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Biocarbon production is a thermochemical conversion process, which transfers biomass into solid fuels 

characterized with superior handling, grinding and combustion properties. Biocarbon can be potentially utilized 

as a high quality fuel in small-scale heating applications, as charcoal, powder, briquettes or pellets. However, 

there are only few studies on the use of biocarbon in residential stoves. Charcoal based modern residential 

stoves can achieve high thermal efficiency and low emissions. In this study, the main objectives were to 

assess the energy efficiency of the whole value chain for utilization of carbonized wood for small-scale 

biocarbon pellet based stoves and to evaluate the overall heat production cost of the whole value chain by a 

techno-economic approach, under Norwegian conditions.The carbonization temperature did not affect the 

stove thermal efficiency significantly. However, at higher carbonization temperatures higher biocarbon pellet 

production cost and higher overall heat production cost were obtained when standalone pellet production was 

considered. In the case of pellet and district heat coproduction, the pellet production cost was always lower 

than the corresponding one without district heat production. 

1. Introduction 

Biocarbon production is a thermochemical conversion process, which transfers biomass into solid fuels 

characterized with superior handling, grinding and combustion properties (Neves et al., 2011, Antal and 

Grønli, 2003). The process includes steps such as devolatilization, depolymerization and carbonization, and 

generates a solid product as the main output together with tarry vapours and gases (Brewer and Brown, 

2012). The C content of the solid product can reach more than 90% on an dry ash-free (daf) basis, with O 

content below 6% and H content near 1% (Antal and Grønli, 2003, Demirbaş, 2001, Neves et al., 2011). The 

peak temperature reached during the carbonization process has a decisive effect on reaction pathways and 

biocarbon properties (Antal and Grønli, 2003, Demirbaş, 2001). Increasing the peak temperature typically 

results in higher fix-C content, surface area and porosity, while it reduces the biocarbon yield and volatile 

matter content (Demirbaş, 2001, Strezov et al., 2007).Moderate heating rate and long residence time are 

applied to maximize fix-C yields in conventional biocarbon production processes (Lehmann, 2007). Physical 

and chemical properties of the biomass input also considerably influence the distribution of solid and volatile 

products, biocarbon properties and the process efficiency (Abdullah et al., 2010, Abdullah and Wu, 2009, 

Ioannidou and Zabaniotou, 2007).Biocarbon can be potentially utilized as a high quality fuel in small-scale 

heating applications (pellet boilers and stoves) (Khalil et al., 2013), as a fuel in peak load boilers, cofiring in 

bioenergy plants, soil amendment, as a reductant in metallurgic industry, adsorbents, and nanomaterials in 

semiconductor industries. However, in this study, we focus on the potential use of biocarbon in small-scale 

heating applications, i.e. pellet stoves, for the Norwegian residential sector. In Norway, space heating is the 

major energy consumer in the residential sector (SSB, 2014). Approximately 12% of Norwegian households 

have common central heating while less than 1% have access to district heating (Obernberger and Thek, 

2010). About 75% of the households are using electricity based heating systems, and the majority of these 

households also have wood stoves as combined systems, and some have pellet stoves. Thus, there is a 

potential to retrofit wood based heating systems with improved feedstocks. Use of biocarbon in stoves could 



give the most stable combustion conditions and as well lowest emissions fluctuations (Antal et al., 1996, 

Thrower, 1996). However, there are only a few studies on the use of biocarbon in residential stoves, one study 

from Norway carried out emission performance studies for automatically fed charcoal stoves of typical size of 

5 kW heat output, where emissions from two different types of stoves were compared for both wood and 

charcoal (Ramdahl et al., 1982). Another  study developed and tested a charcoal powder based residential 

stove for Japanese conditions, studying charcoal derived from wood and various biomass residues, and they 

measured highest thermal efficiency was 86% (Horio et al., 2008). Recently, torrefied pellets usage in a pellet 

stove was studied to improve the emission performance under Norwegian conditions, and it was found that 

emissions of CO, unburned hydrocarbons and the organics in particles smaller than 1 µm were reduced in 

comparison to wood pellets (Khalil et al., 2013). In this study, our main objective is to assess the energy 

efficiency of the whole value chain for utilization of carbonized wood for small-scale biocarbon pellet based 

stoves, and to evaluate the overall heat production cost of the whole value chain by a techno-economic 

approach. 

2. Methodology 

Spruce woodchips are considered as the feedstock for wood pellet and biocarbon pellet production. Ultimate 

analyses of raw spruce (Khalil et al., 2013), spruce carbonized at a lower temperature (Tapasvi et al., 2012), 

and spruce carbonized at higher temperatures (Demirbaş, 2001) were used as input data to Fuelsim-Average 

(Skreiberg, 1997) to evaluate the thermal and energy efficiencies [7], when these solid fuels are combusted in 

residential stoves (Khalil et al., 2013, Koyuncu and Pinar, 2007). 
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Figure 1 : Value chain for biocarbon pellet production and stove application. 

Table 1 Details of the cost functions of the process equipment in the biocarbon production 

Process 

equipment 

Basis of the 

cost function 

Equipment 

purchase cost 

function (M$) 

Reference 

year 

Installation 

factor 

Reference 

Fuel storage 
ṀF (mass flow,  

wet tonne/h) 
(ṀF 33.5)⁄

0.65
 2001 1.86 

(Hamelinck and Faaij, 

2002) 

Biomass 

conveyor  

ṀF (mass flow,  

wet tonne/h) 
0.35(ṀF 33.5)⁄

0.8
 2001 1.86 

(Hamelinck and Faaij, 

2002) 

Fuel dryer Ad (area, m
2
) 

15000

+ 10500Ad
m 

1998 1.86 
(Towler and Sinnott, 

2013) 

Carbonization 
m (weight of 

the vessel, kg) 
fm70 (m)

-0.34
 2000 1.80 

(Peters et al., 2003) 

 

) Air 

compressor 
Ẇair 

(compressor 

power, MWe) 

6.03(Ẇair 10)⁄
0.67

 2009 1.46 (Larson et al., 2009) 

Heat recovery 

burner 

Vg (volumetric 

flowrate of inlet 

gas, m
3
/h) 

0.48Vg0.82 2004 1.86 (Mussatti, 2001) 

 

Techno-economic analysis was performed for the whole value chain consisting of spruce woodchips supply, 

conversion into biocarbon, pelleting and pellet stove application (Figure 1). Mass and energy balances were 

solved in a Microsoft Excel spreadsheet for the whole value chain, except for the stove application, for which 



Fuelsim-Average was used. The drying efficiency, the thermal efficiency of the heat recovery burner and the 

energy loss during pelleting were assumed to be 75%, 90%, 5%, respectively. 

The cost of biomass supply was estimated according to Norwegian conditions (Kempegowda et al., 2015). A 

biocarbon production capacity of 40 dry tonnes/day was assumed in four parallel units with a capacity of 10 

dry tonnes/day each. The methodology of economic analysis is reported in details elsewhere (Kempegowda et 

al., 2015), therefore only the differences are described here. In this study a depreciation period of 15 years, a 

construction and commissioning duration of 1 year and an income tax rate of 28% were assumed, and the 

reference year was 2015. The cost functions of biocarbon production is given in Table 1, while in the case of 

pellet production and stove application direct vendor quotes were obtained. The district heat tariff was 78 

US$/MWh. 

3. Results and discussion 

3.1 Efficiency analysis 

Energy efficiency of biocarbon pellet production without or with district heat coproduction 

Energy efficiency was assessed for the production of biocarbon pellets without and with district heat 

coproduction Figure 2 (a). The mass yields and the lower heating values (LHVs) of the carbonization gases 

were estimated based on the literature (Neves et al., 2011), while biocarbon yields (Demirbaş, 2001) and 

pellet LHVs given in Table 2 were calculated by correlations (Skreiberg, 1997). In the case of pellet production 

without district heat production the lowest and highest energy efficiencies are obtained at 477°C and 277°C, 

respectively. In the case of pellet production with district heat production increasing carbonization temperature 

results in increasing district heat production, hence the total energy efficiency increases. Coproduction of 

biocarbon pellets and district heat gives higher total energy efficiency at a particular temperature compared to 

that of standalone pellet production. A significant portion of the input biomass is used for drying as shown in 

the energy flow (Sankey) diagram in Figure 2 (b).   

  
 

 

Figure 2:(a) Break down of LHV (lower heating value) energy efficiency in the case of biocarbon pellet 

production at various temperatures without (-) or with (+) coproduction of district heat (b) Sankey diagram for 

biocarbon pellet production at 477°C with district heat production, (Energy flow in MW). 

Thermal efficiency of stove application 

The moisture content of the raw spruce has a significant impact on the thermal efficiency of the stove as 

shown in Figure 3(a). The higher the moisture content in the biomass, the higher the heat losses are in the 

chimney. Increasing the carbonization temperature yields higher C content, and the LHV of the biocarbon 

pellets increases (Table 2). However, for the same excess air ratio and chimney inlet temperature the flue gas 

composition does not change significantly with increasing carbonization degree, which results in 

approximately the same thermal efficiencies in the case of the biocarbon obtained at various carbonization 

temperatures. The chimney inlet temperature is an important parameter to control in order to reduce the 

chimney losses. The higher the chimney inlet temperature, the lower the thermal efficiency is: as shown in 

Figure 3(b). Using raw woodchips or biocarbon obtained at different carbonization temperatures, there is not a 

significant difference between the thermal efficiencies at a given chimney inlet temperature and excess air 

ratio. 

  



 

Figure 3: Thermal efficiencies of stove (a) for various carbonization temperatures (T in °C), C contents (dry 

ash free basis (daf)) and moisture content fractions (1
st
, 2

nd
, 3

rd
 numbers, respectively) at an excess air ratio of 

1.5 and a chimney inlet temperature of 120°C.  (b) Thermal efficiency of stove as a function of chimney inlet 

temperature for various carbonization temperatures (T, °C), C contents (daf) and moisture content fractions 

(1st, 2nd, 3rd numbers, respectively) at an excess air ratio of 1.5.  

3.2 Emission aspects 

CO is regarded as a good indicator of combustion quality. Small-scale wood stoves of Belgium conditions and  

their performance of CO emissions varied from 447 to 1185 mg/Nm
3
 for a 10 kW wood stove (Obaidullah et 

al., 2014). Use of wood pellets and torrefied wood pellets in a pellet stove under Norwegian conditions (Khalil 

et al., 2013). CO emissions of wood pellets were 750 and 450 mg/Nm
3
 at low and high loads, respectively, 

while CO emissions of wood pellets torrefied at 225°C were 518 and 275 mg/Nm
3
 at low and high loads, 

respectively. I.e. significantly lower CO emission levels were achieved using torrefied wood pellets. As shown 

in Figure 4(a), CO concentration in the flue gas negatively affects the energy efficiency of the stove. According 

to measured CO emissions of wood stoves from literatures as explained above, the energy efficiency can 

decrease up to 4 vol% compared to a case where CO is not emitted. 

 

3.3 Overall energy efficiency of the whole value chain 

The overall energy efficiency of the whole value chain is shown in Figure 4 (b) as a function of moisture 

content of raw spruce woodchips. Varying the moisture content of the raw biomass does not significantly affect 

the overall energy efficiency at a certain carbonization temperature. 

   

Figure 4  (a) Energy efficiency of stove as a function of CO concentration (vol%) in the flue gas at a biocarbon 

C content of 0.92 (daf), moisture content of 0, a chimney inlet temperature of 120°C and an excess air ratio of 

1.5. (b) Overall energy efficiency of the whole value chain (conversion of raw spruce woodchips into pellets 

with coproduction of district heat and combustion in a residential pellet stove) as a function of moisture content 

of the raw spruce woodchips at an excess air ratio of 1.5 and a chimney inlet temperature of 120°C for various 

carbonization temperatures. 

3.4 Economic analysis 

The net investment cost of a pellet stove system for a nominal load of 8kW costs around 4306 US$ which 

includes catalyst converter (if applicable) 338 US$, chimney connection 152 US$. Pellets are made with biooil 

as additive. It is assumed that 5% of the LHV is lost in the pelleting process. The LHV values were calculated 

based on the Fuelsim model (Skreiberg, 1997). Biomass supply cost was estimated to be 16.5 US$/MWh. 



Stove thermal efficiency of 92% were considered for economic analysis. As shown in Table 2, the pellet 

production cost and overall heat production cost increase by increasing the carbonization temperature in the 

case of standalone pellet production (Table 2). However, when district heat is coproduced, pellet production 

cost and overall heat production cost decreases. Selling heat results in decreased pellet production cost and 

overall heat production cost compared to that when the heat from burning the carbonization gases is used for 

drying the raw spruce woodchips. The Norwegian wood pellet price varied between 0.33 and 0.50 NOK/kWh 

(40 and 60 US$/MWh, respectively) between 2010 and 2013 (NOBIO). The biocarbon pellet prices given in 

Table 2 lie within this range. In a German case study for a small-scale wood pellet stove an overall heat 

production cost of 87.1 EUR/MWh (LHV basis) was reported (Obernberger and Thek, 2010), which can be 

converted into 109.4 US$/MWh by assuming a thermal efficiency of 90% and a conversion rate of 1.13 

US$/EUR (2015). The overall heat production costs obtained in this study are slightly higher than this value. 

Table 2 Biocarbon yield, pellet lower heating value (LHV), pellet production cost and overall heat production 

cost for the whole value chain for spruce woodchips carbonized at various temperatures. DM: dry matter 

Carbonization 

temperature 

Biocarbon yield
1 

Pellet 

LHV 

Pellet production 

cost 

Overall heat production 

cost °C g DM/g DM spruce 

woodchips 

MJ/kg 

DM 

US$/MWh US$/MWh 

277 0.38 26.21 40.8 (40.0) 128.8 (128.1) 

377 0.33 27.33 46.2 (42.0) 136.81 (130.63) 

477 0.29 28.88 50.1 (38.7) 142.62 (125.74) 

577 0.28 30.08 52.4 (31.0) 146.03 (114.47) 
1
Calculated based on the work (Demirbaş, 2001) 

Sensitivity analysis for market penetration of biocarbon pellet stoves 

Figure 55 shows the sensitivity towards overall heat production cost for the selected biocarbon pellet 

carbonized at 577 
o
C. The factors selected are stove efficiency (85-95%), operating hours (1000 to 1400 

hours/year), operating and maintenance costs (1-5%) of total investment (TCI), interest rate in the range of 5-

9%, pellet production cost (25-36.5 $/MWh) and stove  investment (70-130 %) of base investment. Among 

these investment cost has major impact on the specific heat production cost. 

 

Figure 5: Sensitivity analysis for market penetration of biocarbon pellet stoves in the case of biocarbon 

produced at a carbonization temperature of 577°C at a base case specific heat production (114.47 $/MWh). 

4. Conclusions 

The value chain of biocarbon production with pelleting for stove application was investigated in terms of 

energy efficiency, emission aspects and economic performance. Increasing the carbonization temperature 

resulted in increased total energy efficiency of pellet production with district heat coproduction, however, a 

different trend was obtained without district heat production. The carbonization temperature did not affect the 

stove thermal efficiency significantly, which also means that the C content of the biocarbon did not influence 

the stove thermal efficiency. However, at higher carbonization temperatures, higher biocarbon pellet 

production cost and higher overall heat production cost were obtained for standalone pellet production. In the 

case of pellet and district heat co-production, the pellet production cost was always lower. Sensitivity analysis 

showed that investment cost, pellet price and stove efficiency have major impacts on the overall heat 

production cost of biocarbon pellet stoves. Further work will be needed to see the demonstrative aspects of 

biocarbon pellet stoves in the residential sector, including the operational and environmental emissions 

aspects. Previous work suggests that pellets made from torrefied biomass can significantly reduce emission 

levels of unburnt, and this could be significantly further improved by using biocarbon pellets and applying a 

catalytic afterburner. 



Acknowledgements  

The authors acknowledge the financial support from the Research Council of Norway, the industrial partners 

(Elkem AS, Department Elkem Technology; Norsk Biobrensel AS; AT Biovarme AS; Eyde-nettverket Saint 

Gobain Ceramic Materials AS; Eramet Norway AS; Alcoa Norway ANS) in the BioCarb+ project and the 

Project OTKA PD-108389 of the Hungarian National, Research, Development and Innovation Office (NKFIH). 

References 

ABDULLAH, H., MEDIASWANTI, K. A. & WU, H. 2010. Biochar as a fuel: 2. Significant differences in fuel 
quality and ash properties of biochars from various biomass components of Mallee trees. Energy & Fuels, 
24, 1972-1979. 

ABDULLAH, H. & WU, H. 2009. Biochar as a fuel: 1. Properties and grindability of biochars produced from the 
pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels, 23, 4174-4181. 

ANTAL, M. J., CROISET, E., DAI, X., DEALMEIDA, C., MOK, W. S.-L., NORBERG, N., RICHARD, J.-R. & AL 
MAJTHOUB, M. 1996. High-yield biomass charcoal. Energy & Fuels, 10, 652-658. 

ANTAL, M. J. & GRØNLI, M. 2003. The art, science, and technology of charcoal production. Industrial & 
Engineering Chemistry Research, 42, 1619-1640. 

BREWER, C. E. & BROWN, R. C. 2012. 5.18 - Biochar. In: SAYIGH, A. (ed.) Comprehensive Renewable 
Energy. Oxford: Elsevier. 

DEMIRBAŞ, A. 2001. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. 
Energy Conversion and Management, 42, 1229-1238. 

HAMELINCK, C. N. & FAAIJ, A. P. C. 2002. Future prospects for production of methanol and hydrogen from 
biomass. Journal of Power Sources, 111, 1-22. 

HORIO, M., SURI, A., ASAHARA, J., SAGAWA, S. & AIDA, C. 2008. Development of biomass charcoal 
combustion heater for household utilization. Industrial & Engineering Chemistry Research, 48, 361-372. 

IOANNIDOU, O. & ZABANIOTOU, A. 2007. Agricultural residues as precursors for activated carbon 
production—a review. Renewable and Sustainable Energy Reviews, 11, 1966-2005. 

KEMPEGOWDA, R. S., DEL ALAMO, G., BERSTAD, D., BUGGE, M., MATAS GÜELL, B. & TRAN, K.-Q. 
2015. CHP-Integrated Fischer-Tropsch Biocrude Production under Norwegian Conditions: Techno-
Economic Analysis. Energy & Fuels, 29, 808-822. 

KHALIL, R. A., BACH, Q.-V., SKREIBERG, Ø. & TRAN, K.-Q. 2013. Performance of a Residential Pellet 
Combustor Operating on Raw and Torrefied Spruce and Spruce-Derived Residues. Energy & Fuels, 27, 

4760-4769. 
KOYUNCU, T. & PINAR, Y. 2007. The emissions from a space-heating biomass stove. Biomass and 

Bioenergy, 31, 73-79. 

LARSON, E. D., JIN, H. & CELIK, F. E. 2009. Large-scale gasification-based coproduction of fuels and 
electricity from switchgrass. Biofuels, Bioproducts and Biorefining, 3, 174-194. 

LEHMANN, J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381-387. 
MUSSATTI, D. C. 2001. EPA air pollution control cost manual, United States Environmental Protection 

Agency, Office of Air Quality Planning and Standards. 
NEVES, D., THUNMAN, H., MATOS, A., TARELHO, L. & GÓMEZ-BAREA, A. 2011. Characterization and 

prediction of biomass pyrolysis products. Progress in Energy and Combustion Science, 37, 611-630. 

NOBIO Pellet price Norway, http://nobio.no/, 2012. 
OBAIDULLAH, M., DYAKOV, I. V., THOMASSIN, J. D., DUQUESNE, T., BRAM, S., CONTINO, F. & DE 

RUYCK, J. 2014. CO Emission Measurements and Performance Analysis of 10 kW and 20 kW Wood 
Stoves. Energy Procedia, 61, 2301-2306. 

OBERNBERGER, I. & THEK, G. 2010. The pellet handbook. Earthscan Ltd. 
PETERS, M. S., TIMMERHAUS, K. D., WEST, R. E., TIMMERHAUS, K. & WEST, R. 2003 Plant design and 

economics for chemical engineers, McGraw-Hill New York. 
RAMDAHL, T., ALFHEIM, I., RUSTAD, S. & OLSEN, T. 1982. Chemical and biological characterization of 

emissions from small residential stoves burning wood and charcoal. Chemosphere, 11, 601-611. 
SKREIBERG, Ø. 1997. Theoretical and Experimental Studies on Emission from Wood Combustion, Norvegian 

University of science and technology. 
SSB. 2014. Energy consumption in households, 2012 [Online].  [Accessed 9-09-2015. 
STREZOV, V., PATTERSON, M., ZYMLA, V., FISHER, K., EVANS, T. J. & NELSON, P. F. 2007. 

Fundamental aspects of biomass carbonisation. Journal of Analytical and Applied Pyrolysis, 79, 91-100. 

TAPASVI, D., KHALIL, R., SKREIBERG, Ø., TRAN, K.-Q. & GRØNLI, M. 2012. Torrefaction of Norwegian 
Birch and Spruce: An Experimental Study Using Macro-TGA. Energy & Fuels, 26, 5232-5240. 

THROWER, P. A. 1996. Chemistry & Physics of Carbon, CRC Press. 
TOWLER, G. & SINNOTT, R. 2013. Chapter 20 - Transport and Storage of Fluids. In: TOWLER, G. & 

SINNOTT, R. (eds.) Chemical Engineering Design (Second Edition). Boston: Butterworth-Heinemann. 

http://nobio.no/

