J), consis-

tent with estimates of 15–20 in monkey and cat (Eccles et al.,

1967).

Uniform Binary Network Model for Computing
Information Transmission
Direct calculation of information transmission for all possible

configurations ofMF input drive and network structure is compu-

tationally intractable. We therefore simplified our local GCL

network model to permit mathematical analysis by removing

the spatial dependences in the synaptic connectivity but

conserving the random nature of the connectivity, the MF

rosette-to-GC expansion ratio, and the number of MF synaptic

connections per GC (Supplemental Information; Figure S2). In

addition, we reduced rate-coded signals in MFs and GCs to bi-

nary representations, where 0 and 1 represent quiescence and

activity, respectively. When a spatial pattern of binary MF activity

is presented, each GC sums its equally weighted inputs and

compares the sum to its threshold value. The GC output is 1 if
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the sum exceeds the threshold and 0 otherwise (Figure 2A).

We refer to these binary MF and GC networks as the ‘‘uniform

binary network model’’ or UBN model. Figure 2B shows a sche-

matic illustration of such a model with three synaptic connec-

tions per GC. Sensory-motor ‘‘events’’ are represented as

random binary MF activity patterns. Each one is thresholded

by the GCs and transformed into a binary GC output pattern,

from which the information encoded by the GC population can

be calculated.

Although the simplifying assumptions required for calculating

information in this manner are substantial, the cerebellar GCL

is particularly amenable to this approach. Since the dimension-

ality of sensory-motor sample space is vast, we considered

raw input as being nonrepeating from event-to-event, with

each sensory-motor event being directly mapped to an MF input

pattern. Real MF activity patterns encoding sensory-motor

events consist of two main stochastic components: the subset

of MFs in the network that were activated and the trial-to-trial

variability in the spiking, synaptic transmission, and membrane

noise present in an individual connection. In the UBN model,

we consider the simplified case where the variance is dominated

by theMF patterns themselves and the stochasticity of transmis-

sion is negligible, because fluctuations are averaged over multi-

ple release sites and are integrated by GCs. Indeed, GCs have

intrinsic and synaptic properties that make them well-suited to

a binary representation because: (1) their soma and dendrites

form a single electrical compartment, thereby acting as a point

neuron (Silver et al., 1992), (2) much of their excitatory drive is

composed of slow spillover-mediated AMPAR and NMDAR con-

ductances that build up over time during rate-coded MF input

(Arenz et al., 2008; DiGregorio et al., 2002; Schwartz et al.,

2012), (3) GCs have only two to seven excitatory MF inputs,

and (4) multiple MF inputs are typically required to reach spike

threshold (Jörntell and Ekerot, 2006; Schwartz et al., 2012).

Thus, GC activity reflects a thresholded version of a few active

MF inputs, making the simplification to a thresholded binary rep-

resentation (Figure 2A) more reasonable than for cells with larger

numbers of inputs.

To quantify information transmission across UBN models, we

developed an analytical method for rapidly calculating Shannon



Figure 3. Number of Synaptic Connections per Neuron and Threshold Determine the Transmission and Transformation of Information in a

Uniform Binary Network Model

(A) Top: schematic illustration of mossy fibers (MF, red) and granule cells (GCs) (blue) for a binary network with one MF synaptic connection per GC (d = 1; blue

lines, shown for 3 GCs only). Middle: GC activation probability (p(GC)) as a function of MF activation probability (p(MF)), red line for a threshold of 1. Gray dashed

line indicates p(GC) = p(MF). Bottom: information (entropy) in GC population as a function of p(MF) for one billion events. Vertical dashed lines indicate range of

p(MF) where >99% of the information is encoded by the GC population.

(B) Same as for (A) but for a network with d = 3 and all possible threshold values (1-3 red-blue).

(C) Same as for (B) but for d = 7 (1-7 red-cyan).
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Information (Shannon, 1948), which corresponded to the entropy

in the GC population under noise-free conditions (Figure 2B;

Supplemental Information: Appendix, Equation 29). This allowed

us to explore how information transmission depends on the

synaptic connectivity of randomly connected networks, GC

threshold, and the fraction of MFs active. In the limited cases

where direct calculation of entropy was possible, it gave similar

results to our analytical method (Figure S3). Although our analyt-

ical method can be used to calculate information transmission

for the full set of MF input patterns (i.e., 2176 z1053), we

restricted the number of patterns to the maximum number of

events a local GCL network could encode in the lifetime of a

small rodent in the wild. This is approximately one billion, if we

assume that events are integrated in �30 ms windows (Fig-

ure S4B; Schwartz et al., 2012; van Beugen et al., 2013) for a life-

time of 1 year.

Effect of Synaptic Connectivity and Neuronal Threshold
on the Transmission and Transformation of Activity
Patterns in Uniform Binary Network Models
Wefirst analyzed the functional properties of the simplest config-

uration of the UBN model, with one synaptic connection per GC

and a threshold of 1. Since GCs are 3-fold more numerous than

MF synaptic rosettes, the absolute number of activated GC was

higher than the number of MF inputs. Despite this expansion, the

fraction of active MFs (or MF activation probability [p(MF)]) was

equal to the fraction of active GCs (or GC activation probability

[p(GC)]) (Figure 3A, middle), as expected for a simple relay

network. The relationship between GC entropy and p(MF) had

a truncated flat top because the information contained in the

GC output patterns (Figure 3A) was limited by the maximum
one billion unique MF input patterns and thus had a maximal

value of 29.9 bits (i.e., log2(10
9)). We defined such flat, saturated

sections of the entropy versus p(MF) curve (Figure 3A, bottom) as

full information transmission or lossless encoding regions (i.e.,

>99% of the event information). These calculations show that

randomly connected feedforward networks with unitary synaptic

connectivity can transmit all MF event information to GCs over a

wide range of input activity. This is possible because the network

operates far below the maximum transmission capacity of either

its input or output (179 bits and 509 bits, respectively). However,

this network does not perform sparse encoding.

For networks with more than oneMF input per GC, the number

of inputs required to reach threshold was a key variable, since it

determined the fraction of GCs activated. Networks with three

synaptic connections per GC had three possible threshold set-

tings and thus threemappings fromMF toGCactivity (Figure 3B).

For a threshold of 1, the fraction of active neuronal elements

used to represent information was larger for the GC output

than the MF input (p(GC) > p(MF)) over the whole MF input activ-

ity range (red line in Figure 3B, middle). Increasing the threshold

to 2 produced GC activity that approximately matched the MF

input activity, while increasing the threshold to 3 reduced the

GC activity below that of theMFs across thewhole range of input

activity. Such sparsening of MF activity (i.e., p(GC) < p(MF)) is a

key proposed function of the GCL (Albus, 1971; Marr, 1969).

At low threshold, full transmission of event information was

achieved at low and intermediate MF input activities, but infor-

mation was lost at high MF activities (Figure 3B, bottom, red).

In contrast, at the highest threshold the lossless encoding range

was shifted to higher MF activities (Figure 3B, bottom, blue). An

intermediate threshold of 2 produced lossless encoding over
Neuron 83, 960–974, August 20, 2014 ª2014 Elsevier Inc. 963
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nearly the whole MF activity range but did not perform effective

sparsification. Setting the number of MF inputs per GC to seven

increased the number of possible mappings between MFs and

GCs (Figure 3C). Moreover, at high thresholds, sparsification

became highly pronounced (i.e., p(GC) < < p(MF)), but the range

of MF activation over which lossless encoding occurred was

markedly reduced (Figure 3C, bottom). These results show that

both synaptic connectivity and thresholding within the networks

have a big impact on both the transmission and transformation of

information. The inability of some networks to transmit informa-

tion in particular p(MF) regions is likely to be highly disadvanta-

geous, because in vivo recordings show that MFs exhibit a

wide range of activity levels (Arenz et al., 2008; Rancz et al.,

2007; van Kan et al., 1993). On the other hand, full information

transmission without sparsification is also problematic, because

the GCL circuit then fails to perform its main function.

Trade-Off between Information Transmission and
Sparsification in Uniform Binary Network Models with
Fixed GC Threshold
To investigate further how network connectivity affects informa-

tion transmission and sparsification, we examined the case of a

relatively high fixed threshold, since GCs typically require activa-

tion of three of their four MF inputs to fire (Jörntell and Ekerot,

2006; Schwartz et al., 2012) and spike threshold is dominated

by the presence of a large tonic inhibitory conductance (Brickley

et al., 1996; Duguid et al., 2012). To do this, we set the threshold

to 75% of the number of synaptic connections per neuron or as

close to it as discretisation allowed (using a ceiling function). For

such fixed threshold networks, the lossless encoding range

decreased with increasing numbers of inputs (Figure 4A).

In contrast to information transmission, GC sparseness

tended to increase with the number of synaptic connections

per GC, particularly at low-to-intermediate levels of MF activa-

tion (Figures 4B and 4C). Figures 4D and 4E illustrate how two

networks with different numbers of synaptic connections per

GC transform MF input at p(MF) = 0.3. While the GC activity of

the network with 20 synaptic connections was substantially

lower than that with 3, the highly connected network was unable

to transmit information at low-to-intermediate values of p(MF).

When p(MF) was increased to 0.8, the high connectivity network

became effective at transmitting information but did not encode

the MF input more sparsely (Figure 4F). These results clearly

demonstrate a trade-off between transmission and sparsening

of input representations in simple feedforward networks and

that synaptic connectivity and threshold determine the balance

between these two competing functions.

To gain further insight into how the transmission-sparsification

trade-off arises, we examined the relationship between themean

activity of the GC population and the mean activity of the MF

population for different network connectivities (Figure 4C). For

a single MF connection per GC and a threshold of 1, the network

transfer function was linear, but as the number of connections

increased the relationship became increasingly nonlinear. This

lowered p(GC) across a wide range of p(MF), resulting in greater

sparsification. However, at these low activation levels, the GC

population could not encode all the MF patterns and thus infor-

mation was lost.
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Extension of Uniform Binary Network Models to Include
Network-Activity-Dependent Thresholds
Golgi cells provide network-activity-dependent inhibition of

GCs, via feedforward (Kanichay and Silver, 2008) and feedback

inhibition (Cesana et al., 2013), although the impact of this phasic

and spillover-mediated component is much weaker than tonic

inhibition (Duguid et al., 2012). To mimic this activity-dependent

change in inhibition in the UBN model, we implemented a

network-activity-dependent threshold (NADT), which scaled

the GC threshold in proportion to p(MF) (Experimental Proce-

dures). For a network with seven synaptic inputs per GC (Fig-

ure 5A, top), a low NADT and an initial threshold of 1 resulted

in an amplification (i.e., p(GC) > p(MF)) and only permitted loss-

less encoding over the lower portion of p(MF) (Figure 5A, cyan).

Similar behavior was observed across all network connectivities,

except those with few connections, which transmitted informa-

tion across a wider range of p(MF) (Figure 5B1). However,

none of the networks with low NADT performed sparsification,

when averaged across p(MF) (Figure 5B2).

An NADT value of 1 enabled lossless transmission over nearly

the entire MF input range for all networks tested, irrespective of

the number of synaptic connections per GC (Figure 5C1). This

was achieved by maintaining the GC activity around 0.5 (Fig-

ure 5C2), thereby maximizing encoding capacity. However, this

strategy compromised sparsification. Increasing the NADT to

high levels sparsened the GC representation (Figure 5D2) but

introduced a lossy region for intermediate levels of MF activity

for networks with more than 5 MF inputs per GC (Figure 5D1).

These results show that unity NADT can enhance information

transmission through feedforward networks with large numbers

of synaptic connections per GC, but higher levels of NADT

are required to sparsen input activity. However, only networks

with small numbers of connections can perform lossless sparse

encoding with high NADT, due to the network connectivity-

dependent trade-off between information transmission and

sparsification.

Identification of Optimal Network Connectivities for
Robust Lossless Sparse Encoding
Since both information transmission and sparsification are

essential for cerebellar operation, we investigatedwhich feedfor-

ward network connectivity and threshold settings provided the

best trade-off between these two competing functions. To do

this, we analyzed our data set to find all network configurations

that transmitted information without loss over the widest range

of p(MF) and transformed MF patterns into a sparser GC re-

presentation. Figure 6A shows the range of p(MF) over which

networks with different numbers of connections can transmit in-

formation losslessly and sparsify it for the fixed relative threshold

case (75% of inputs). A comparable pattern was observed for

networks with high NADT, but in these cases sparsening of

the encoding was more effective at high p(MF) (Figure 6B).

Combining a high initial threshold and NADT provided an effec-

tive strategy for sparse lossless encoding in networks with few

synaptic connections (Figure 6C). To identify the best-perform-

ing networks, we found those networks where sparsification

could not be improved without detriment to the range of p(MF)

over which full information transmission was achieved and,



Figure 4. Effect of Synaptic Connectivity on Information Transmission andPopulation Activity inUniformBinary NetworkModelswith a Fixed

Relative Threshold

(A) Quantity of event information (entropy) encoded by the granule cell (GC) population across the full range of mossy fiber (MF) activation probability p(MF) for

uniform binary network models with different numbers of synaptic connections per GC (d) and a fixed relative threshold 4 = ceiling [0.75 3 d].

(B) GC activation probability p(GC) for the same network configurations as in (A).

(C) Same as for (B) but visualized as a line plot to show the relationship between p(GC) and p(MF) for different models.

(D) From left to right: a sample of 400 MF input patterns (events) with p(MF) = 0.3, where active MFs are red and inactive MFs are white, schematic network

representation and GC output activity patterns (blue raster plot) for a network with d = 3 (see label D in panels A and B). Bar graph indicates p(GC) and entropy for

one billion patterns, as for (A).

(E) Same as for (D) but for d = 20 (see label E in panels A and B).

(F) Same as for (D) but for d = 20 and p(MF) = 0.8 (see label F in panels A and B).
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conversely, the lossless p(MF) range could not be improved

without detriment to sparsification. For the fixed threshold

case, networks with two to three MF inputs per GCs performed

sparse encoding over the widest range of p(MF) without loss of

information (Figure 6D). As the number of synaptic connections

per GC increased, the sparse encodable range declined due to

information loss, with little improvement in average sparsifica-

tion. Networks with NADT = 2, or with a high initial threshold

combined with NADT, that best performed lossless sparse

encoding over the largest p(MF) range also had few synaptic

connections, with four being particularly effective (Figure 6D).
As the number of dendrites increased further, the sparse encod-

able range fell steeply indicating that encoding became lossy.

Our analysis of UBNmodels predict that few synaptic connec-

tions per GC provide the best trade-off between information

transmission and sparse encoding over a wide range of MF

input activity. However, the simplifications required to develop

our analytical treatment raise the question of whether these

predictions are valid for biological networks, where sensory-

motor signals are encoded by MF firing rate and synaptic con-

ductances, and GC spike threshold is set by a tonic inhibitory

conductance.
Neuron 83, 960–974, August 20, 2014 ª2014 Elsevier Inc. 965



Figure 5. Effect of Activity-Dependent Threshold Regulation on the Trade-Off between Information Transmission and Sparsification

(A) Top: uniform binary network model schematic with mossy fibers (MFs) in red and granule cells (GCs) in blue (top); GC network-activity-dependent threshold

(NADT) for low (0.5, blue), unity (1.0, green), and high (2.0, red) NADT, for a network with seven synaptic connections per GC (d = 7; connections for center 3 GCs

shown for clarity). Middle: GC activation probability (p(GC)) versus MF activation probability (p(MF)) for the NADT functions above. Bottom: information encoded

by GCs for each threshold function.

(B1 and B2) Information encoded by GCs and p(GC), respectively, for low NADT networks with different d.

(C1 and C2 and D1 and D2) Same as for (B1 and B2) for unity NADT and high NADT, respectively.
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A Biologically Detailed Network Model of the Cerebellar
Input Layer
To test the validity of the predictions from our simple analytical

model, we constructed a biologically detailed network model

where each parameter was constrained by experimental mea-

surements. We used the anatomically constrained local GC

layer network model (Figure 1H), which captured the measured

densities of MF synaptic rosettes and GCs and the spatial

dependence of synaptic connectivity imposed by the finite

length of GC dendrites. For each network configuration, we

used a fixed instantiation of the randomly generated connectiv-

ity. GCs in the model were conductance based integrate-and-

fire neurons with a capacitance (3.22 pF), input resistance

(0.94 GU), and resting potential (�79.9 mV) set to the mean

value obtained from GCs recorded at physiological tempera-

ture (Rothman et al., 2009; Schwartz et al., 2012). Information

was represented in each MF input by the rate of an indepen-

dent Poisson spike train (Arenz et al., 2008; van Kan et al.,

1993) and each spike triggered excitatory synaptic responses

in connected GCs. GCs received a fixed number of MF synap-

tic inputs (depending on the network configuration) in the

form of trains of AMPAR- and NMDAR-mediated conductances

(Figures 7A and 7B), producing trains of EPSPs and spikes

(Figure 7C).
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Since the GC input-output (I-O) relationship is determined pre-

dominantly by the properties of the MF synaptic conductances,

which include slow glutamate spillover-mediated components

(DiGregorio et al., 2002) and short-term plasticity (STP) (Saviane

and Silver, 2006), we converted existing experimental measure-

ments of Poisson trains of synaptic currents to conductances

(Rothman et al., 2009; Schwartz et al., 2012) and used them to

constrain STP models of synaptic AMPAR and NMDAR compo-

nents (Figures 7D and 7E, respectively). Moreover, we used an

NMDARmodel that captured themeasured voltage dependence

of NMDARs in GCs (Figure 7E, inset; Schwartz et al., 2012).

Lastly, inhibition was implemented with a tonic GABAAR-medi-

ated inhibition, with a conductance of 438 pS and a reversal

potential of �79.1 mV (Rothman et al., 2009; Seja et al., 2012;

Figure 7A, green line). With these experimentally constrained

settings, the I-O relationship of the model GC (Figure 7B) was

similar to that observed in real GCs (Rothman et al., 2009;

Schwartz et al., 2012). For networks with different numbers of

synaptic inputs per GC the AMPAR- and NMDAR-mediated

conductance amplitudes were scaled to conserve the total

excitatory conductance (Supplemental Information). Biologically

detailed networks were implemented using neuroConstruct

(Gleeson et al., 2007) and simulated with NEURON (Carnevale

and Hines, 2006).



Figure 6. Networks that Best Perform Loss-

less Sparse Encoding Have Few Synaptic

Connections per Neuron

(A) Granule cell activation probability (p(GC))

versus mossy fiber activation probability (p(MF))

with different numbers of synaptic connections

per GC (d) for a fixed relative threshold (4 = ceiling

[0.75 3 d]). Colored regions indicate sparse en-

codable range, where >99% of information was

encoded and p(GC) < p(MF).

(B and C) Same as for (A) but for network-activity-

dependent threshold (NADT) = 2 and a high initial

threshold (HIT) combined with NADT = 0.6,

respectively. Inset in (C) shows threshold function

for networks with d = 4.

(D) Relationship between size of sparse encodable

range and output sparseness (1-Avg[p(GC)] aver-

aged across all values of p(MF)). Color code in-

dicates d and circle, square, and triangle symbols

show different threshold functions in (A), (B), and

(C), respectively.
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Quantification of Transmission and Transformation of
Information in Biologically Detailed Spiking Network
Models
We quantified the I-O relationships of biologically detailed net-

works using sets of MF input patterns (Figures 7F, 7G, and

7H). Each input pattern was generated by randomly selecting a

subset of the 176 MF inputs and designating them to be active

(black lines in barcode, Figure 7F), while the remainder were

inactive. During the simulation, active MFs fired random Poisson

trains with a mean rate of 80 Hz and inactive MFs fired at 10 Hz

(red raster plot in Figure 7F), reflecting the properties of real MF

rate-coded inputs (Arenz et al., 2008; van Kan et al., 1993). This

resulted in individual GCs receiving both high- and low-fre-

quency trains of synaptic input conductances (e.g., top two

and bottom two traces in Figure 7A, respectively). The output

spiking of the 509 GCs in the network (blue spheres Figure 7G)

was recorded over a 30 ms time window, corresponding to the

synaptic integration time of GCs (Figure S4B; Schwartz et al.,

2012). For each MF input pattern, the number of spikes was

calculated for each GC, and this was expressed as a vector for

the GC population (blue barcode in Figure 7H). To quantify

network performance, we used sets of N = 1,024 MF input pat-

terns, which was the largest number achievable with the com-

putational resources available.
Neuron 83, 960–974
Since direct calculation of the Shannon

information between input and output

spike trains was computationally intrac-

table, we reduced the dimensionality of

the output space by cascading the

network with a classifier (called the

decoder), which labeled the output spike

count vectors as belonging to one of N

classes (Experimental Procedures). The

network and decoder constituted a

communication channel that mapped N

input patterns to N output classes, for

which we calculated the mutual informa-
tion (MI) assuming a flat prior over inputs. This fixed the

maximum MI achievable as log2(1,024) = 10 bits. Unlike for the

UBN model, Shannon information in the biologically detailed

model does not correspond to the GC population entropy

because of the noise introduced by the random spike trains.

The network transformation was quantified by calculating the

GC population sparseness (Vinje and Gallant, 2000). This mea-

sure is analogous to 1-p(GC) for the binary case, enabling com-

parison of the binary and spiking models. The average output

sparseness provided a single measure of GC population sparse-

ness across p(MF).

Best-Performing Synaptic Connectivity for Lossless
Sparse Encoding in Biologically Detailed Spiking
Network Models
We first examined how effectively spiking network models with

different synaptic connectivity transmitted independent MF pat-

terns (Figure 8A). Networks with few synaptic connections per

neuron were most effective at transmitting information across

the widest range of MF input activity, defined as the fraction of

MF inputs active (p(MF)) (Figure 8B). Indeed, networks with few

inputs recovered almost all of the maximum of ten bits, which

is remarkable, given the noisy nature of the encoding and that

GC spikes were only decoded over 30 ms. However, for
, August 20, 2014 ª2014 Elsevier Inc. 967



Figure 7. Construction and Analysis of an Experimentally Constrained Spiking Model of the Local Granule Cell Layer Network Incorporating

Synaptic Mechanisms and Tonic Inhibition
(A) Excitatory AMPAR (red) and NMDAR (purple) synaptic conductances for four independent mossy fiber (MF) inputs injected into a model granule cell (GC). Top

two traces: active MFs with excitatory conductance driven by independent Poisson spike trains firing at 80 Hz. Lower two traces: inactive MF firing at 10 Hz.

Bottom trace: tonic inhibitory GABAAR conductance (green).

(B) Model GC with action potential firing rate-coded input-output relationship (above) for four synaptic inputs.

(C) Membrane potential of model GC during synaptic input in (A).

(D) Fit of the short-term plasticity model (red) of the AMPAR component to an experimental recording of a 100 Hz synaptic conductance train (gray).

(E) Same as for (D) but for the NMDAR component and an 80 Hz conductance train. Inset: voltage dependence of NMDAR conductance.

(F) A binary stimulus pattern was randomly selected from a set of N patterns (black active and white inactive on barcode). A Poisson spike train was generated for

eachMF input (80 Hz active, 10 Hz inactive; red raster plot), thereby setting the timing of synaptic conductances (as in A). Red barcode indicates spike counts for

the given realization of the spike trains.

(G) 3D view of the anatomically constrained local GCL network model with 176 MFs in red and 509 GCs in blue.

(H) Raster plot of GC firing activity in response to the input. Blue barcode indicates GC spike count vector (measured over a 30 ms window), which was assigned

to one of N output classes (black bar codes) defined using the k-means algorithm on a separate data set.
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networks with larger numbers of synaptic connections per

neuron information transmission performance decreased across

large regions of p(MF). Reducing or extending the window over

which spikes were decoded or altering the firing rates of active

MFs shifted the dependence of MI on connectivity, but the over-

all relationship remained the same (Figures S4 and S5). These re-

sults show that biologically detailed spiking networks with few

synaptic connections per neuron are most effective at transmit-

ting information, as predicted from the UBN model.

The sparseness of the GC population, averaged over p(MF),

increased as the number of MF inputs per GC increased (Fig-

ure 8C). Thus, the network connectivity-dependent trade-off
968 Neuron 83, 960–974, August 20, 2014 ª2014 Elsevier Inc.
between information transmission and sparsification is also

present in spiking models. This arose because as the number

of synaptic connections per GC increased, the network I-O

relationship became highly nonlinear, reducing the average

number of spikes per GC to levels well below the average

numbers of spikes per MF (Figure 8G). Although encoding in

this region was sparse, so few GCs were activated that infor-

mation transmission was compromised. To find the best-

performing biological network configurations, we plotted the

relationship between the average fraction of information recov-

ered by the GCs versus average sparsification performed by

each network (Figure 8H). Networks with two to seven synaptic



Figure 8. Sparse Encoding inBiologically Detailed SpikingNetworkModelswith Different Numbers of Synaptic Connections perGranule Cell

(A) Visualization of independent mossy fiber (MF) inputs in the local granule cell (GC) layer network model with active MFs in red and inactive MFs in white, for an

example random activation pattern.

(B) Mutual information (MI) encoded by the GC population for 1,024 uncorrelated input patterns across the full range of MF activation probability p(MF) in

biologically detailed spiking networks with different numbers of synaptic connections per GC (d).

(C) Same as for (B) but for 1-average output sparseness (analogous to p(GC) in UBN model).

(D, E, and F) Same as for (A), (B), and (C) but for a set of 1,024 spatially correlated patterns, where neighboring MF inputs were activated in groups of five.

(G) Same as for (B) and (E) but visualized as a line plot to show the relationship between average spikes per GC and average spikes per MF in a 30 ms window

across all values of p(MF), for networks with different d.

(H) Relationship between average MI (normalized by the MF input entropy) and average output sparseness (across all values of p(MF)) for spiking networks with

different d (color code) for independent (circles) and spatially correlated (triangles) inputs.
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connections per GC provided the best solution for performing

sparse lossless encoding, with four inputs performing particu-

larly well, supporting the predictions from our simplified analyt-

ical approach.
Spatial correlation in MF input activity is likely to occur in real

cerebellar networks and may vary from region to region, due to

variations in the numbers of MFs arising from different origins

(Huang et al., 2013). Since one of the central assumptions in
Neuron 83, 960–974, August 20, 2014 ª2014 Elsevier Inc. 969
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our simplified analytical approach was that all MF inputs were

independent, we examined how spatial correlations in theMF ac-

tivity patterns affected information transmission and sparsifica-

tion in spiking networks. Introduction of a pronounced spatial

correlation in the input, where groups of five neighboring MFs

are activated (Figure 8D), marginally increased the information

transmission performance over all networks (c.f. Figures 8B

and 8E). This is due toGCs in a particular region receiving a larger

fraction of active MF inputs and thus having a greater chance of

generating a spike. Output sparseness of the GC population was

little affected by spatial correlations in the MF input activity (cf.

Figures 8C and 8F). Thus, spatial correlations in MF activity

only subtly shift the trade-off between information transmission

and sparsification in biologically detailed spiking networks.

Finally, we tested whether adding network-activity-dependent

inhibition to the physiological level of tonic inhibition improved

performance of our spiking networks, as predicted from the

UBN model. To do this, we scaled the tonic inhibitory conduc-

tance as a function of p(MF), from the experimentally measured

tonic level. This reduced information transmission in networks

with larger numbers of synaptic connections (Figure S6A). How-

ever, for networks with few synaptic connections per neuron, in-

formation transmission was preserved and GC activity was

further sparsened. Biologically detailed networks with three to

five synaptic connections, tonic inhibition, and a modest

network-activity-dependent inhibition (NADT = 0.3) performed

lossless sparse encoding better than tonic inhibition alone (Fig-

ure S6C), again supporting the predictions of our binary model.

Interestingly, all three of these features are characteristic proper-

ties of the cerebellar GCL, suggesting that both the connectivity

and the inhibition properties are tuned to enable robust lossless

sparse encoding over the widest range of MF excitatory drive.

DISCUSSION

Wehave explored the relationship between the structure of feed-

forward networks and their ability to transmit information and

transform it into a sparse representation, which are both essen-

tial for pattern separation. By combining quantitative anatomy of

the cerebellar input layer and a full information theoretic treat-

ment of uniform binary network models, we show that the extent

of the synaptic connectivity in feedforward networks sets the

trade-off between information transmission and sparse encod-

ing. Networks with two to seven synaptic connections per output

neuron perform lossless sparse coding over the widest range of

input activity. Structurally and functionally detailed spiking

network models with synaptic inputs, neuronal properties, and

tonic inhibition constrained to experimentally measured values

confirmed that the properties of the cerebellar input layer are

particularly well suited for performing lossless sparse encoding.

Our results therefore provide a computational explanation of why

themost numerous neuron in the brain of vertebrates receives an

average of four excitatory synaptic inputs.

The Relationship between Feedforward Network
Structure and Function
To understand how synaptic connectivity affects network func-

tion, it is first necessary to understand why information transmis-
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sion and sparse encoding are competing functions. Although a

local network of 500 GCs could potentially encode an astronom-

ical number of MF input patterns (i.e., 2500 for a binary network),

when GC activity is reduced to low levels the capacity of the

network to encode patterns shrinks considerably. Our results

show that the balance between information transmission and

the sparseness of the encoding is set by the extent of synaptic

connectivity. Increasing the number of synaptic inputs required

to reach firing threshold provides a sparser output representa-

tion, but if the probability of GC activation becomes too low,

GCL encoding capacity falls and information is lost. By contrast,

if the GC network capacity is much larger than the number of MF

patterns to be encoded, the GC population activity could be

reduced to a sparser representation, thereby saving energy

(Attwell and Laughlin, 2001) and improving pattern separation

(Tyrrell and Willshaw, 1992).

Results from our biologically constrained spiking networks

confirmed that few excitatory synaptic connections per neuron

and a high level of inhibition provide a highly effective trade-off

between information transmission and sparse encoding. The

fact that the synaptic connectivity of the best performing net-

works match that found in the cerebellar input layer suggests

that the GCL structure is optimized for transforming MF input

patterns into a higher dimensional sparser code, without in-

formation loss. Our results extend classical work on the relation-

ship between cerebellar structure and function (Albus, 1971;

Kanerva, 1988; Marr, 1969), by showing that the synaptic con-

nectivity between MFs and GCs is a major determinant of infor-

mation transmission and sparse encoding in this brain region.

Relationship between Mossy Fiber Activity and Granule
Cell Layer Properties
Since the cerebellum receives dynamic patterns of sensory-

motor inputs via the MF system, the ability to perform lossless

sparse encoding over a wide range ofMF excitatory drive is likely

to be crucial. Indeed, in vivo recordings show that MFs exhibit a

wide range of activity, with those signaling rapid discrete sensory

events exhibiting high-frequency bursts and relatively quiescent

periods (Rancz et al., 2007), while those that convey slower

continuous sensory variables, such as joint angle and head ve-

locity, typically fire continuously at 10–100 Hz (Arenz et al.,

2008; van Kan et al., 1993). The spatial patterns of MF activation

are also likely to be highly diverse. Although MF innervations of

the GCL exhibit a large-scale fractured map topology (Shambes

et al., 1978), the MFs that innervate an individual GC typically

arise from different precerebellar nuclei (Huang et al., 2013), sug-

gesting that MF activation is rather spatially independent and

that a key function of the GCL is to combine information from

different modalities. However, MF inputs onto individual GCs in

vermal areas that encode limbmovement carry highly correlated

information (Jörntell and Ekerot, 2006). Our results show that the

synaptic connectivity found within the GCL can losslessly trans-

form a wide range of MF excitatory drive into a sparse GC pop-

ulation code, even when spatial correlations in MF activity are

present. Moreover, the broad bandwidth of MF-GC signaling

(Saviane and Silver, 2006) also enables certain sensory stimuli,

such as whisker deflection, which generate high-frequency MF

bursts (e.g., 700 Hz), to be relayed through the GCL (Rancz
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et al., 2007). Thus, our results suggest that the GCL acts as a

general purpose sparse encoder of rate-coded MF inputs that

has the flexibility to respond rapidly to urgent stimuli.

Determinants of Network Encoding Capacity
Our results show that the encoding capacity of noise-free binary

networks is sufficiently large to encode all patterns that an animal

could possibly encounter during its lifetime. On the other

hand, we show that noisy biologically detailed spiking networks

can comfortably encode 1,024 rate-coded MF input patterns,

assuming GC spikes are integrated over 30 ms. While the num-

ber of patterns that a real local GCL network encodes falls

between these two values, it may vary widely across cerebellar

regions because encoding capacity depends on MF firing rates

(Figure S5), correlations inMF activity, the properties of inhibition

(Figure S6), and the time window over which GC firing is inte-

grated (Figure S4). These considerations suggest that the

encoding capacity of a local GCL network will depend strongly

on the properties of the MF inputs it receives.

Another way to increase the encoding capacity is to increase

the number of local networks engaged. In vivo recordings from

GCs in mouse vestibular cerebellum indicate that �400 MF-GC

synapses are required to encode head velocity at the precision

observed in man (Arenz et al., 2008), suggesting that multiple

local GCL networks are involved. Indeed, MF axons, which

form �20 en passant synaptic rosettes (Eccles et al., 1967;

Sultan, 2001), enable GCs in neighboring local networks to

sample the same MF signals. The idea that many GCs are

required for sensory representations is supported by the

finding that markedly reducing the number of functional GCs

induces deficits in consolidation of motor learning (but con-

comitant changes in long-term plasticity could also contribute

to these effects; Galliano et al., 2013). These observations are

consistent with the notion that multiple local GCL networks are

involved in certain sensory-motor tasks and that the large

MF to GC divergence found in the cerebellum is required for

efficient encoding.

The Properties of Inhibition and Encoding Capacity
Our results show that the physiological level of tonic GABAAR-

mediated inhibition (Brickley et al., 1996) provides a robust so-

lution for performing lossless sparse encoding. Recent in vivo

recordings show that tonic inhibition dominates other forms of

inhibition in GCs, accounting for 98% of the inhibitory charge

(Duguid et al., 2012). This sets a relatively high threshold so

that simultaneous activity from three or more rate-coded MF in-

puts are typically required to reach GC firing threshold (Jörntell

and Ekerot, 2006; Schwartz et al., 2012). The importance of a

high GC spike threshold to cerebellar function is reinforced by

the finding that when tonic inhibition was eliminated in GABAAa6
knockoutmice, two-pore K+ channels were upregulated, thereby

maintaining threshold at a high level (Brickley et al., 2001). How-

ever, knocking out transporters has been more effective in

modulating GC threshold. Deletion of the GABA transporter

GAT1 increased tonic inhibition in GCs by 4-fold and was asso-

ciated with tremor and ataxia (Chiu et al., 2005). Our results sug-

gest that information loss could have contributed to these

behavioral effects. Lowering GC spike threshold by selectively
deleting the KCC2 chloride transporter in GCs, which our results

would suggest reduces the sparseness of encoding and thus

pattern separation, impairs learning consolidation (Seja et al.,

2012). Thus, our models of GCL function provide insights into

how alterations in the level of tonic inhibition could impair cere-

bellar function and why GC spike threshold is tightly regulated

by homeostatic mechanisms.

When network-activity-dependent inhibition was added to

tonic inhibition, it further sparsified GC encoding without loss

of information. Our results therefore support previous proposals

that Golgi cells aid sparse coding by controlling the gain to the

GCL (Albus, 1971; Marr, 1969; Schweighofer et al., 2001).

Although weaker, the phasic and spillover components of Golgi

cell-mediated inhibition (Rossi et al., 2003) may also contribute

to temporal pattering, which could perform temporal sparsening

of GC spikes, time slicing (D’Angelo and De Zeeuw, 2009) and

introduce delays that are important for learning temporal opera-

tions such as eyeblink conditioning (Medina and Mauk, 2000)

and signal cancellation (Kennedy et al., 2014). However, the

longer temporal delays during signal cancellation are mediated

by unipolar brush cells (Kennedy et al., 2014), which form

short-range intrinsic MFs that could increase spatial correlations

in the vestibular cerebellum where they are more numerous.

Indeed, regional variations in the origin of MF inputs, the pres-

ence of UBCs and synaptic plasticity within the MF-GC-Golgi

cell circuit could tune the spatiotemporal transformation that

specific GCL ‘‘modules’’ perform. Our results show that few syn-

aptic connections per GCs provide a robust structural frame-

work that enables a wide range of MF activity patterns to be

transmitted and sparsified efficiently.

Synaptic Connectivity of the Cerebellar Input Layer Is
Evolutionarily Conserved
The cerebellum is an ancient brain structure that arose in the

early vertebrates. In terms of numbers, cerebellar GCs dominate

the vertebrate CNS, making up more than half of all the neurons

in the human brain (Williams and Herrup, 1988). Remarkably, the

morphology of cerebellar GCs is conserved across a wide range

of species including fish, amphibians, reptiles, and mammals

(Llinás, 1969; Wittenberg and Wang, 2007), demonstrating

that it has been evolutionarily conserved. In mammals, the

observed range is two to seven dendrites (and thus MF inputs)

per GC (Palkovits et al., 1972) with four per cell being the most

common configuration. The strikingly similarity between the

synaptic connectivity in the cerebellar GCL and the feedforward

networks that provide the best trade-off between information

transmission and sparsification provides a functional explana-

tion for why the characteristic dendritic morphology of cere-

bellar GCs has been conserved for hundreds of millions of

years.

Comparison of the Structure of the GCL to Other
Networks
The cerebellar GCL is not the only example of a network that per-

forms sparsification and has few synaptic connections per

neuron. GCs in the dorsal cochlear nucleus and deep GC in

the electrosensory lobe (ELL) of the electric fish have one to

four synaptic inputs, averaging to three in the ELL (Kennedy
Neuron 83, 960–974, August 20, 2014 ª2014 Elsevier Inc. 971
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et al., 2014; Mugnaini et al., 1980; Zhang et al., 2007). Kenyon

cells in themushroombody of the fly receive an average of seven

synaptic inputs from olfactory projection neurons (Caron et al.,

2013). Indeed, expansion recoding in the insect mushroom

body has other similarities to the cerebellar input layer (Laurent,

2002), including random connectivity (Caron et al., 2013), and

inhibitory interneurons that facilitate sparsification (Papadopou-

lou et al., 2011), enhancing pattern separation and enabling the

discrimination of similar odors (Lin et al., 2014). These examples

suggest that other brain structures may have converged on a

similar feedforward network structure for performing lossless

sparse encoding.

If fewsynapticconnectionsprovideanevolutionary advantage,

then why don’t other input layers exhibit a similar structure to the

cerebellar GCL? Althoughwe cannot provide a definitive answer,

thedistinct functionsperformedbydifferentbrain regionsprovide

some hints. Spiny stellate cells in layer 4 of neocortex receive

many more synaptic inputs than GCs, but these are predomi-

nantly recurrent excitatory connections, which amplify thalamic

synaptic input that display strong short-term depression (Lien

and Scanziani, 2013). Moreover, nonlinear NMDAR spikes in

the dendrites of spiny stellate cells also amplify synaptic inputs

(Lavzin et al., 2012). Recurrent connections introduce loops that

can support attractor states, intrinsic activity, and complex

nonlinear dynamics (Buonomano and Maass, 2009) and aid

receptive field formation and feature extraction (Somers et al.,

1995). These synaptic, cellular, and network properties appear

tuned to detect features and amplify novel stimuli, producing

gradually fading memory traces that enable sensory input to be

combined with recent experience (Buonomano and Maass,

2009). These sophisticated operations may explain why the

structureof theneocortical input layer ismore complex thancere-

bellar input layer, which lacks recurrent excitatory connections.
Experimentally Testable Predictions
Our results make a number of predictions that could potentially

be tested experimentally: (1) GC population activity is sparser

than sustained MF activity within a local region; (2) information

is conserved within local GCL networks; (3) reduction of tonic in-

hibition impairs pattern separation, while elevation impairs infor-

mation transmission; (4) network-activity-dependent inhibition

improves lossless sparse encoding; and (5) increasing the

number of MFs inputs per GC aids sparsification but impairs

information transmission. However, experimental validation is

complicated by the need to measure spike trains from local pop-

ulations of MFs and GC in awake behaving animals and potential

compensatory effects associated with genetic changes. Never-

theless, work combining genetic manipulations and motor

learning consolidation (Galliano et al., 2013; Seja et al., 2012)

and developments in fast 3D imaging technologies (Fernández-

Alfonso et al., 2014) look encouraging.
EXPERIMENTAL PROCEDURES

Measurement of Granule Cell and Glomerular Density

Four 30-day-old Sprague-Dawley rats were deeply anesthetized and perfused

with 4%paraformaldehyde in 0.1M phosphate buffer and 40-mm-thick sagittal

sections of cerebellum were prepared. Cerebellar glomeruli were labeled with
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anti-Kv4.2, anti-VGAT and anti-VGLUT1, or anti-GLAST primary antibodies

and Alexa 488, Cy5, or CY3 labeled secondary antibodies (Supplemental Infor-

mation) and visualized with a confocal scanning microscope. The two-way

dissector method was used to determine GC density within GCL and tissue

shrinkage was taken into account. Density of glomeruli was calculated from

the mean volume of glomeruli and the mean volume of GCL occupied by

glomeruli.

Construction of the Uniform Binary Network Model

The UBN model was constructed with connectivity statistics as close as

possible to the anatomically constrained local GCL network model. The

UBN model is formally equivalent to a random bipartite graph consisting

of two disjoint sets of nodes (inputs, representing MF rosettes, and outputs,

representing GCs), with each output node connected to a fixed number of

randomly chosen input nodes (representing the number of synaptic connec-

tions per GC). The relative fixed binary threshold was implemented across net-

works with different numbers of synaptic connections per GC (d) by setting the

minimum GC threshold to ceiling[0.75 3 d], where ceiling rounds noninteger

values up to the nearest integer. NADT was modeled as a dependence be-

tween the threshold of the GCs and p(MF), using a piecewise constant func-

tion, monotonically increasing from 1 to d over a fraction of the total p(MF)

range given by 1/NADT (e.g., raising from 1 to d between p(MF) = 0 and

p(MF) = 1/2 for NADT = 2).

Information Theoretical Analysis of the Uniform Binary

Network Model

Because the UBN model is noise-free the Shannon Information between the

events and the state of the GC population is the GC population entropy (H),

H= �
XG
k =1

pðkÞlog2½pðkÞ� (1)

where p(k) is the probability of the kth of G unique GC patterns caused by

events. We developed a mathematical technique that enabled us to directly

calculate average entropy across network instantiations (see derivation of

Equation 29; Appendix, Supplemental Information) even for large numbers of

GC patterns. Computation time using our analytical method is independent

of the number of events.

Biologically Detailed Spiking Network Simulations

For spiking networks, we used the anatomically constrained local GCL

network model. GCs were modeled using a conductance-based integrate-

and-fire model whose parameters were set to previously published experi-

mental averages (Rothman et al., 2009; Schwartz et al., 2012; Table S3).

AMPAR- and NMDAR-mediated synaptic conductances were fitted using

swarm intelligence techniques (Supplemental Information) to measured

EPSCs (Rothman et al., 2009), with short-term plasticity modeled as in Tso-

dyks et al. (1998). We used 1,024 MF patterns, since this was the maximum

possible with the computational resources available: simulations and anal-

ysis of Figures 8, S5, and S6 required more than one million 2 GHz core

hours. Cell and synaptic models in NeuroML2/LEMS format (Gleeson

et al., 2010) and links to the simulation and data management code are avail-

able on the Open Source Brain (http://www.opensourcebrain.org/projects/

granule-cell-layer-piasini-2014).

Analysis of Spiking Network Data

Mutual information was calculated between the set of N input patterns and N

output network activity classes, obtained by performing an appropriate tessel-

lation of the output space, as this was the smallest number of classes that

allowed for full recovery of information (Supplemental Information). Undersam-

pling bias in the MI estimate (Treves and Panzeri, 1995) was accounted and

corrected for. Population sparseness was defined as

S=

 
C�

�Pc
i = 1ri

�2Pc
i = 1r

2
i

!,
ðC� 1Þ

(Vinje and Gallant, 2000) whereC is the number of cells and ri is the spike count

of cell i.

http://www.opensourcebrain.org/projects/granule-cell-layer-piasini-2014
http://www.opensourcebrain.org/projects/granule-cell-layer-piasini-2014
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Supplemental Information includes Supplemental Experimental Procedures,

six figures, and two tables and can be found with this article online at http://
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Wisden, W., Hübner, C.A., De Zeeuw, C.I., and Jentsch, T.J. (2012). Raising
974 Neuron 83, 960–974, August 20, 2014 ª2014 Elsevier Inc.
cytosolic Cl- in cerebellar granule cells affects their excitability and vesti-

bulo-ocular learning. EMBO J. 31, 1217–1230.

Shambes, G.M., Gibson, J.M., andWelker, W. (1978). Fractured somatotopy in

granule cell tactile areas of rat cerebellar hemispheres revealed by micromap-

ping. Brain Behav. Evol. 15, 94–140.

Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst.

Tech. J. 27, 379.

Silver, R.A., Traynelis, S.F., and Cull-Candy, S.G. (1992). Rapid-time-course

miniature and evoked excitatory currents at cerebellar synapses in situ.

Nature 355, 163–166.

Somers, D.C., Nelson, S.B., and Sur, M. (1995). An emergent model of orien-

tation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465.

Sultan, F. (2001). Distribution of mossy fibre rosettes in the cerebellum of cat

and mice: evidence for a parasagittal organization at the single fibre level.

Eur. J. Neurosci. 13, 2123–2130.

Talpalar, A.E., Bouvier, J., Borgius, L., Fortin, G., Pierani, A., and Kiehn, O.

(2013). Dual-mode operation of neuronal networks involved in left-right alter-

nation. Nature 500, 85–88.

Treves, A., and Panzeri, S. (1995). The upward bias in measures of information

derived from limited data samples. Neural Comput. 7, 399–407.

Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with dy-

namic synapses. Neural Comput. 10, 821–835.

Tyrrell, T., and Willshaw, D. (1992). Cerebellar cortex: its simulation and the

relevance of Marr’s theory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 336,

239–257.

van Beugen, B.J., Gao, Z., Boele, H.J., Hoebeek, F., and De Zeeuw, C.I. (2013).

High frequency burst firing of granule cells ensures transmission at the parallel

fiber to purkinje cell synapse at the cost of temporal coding. Front Neural

Circuits 7, 95.

van Kan, P.L., Gibson, A.R., and Houk, J.C. (1993). Movement-related inputs

to intermediate cerebellum of the monkey. J. Neurophysiol. 69, 74–94.

Vinje, W.E., and Gallant, J.L. (2000). Sparse coding and decorrelation in pri-

mary visual cortex during natural vision. Science 287, 1273–1276.

Williams, R.W., and Herrup, K. (1988). The control of neuron number. Annu.

Rev. Neurosci. 11, 423–453.

Wittenberg, G.M., and Wang, S.S.-H. (2007). Evolution and scaling of den-

drites. In Dendrites, G. Stuart, N. Spruston, and M. Hausser, eds. (New

York: Oxford University Press), pp. 43–67.

Zhang, J., Han, V.Z., Meek, J., and Bell, C.C. (2007). Granular cells of the mor-

myrid electrosensory lobe and postsynaptic control over presynaptic spike

occurrence and amplitude through an electrical synapse. J. Neurophysiol.

97, 2191–2203.


	Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
	Introduction
	Results
	Quantification of the Cerebellar Input Layer Structure and Development of a 3D Model of Excitatory Network Connectivity
	Uniform Binary Network Model for Computing Information Transmission
	Effect of Synaptic Connectivity and Neuronal Threshold on the Transmission and Transformation of Activity Patterns in Unifo ...
	Trade-Off between Information Transmission and Sparsification in Uniform Binary Network Models with Fixed GC Threshold
	Extension of Uniform Binary Network Models to Include Network-Activity-Dependent Thresholds
	Identification of Optimal Network Connectivities for Robust Lossless Sparse Encoding
	A Biologically Detailed Network Model of the Cerebellar Input Layer
	Quantification of Transmission and Transformation of Information in Biologically Detailed Spiking Network Models
	Best-Performing Synaptic Connectivity for Lossless Sparse Encoding in Biologically Detailed Spiking Network Models

	Discussion
	The Relationship between Feedforward Network Structure and Function
	Relationship between Mossy Fiber Activity and Granule Cell Layer Properties
	Determinants of Network Encoding Capacity
	The Properties of Inhibition and Encoding Capacity
	Synaptic Connectivity of the Cerebellar Input Layer Is Evolutionarily Conserved
	Comparison of the Structure of the GCL to Other Networks
	Experimentally Testable Predictions

	Experimental Procedures
	Measurement of Granule Cell and Glomerular Density
	Construction of the Uniform Binary Network Model
	Information Theoretical Analysis of the Uniform Binary Network Model
	Biologically Detailed Spiking Network Simulations
	Analysis of Spiking Network Data

	Supplemental Information
	Acknowledgments
	References


