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The diversity dynamics of the Anisian ammonoids is analyzed in terms of generic richness and turnover

rates in one North American (Nevada) and two western Tethyan (Eastern Lombardy, Balaton Highland) re-

gions. Two pulses of diversification are outlined: one in the middle Anisian (Pelsonian) and another near the

end of the late Anisian (late Illyrian). The Pelsonian global diversification is interpreted as an effect of global

sea-level rise. In the early late Anisian the ammonoid generic richness definitely decreased both in the west-

ern Tethys and in Nevada. The latest Anisian peak of ammonoid diversity was low in Nevada, which is ex-

plained by the uniform local sedimentary environment and the absence of major global changes. In the west-

ern Tethys the late Illyrian diversity peak was very prominent: ammonoid generic richness, turnover and

proportion of originations were very high. This explosive peak is interpreted in terms of major changes of

two regional environmental factors: coeval volcanic activity and the control of nearby carbonate platforms.

The late Illyrian volcanic ash falls provoked a dramatic increase of ammonoid generic richness by fertiliza-

tion, i.e. supplying nutrients and iron, thus increasing primary productivity in the ocean. Carbonate platform

margins offered diverse habitats with new, empty niches; the microbial mats supplied suspended organic

matter for the higher trophic levels and eventually the ammonoids. In the western Tethyan regions platform

growth re-appeared after the end-Permian crisis, and significantly increased in the late Illyrian. This was

closely followed by the remarkable increase of ammonoid generic richness. Many of the genera which origi-

nated during the late Anisian seem to be ecologically connected to the platform or peri-platform environ-

ments. It is suggested that this explosive diversity peak is a manifestation of the co-evolution of the Tethyan

carbonate platforms and the ammonoids.
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Introduction

Ammonoids nearly became extinct at the Permian/Triassic boundary but, in con-

trast to many other fossil groups, they recovered very rapidly after the biotic catastro-

phe and became perhaps the most significant group of animals in the Mesozoic seas.

The Mesozoic history of the ammonoids shows two major, distinct evolutionary cy-

cles: one in the Triassic and, after a near-extinction at the end-Triassic a second one in

the Jurassic-Cretaceous (Arkell et al. 1957; House 1988). The Triassic phylogenetic

radiation and diversification, recorded mostly in the group of Ceratitida, was further

analyzed in detail by Tozer (1981) and recently by Brayard et al. (2009) and Balini

et al. (2010).

From the beginning of the Triassic to the middle Olenekian (Smithian/Spathian

boundary), during a period of 2.5 million years, the number of ammonoid families in-

creased from 2 to 15. In spite of two minor episodes of extinction and faunal turnover

(end-Induan and mid-Olenekian) the trend of the gradual diversification continued to-

ward the end of the Olenekian, when the number of ammonoid families reached 29

(Brayard et al. 2006, 2009). These rapid turnovers were probably caused by late phases

of the voluminous end-Permian igneous event (Siberian traps) and the resulting fluctu-

ations of the carbon cycle, climatic change, and possibly acidification of surface wa-

ters (Galfetti et al. 2007a, 2007b; Brühwiler et al. 2010). The latitudinal ammonoid di-

versity maximum was confined to the equatorial zone (Galfetti et al. 2007a, 2007b) but

in the time of pulses of diversification, ammonoids successfully migrated to the Boreal

regions (Zakharov and Popov 2014). The Olenekian/Anisian boundary interval saw

the first major, true extinction of the Triassic ammonoids but subsequently, the 11 sur-

vivor families showed a rapid radiation and the number of genera increased from 37 to

84 for the late Anisian (Fig. 1).

The Anisian diversification resulted in the second highest peak of generic richness

in the history of Triassic ammonoids. This ammonoid diversity maximum cannot be

interpreted in the same way as the Early Triassic ones, because a crucial global envi-

ronmental factor changed significantly, as reflected by the carbon isotopic ratio, which

strongly fluctuated in the Early Triassic but stabilized in the Middle Triassic (Galfetti

et al. 2007a; Brühwiler et al. 2010). The present paper is aimed at the documentation

and interpretation of this Anisian pulse of diversification which is much less studied

and understood than the Early Triassic ones.

Diversification of an animal group is usually interpreted in terms of evolutionary

processes which appear at higher taxonomic levels. In the case of Triassic ammonoids,

Tozer (1981; Fig. 1) showed that the pre-Spathian (middle Olenekian) and the late

Anisian evolutionary turnovers were manifested by the appearance of five and three

new ammonoid superfamilies, respectively. However, evolution probably works at a

lower level, perhaps that of species and population level. Brayard et al. (2009) dis-

cussed two diversity-dependent diversification models: the (evolutionary-based) lo-

gistic and another (population dynamics-based) hierarchical one. Their model com-

parisons favored the population dynamics-based diversification model over the evolu-
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tionary-based one. The population dynamics-based model involves a niche incum-

bency effect (Walker and Valentine 1984) which emphasizes the importance of vacant

niches in stimulating diversification. This ecological rather than evolutionary ap-

proach is favored in the present study.
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Fig. 1

Temporal changes in total generic richness of Triassic ammonoids. Data based on Brayard et al. (2009); ages

from time scale by Mundil et al. (2010)



Data and methods

Anisian ammonoids have been recorded and documented from numerous parts of

the Tethyan and Circum-Pacific region. However, many of the very important, famous

and well-documented ammonoid localities lack a continuous record and/or detailed

stratigraphic subdivision. In many regions, diverse and properly described middle

Anisian faunas are followed by scanty ammonoid assemblages in the Upper Anisian,

e.g. in Spiti (Krystyn et al. 2004), in South China (Stiller and Bucher 2008) and in Arc-

tic Asia (Dagys 2001). In other cases the ammonoid record is good but discontinuous,

and the stratigraphic subdivision is rather coarse, e.g. in Canada (British Columbia:

Tozer 1994) or in the Dolomites (Balini 1993; Mietto and Manfrin 1995).

Detailed and continuous stratigraphic record and reliable, modern ammonoid taxo-

nomical works are available mainly from some of the Alpine localities and from Ne-

vada in North America. Three areas have been selected for studying the Middle Trias-

sic ammonoid diversification; their middle Anisian to earliest Ladinian ammonoid re-

cord forms the database of the present study.

(1) Eastern Lombardy/Giudicarie region (without the Dolomites) (Southern Alps,

Italy); 51 genera, 85 species (Balini 1992a, 1992b, 1998; Brack et al. 1999,

2005; Mietto et al. 2003; Monnet et al. 2008).

(2) Balaton Highland (Hungary); 42 genera, 84 species (Vörös 1998, 2003).

(3) Northwest Nevada (USA); 47 genera, 81 species (Silberling and Nichols 1982;

Bucher 1992; Monnet and Bucher 2005).

These classical Triassic ammonoid localities were recently investigated, and on the

basis of bed-by-bed ammonoid collections, the respective measured sections were pre-

cisely subdivided. Their detailed stratigraphic correlation was also carried out

(Monnet et al. 2008; Vörös et al. 2009; Balini et al. 2010) and this was applied in the

present paper in a somewhat simplified form (Table 1). The names and the spans of the

ammonoid zones and subzones partly differ in the three areas. The number of subzones

recognized in the middle Anisian to earliest Ladinian interval is 16 in Eastern Lom-

bardy, 15 in the Balaton Highland and 19 in Nevada. The palaeogeographic position of

the selected areas (two in the western Tethys, one in the eastern Panthalassa) offers a

possibility to compare the ammonoid diversification processes in the two distant oce-

anic domains.

The diversification of the ammonoid faunas, i.e. the temporal changes in taxonomic

diversity, was expressed by the generic richness in the separate subzones of the respec-

tive localities. In the three areas 89 genera were recorded altogether. Species richness

was also counted but not investigated further because this value is believed to be more

strongly influenced by subjectivity in taxonomy (i.e. species concepts of different

authors). The occurrences of particular genera in the subzones in Eastern Lombardy,

in the Balaton Highland and in Nevada, respectively, are shown by range charts in

Figs 2–4, which also show the turnover data at the individual subzonal boundaries.
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Fig. 2

Range chart of middle

Anisian to earliest Ladi-

nian ammonoid genera in

Eastern Lombardy. L.:

Ladinian, E.: early. (Data

from Balini 1992a, 1992b;

Mietto et al. 2003; Brack

et al. 2005; Monnet et al.

2008)
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Fig. 3

Range chart of middle Anisian to earliest Ladinian ammonoid genera in the Balaton Highland. L.: Ladinian,

E.: early. (Data from Vörös 1998, 2003)
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Fig. 4

Range chart of middle

Anisian to earliest Ladi-

nian ammonoid genera in

Nevada. L.: Ladinian, E.:

early. (Data from

Silberling and Nichols

1982; Bucher 1992;

Monnet and Bucher

2005)



Following the method of Brühwiler et al. (2010), turnover is defined here as the sum of

originations and extinctions between two subzones. In our case, because of working

with local databases, the expressions “first appearances” and “last appearances” are

used instead of originations and extinctions, respectively. The percentage of turnover

is the turnover divided by the total number of genera occurring in the two bordering

subzones.

Results

The numerical data of simple counts of occurrences of ammonoid genera in the

middle Anisian (Pelsonian), late Anisian (Illyrian) and earliest Ladinian are shown in

Table 2. The temporal change in the total number of genera recorded in the three study

areas (middle Anisian: 30, late Anisian: 67, earliest Ladinian: 5) shows a more than

twofold increase during the Anisian, and fits the global diversity curve rather well

(Fig. 1) (it must be mentioned that the earliest Ladinian minimum may be an artifact;

this interval is represented by scarce faunas of only single subzones in all three areas

studied). Clearly the middle to late Anisian diversity increase was much more marked

in the western Tethyan (Alpine) areas than in Nevada (Table 2).

The middle to late Anisian ammonoid diversification can be further analyzed by

counting the occurrences in narrower time intervals. In this case the advanced strati-

graphic subdivisions (at the subzonal level) developed at the three studied areas allow

expressing the temporal changes in generic richness in the particular subzones (Tables

3–5). These tables also show some other data on diversity dynamics, such as the

originations and extinctions (in fact the first and last appearances) of the ammonoid

genera and their turnover rates. The changes in ammonoid generic richness and turn-

over have been plotted in Figs 5–7.

The late Anisian (late Illyrian) peak in ammonoid diversification is very obvious in

the two Alpine areas. In Eastern Lombardy (Table 3, Fig. 5) the number of ammonoid

genera is low and slowly increases (from 2 to 6) in the middle Anisian, then an ex-

tremely high value (22) is seen in the Ticinites crassus Subzone, near the end of the late

Anisian, and an abrupt decrease is recorded toward the earliest Ladinian. The turnover

is also very high toward the end of the Anisian; proportions of the originations (first

appearances) are especially high at the bases of the Aplococeras avisianum and

Ticinites crassus Subzones.
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Table 2

Number of ammonoid genera by ages in the three study areas and altogether

Eastern Lombardy Balaton Highland Nevada Three areas altogether

Early Ladinian 3 4 1 5

Late Anisian 46 33 31 68

Middle Anisian 7 12 20 30
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Table 3

Number of ammonoid genera and their first (F. a.) and last appearances (L. a.) and turnover data

in separate Anisian subzones in Eastern Lombardy

Subzones Genera
F. a.

Turnover Turnover %
L. a.

Eoprotrachyceras curionii 3
2

14 88

Nevadites secedensis 13
12

3
15 43

Ticinites crassus 22
12

9
12 32

Aplococeras avisianum 16
3

9
14 50

Reitziites reitzi 12
5

3
3 16

Hyparpadites bagolinensis 9
0

2
3 20

“Kellnerites” 8
1

2
3 23

“Lardaroceras” 7
1

1
3 23

“Asseretoceras” 8
2

3
5 23

Paraceratites trinodosus 7
2

3
5 38

Schreyerites abichi 6
2

3
4 40

Judicarites euryomphalus 4
1

1
4 40

Rieppelites cimeganus 6
3

3
6 50

Bulogites zoldianus 6
3

3
3 33

Balatonites balatonicus 3
0

2
3 60

Balatonites ottonis 2
1



The temporal changes in ammonoid diversity are rather similar in the Balaton High-

land as well (Table 4, Fig. 6), with the differences that there is a higher middle Anisian

peak (9) in the Beyrichites cadoricus Subzone, and that the late Anisian maximum (14)

is somewhat smaller and appears a little earlier (Aplococeras avisianum Subzone) than

in Eastern Lombardy. The turnover values follow similar trends, with latest Anisian

maxima, except for a peak at the base of the Paraceratites trinodosus Subzone. The

numbers of originations (first appearances) mostly correspond to the mentioned max-

ima of the turnover values.

In Nevada (Table 5, Fig. 7) the generic richness values show much less temporal

variation, and almost no trends. The middle Anisian starts with a low maximum in the

Favreticeras rieberi Subzone (13 genera); then the number of genera fluctuates be-

tween 6 and 12, and three smaller peaks can be recorded in the Proteusites fergusoni,

the Billingsites cordeyi, and the latest Anisian Nevadites humboldtensis Subzones, re-

spectively. The turnover maximum is reached in the Billingsites cordeyi Subzone;

here the proportion of the originations is also high. The turnover remains rather low

throughout the late Anisian. At the latest Anisian maximum of generic richness

(Nevadites humboldtensis and adjacent Subzones) the turnover and especially the

number of originations is extremely low.
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Fig. 5

Generic richness and turnover of middle Anisian to earliest Ladinian ammonoids in Eastern Lombardy. Val-

ues (bars) and percentages (shaded areas) of turnover of genera. E. L.: early Ladinian



For an easier and direct comparison, the generic richness curves of Eastern Lom-

bardy, Balaton Highland and Nevada are shown in Fig. 8. In the Middle Triassic the di-

versity increases in the two Tethyan areas, while it is steadily and moderately high in

Nevada. The marked diversity peaks appear near the end of the late Anisian in Eastern

Lombardy and a little earlier in the Balaton area; a much less pronounced latest

Anisian diversity peak is seen in Nevada.
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Table 4

Number of ammonoid genera and their first (F. a.) and last appearances (L. a.) and turnover data

in separate Anisian subzones at the Balaton Highland

Subzones Genera
F. a.

Turnover Turnover %
L. a.

Eoprotrachyceras curionii 4
2

5 55

Nevadites secedensis 5
3

1
7 47

Ticinites crassus 10
6

4
12 50

Aplococeras avisianum 14
8

5
9 33

Reitziites reitzi 13
4

5
7 30

Hyparpadites liepoldti 10
2

1
2 10

Kellnerites felsoeoersensis 10
1

3
6 30

Lardaroceras pseudohungaricum 10
3

1
2 10

Asseretoceras camunum 10
1

3
3 18

Paraceratites trinodosus 7
0

4
7 54

Schreyerites ? binodosus 6
3

1
3 23

Bulogites zoldianus 7
2

2
6 38

Beyrichites cadoricus 9
4

3
4 25

Balatonites balatonicus 7
1

5
5 56

Balatonites ottonis 2
0



Discussion

The Middle Triassic temporal changes in generic richness and turnover rates of

ammonoid genera presented above suggest two pulses of diversification: one in the

middle Anisian (Pelsonian) and another, more prominent, near the end of the late

Anisian (late Illyrian).

The Pelsonian global diversification

The first phase of ammonoid diversification in the Pelsonian (i.e. in the Balatonites

balatonicus/shoshonensis Zones) seems to be a global phenomenon. It can be recorded

in the western Tethyan areas and in Nevada as well, and is characterized by the com-

mon occurrence of the genera Balatonites, Acrochordiceras, Bulogites and Ismidites,

beside the cosmopolitan Ptychites and Proarcestes. Moreover, diverse ammonoid fau-

nas of this age and partly similar composition were reported from several low-latitude

localities, e.g. Turkey (Fantini Sestini 1988), Israel (Parnes 1986), the Himalayas

(Krystyn et al. 2004), Tibet (Gu et al. 1980) and Southwest China (Stiller and Bucher

2008). The geographical distribution of the genus Balatonites is even wider, including

Thailand (Kummel 1960), Vietnam (Khuc 2000) and Japan (Bando 1964). This almost

worldwide distribution implies a rapid and effective migration episode of ammonoids
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Fig. 6

Generic richness and turnover of middle Anisian to earliest Ladinian ammonoids in the Balaton Highland.

Values (bars) and percentages (shaded areas) of turnover of genera. E. L.: early Ladinian
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Table 5

Number of ammonoid genera and their first (F. a.) and last appearances (L. a.) and turnover data

in separate Anisian subzones in Nevada

Subzones Genera
F. a.

Turnover Turnover %
L. a.

Eoprotrachyceras subasperum 1
1

7 100

Nevadites gabbi 6
6

0
2 14

Nevadites furlongi 8
2

0
3 16

Nevadites humboldtensis 11
3

1
1 1

Nevadites hyatti 10
0

2
3 16

Parafrechites dunni 9
1

1
1 1

Parafrechites meeki 8
0

1
3 18

Frechites nevadanus 9
2

3
7 37

Gymnotoceras blakei 10
4

3
6 29

Brackites vogdesi 10
3

4
5 29

Marcouxites spinifer 7
1

1
2 14

Dixieceras lawsoni 7
1

2
5 33

Rieberites transiformis 8
3

1
6 30

Billingsites cordeyi 12
5

7
12 55

Bulogites mojsvari 10
5

2
6 27

Proteusites fergusoni 12
4

3
4 18

Favreticeras wallacei 10
1

1
2 10

Favreticeras ransomei 10
1

1
5 22

Favreticeras rieberi 13
4



along the low latitude belts of the Tethys and Panthalassa oceans. This late middle

Anisian (Pelsonian) diversification event and its worldwide appearance may be inter-

preted as the result of a coeval phase of global sea-level rise (Haq et al. 1988) and the

synchronous effect of amplified oceanic circulation. Opening of previously restricted

basins might have further increased the taxonomic diversity and the dispersal of

ammonoids through the Panthalassa. Flooding of former land areas provided newly

available niches and supplied increased amounts of food (organic matter and nutri-

ents), thus fostering the diversity of marine ecosystem.

The early Illyrian diversity drop

A definite decrease of ammonoid generic richness is recorded both in the diversity

curves for both the western Tethys and Nevada (Fig. 8) in the early late Anisian (early

Illyrian: Paraceratites trinodosus and Gymnotoceras mimetus Zones, respectively).

This corresponds to and may partly be explained by a coeval global sea-level fall (Haq

et al. 1988). The diversity minimum coincides with a maximum of endemism: with the

exception of Longobardites and the cosmopolitan Proarcestes and Discoptychites, the
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Fig. 7

Generic richness and turnover of middle Anisian to earliest Ladinian ammonoids in Nevada. Values (bars)

and percentages (shaded areas) of turnover of genera. E. L.: early Ladinian



generic composition of the western Tethyan and Nevadan ammonoid faunas is totally

different at this time.

Even in the middle Illyrian, ammonoid migration was possible within the Tethys, as

documented by the occurrences of the important western Tethyan index genus

Reitziites in the Himalayas (Krystyn et al. 2004) and Japan (Bando 1964). On the other

hand, the endemism between the western Tethys and Nevada remained rather high

through the Anisian, posing difficulties for the ammonoid-based biostratigraphic cor-

relation. Some degree of ammonoid migration can be recorded only near the end of the

Anisian, when (beside the mentioned cosmopolitan genera) Aplococeras, Epigymnites

and Nevadites appeared both in Nevada and in the western Tethys.

The late Illyrian diversification

The latest Anisian peak of ammonoid diversity in the Nevada succession (Figs 7, 8)

is very low compared to the respective maxima seen in the western Tethyan curves. In

general the Nevadan diversity curve is rather flat, with weak fluctuations. This is in ac-

cordance with the uniform nature of the local sedimentary environment. The host rock

of the celebrated Anisian ammonoids of Nevada, the Fossil Hill Member of the Prida

and Favret Formation, consists of fairly uniform strata of alternating silty shale and
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Fig. 8

Ammonoid generic richness curves of the three regions studied



dark lime mudstone deposited below the storm wave base in an euxinic paleo-

environment (Monnet and Bucher 2005). In a stable environment of this kind signs of

any ammonoid diversification events in other parts of the Triassic oceans might appear

only in times of enhanced migration through the Panthalassa.

The steady nature of the Nevadan diversity curve and the rather low turnover with

mostly small number of originations (Table 5, Fig. 7), indicate a lack of reorganization

of communities. This probably reflects not only the stability of the local environmental

factors but also the absence of major global changes. The next prominent sea-level rise

commenced only in the earliest Ladinian (Haq et al. 1988); the carbon cycle, which

strongly fluctuated in the Early Triassic, was stable in the Middle Triassic (Galfetti

et al. 2007a; Brühwiler et al. 2010). It is assumed that the standard diversification pro-

cess in Nevada mirrors a generally low inherent evolutionary rate of the Middle Trias-

sic ammonoids in contrast to the high evolutionary rates in the Early Triassic recorded

by Brayard et al. (2009) and Brühwiler et al. (2010).

The explosive late Illyrian diversity peak in the western Tethys

The latest Anisian (late Illyrian) peak in ammonoid diversification is very obvious

both in Eastern Lombardy and in the Balaton Highland (Tables 3, 4; Figs 5, 6, 8). Not

only the generic richness of ammonoids but also the turnover is very high; furthermore

the turnover is due to the high proportion of originations (first appearances) during this

time interval. Consequently, this diversity peak indicates a significant reorganization

of communities with accumulation of newly originated taxa.

Considering the absence of major global changes and a generally low evolutionary

rate of ammonoids in the Middle Triassic, the best possible explanation of the latest

Anisian (late Illyrian) explosive diversity peaks recorded in the western Tethyan re-

gions implies significant changes of the regional environmental factors.

From the array of conceivable conditions of a Triassic paleoenvironment possibly

affecting ammonoid proliferation, two geologically well-observable factors were se-

lected here: (1) coeval volcanic activity and (2) the growth of carbonate platforms in

the surrounding regions. The temporal distribution and magnitude of these geologic

phenomena and their apparent relation to ammonoid diversity in Eastern Lombardy

and in the Balaton Highland are shown in Figs 9 and 10.

Anisian volcanism

Volcanic ash layers are frequently interbedded within the pelagic basinal limestone

both in Eastern Lombardy and at the Balaton Highland. In Eastern Lombardy these

mostly centimeter-thick acidic, airfall ash layers of the lower “pietra verde” are used

for long-distance tephrastratigraphic correlation (Mundil et al. 1996; Brack et al.

2005). In the Balaton Highland the individual volcano-sedimentary layers are much

thicker (up to 8 meters) and varied in grain size and composition, from bentonitic clay

to crystal tuff containing vitro- and lithoclasts, feldspar, biotite and quartz grains (Cros

and Szabó 1984; Pálfy et al. 2003). The tight biostratigraphic control both in Eastern
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Lombardy and in the Balaton Highland proved that the explosive volcanic events com-

menced synchronously in the two regions (Brack et al. 2005; Vörös et al. 2009) (Figs

9, 10). The first traces (clayey tuff) appeared in the middle Illyrian “Asseretoceras

beds”; the frequency and volume of volcanic ash falls culminated in the Reitzi Zone

and then considerably decreased in the latest Illyrian.

Volcanism, especially ash fall, is known as important fertilizer of present day oce-

anic surface waters, either as primary source of nutrients or as a supply of iron, a bio-

logically limiting key element (Watson 1997; Langmann et al. 2010). This fertilization

process, which also functioned in the past of the Earth (e.g. Pálfy 2003), highly in-

creased the primary productivity, i.e. the biomass, of the phyto- and zooplankton. For

the present study strong evidence of the fertilization model is given by the blooms of

planktonic radiolarians in apparent temporal relationship with the late Anisian ash fall

events both in Eastern Lombardy (Kozur and Mostler 1994; Ozsvárt 2012 and pers.

comm.) and in the Balaton Highland (Dosztály 1993; Ozsvárt 2012 and pers. comm.).

It seems reasonable that the middle Anisian increase of ammonoid diversity in the
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Fig. 9

Temporal distribution and magnitude of volcanic activity and growth of carbonate platforms and their rela-

tion to ammonoid diversity in Eastern Lombardy. Carbonate platforms of direct effect (solid contour line)

and carbonate platforms of indirect/distant effect (dashed contour line). E.L.: early Ladinian, C.D.M.:

Camorelli-Dosso dei Morti carbonate platform



western Tethyan regions can also partly be interpreted in terms of increasing food sup-

ply due to fertilization by ash fall episodes of regional volcanism.

Apart from the explosive volcanism, other volcanic sources of fertilization can be

considered, such as submarine volcanism and hydrothermal activity along mid-oce-

anic volcanic ridges. The Middle Triassic was a time of accelerated spreading in the

western Tethyan oceanic basins (Stampfli and Borel 2002; Csontos and Vörös 2004)

but the relative palaeogeographic position of the Southern Alps and the Balaton High-

land to these ocean basins is much debated. Therefore the role of this alternative source

of nutrients is not discussed further in the present paper.

Anisian carbonate platforms

Carbonate platforms as biologically constructed shallow marine buildups disap-

peared at the end-Permian biotic catastrophe and slowly began to develop again in the

Middle Triassic, first in the early Anisian in the eastern (Southwest China: Payne et al.

2006), then in the middle Anisian, in the western Tethys (Senowbari-Daryan et al.

1993; Russo 2005; Velledits et al. 2011). The carbonate platforms, as novel elements

of the Mesozoic marine environment after the “reef gap” (Senowbari-Daryan et al.
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Fig. 10

Temporal distribution and magnitude of volcanic activity and growth of carbonate platforms and their rela-

tion to ammonoid diversity in the Balaton Highland. Carbonate platforms of direct effect (solid contour line)

and carbonate platforms of indirect/distant effect (dashed contour line). E.L.: early Ladinian, P.?: Piramita

carbonate platform



1993), significantly contributed to the global evolution of marine biota. The stabiliza-

tion of platform-margin sediments by algae and associated microbial mats produced

submarine escarpments with a hard substrate and offered various habitats, from the

shallow to deep subtidal or even bathyal zones. This habitat diversification opened

new niches for the benthos but also for the nektonic ammonoids. Besides, the micro-

bial biofilms and other organisms of the carbonate platform biotic community, as pri-

mary producers, presumably supplied additional suspended organic matter and even-

tually nutrients for the higher trophic levels of the food chain. Moreover, the slopes of

the carbonate platforms, steeply emerging from the surrounding basins, may have

driven upwelling currents carrying nutrients. Field observations and statistical studies

proved that certain Anisian ammonoids lived preferentially near the platform margins

and their shells were accumulated in the platform interiors or were swept to the sur-

rounding deeper basins (Brack and Rieber 1993; Vörös 2002).

The late Illyrian ammonoids of Eastern Lombardy and the Balaton Highland, used

for the database of the present study, have been collected principally from pure

micritic or cherty, nodular or well-bedded limestone of pelagic basinal facies (Vörös

1998, 2003; Brack et al. 2005). However, during most of the late Anisian, these deeper

basins were surrounded by fast-growing carbonate platforms (Budai and Vörös 2006;

Brack et al. 2007; Monnet et al. 2008) and the fossil ammonoid assemblages probably

reflect the composition of different communities once living in different habitats. In

Eastern Lombardy, the early Pelsonian Dosso dei Morti carbonate platform (Monnet

et al. 2008) can be encountered as possibly contributing to the Pelsonian diversity in-

crease. The Esino Platform developed farther to the west in Lombardy (e.g. Val

Parina) and later (mostly in the Ladinian). Its continuous ammonoid record starts only

in the Secedensis Zone and falls mostly within the Curionii to Archelaus Zones

(Fantini Sestini 1994, 1996). As for the Illyrian diversity peak, the distant, indirect

paleobiological effects of two successive carbonate platforms can be considered: the

Contrin Platform (early Illyrian) and the Latemar/Sciliar Platform (late Illyrian) (Fig.

9). Both platforms attained their full development in the Dolomites, to the east of Lom-

bardy (Brack et al. 2007), but the signs of their progradation into the Lombardian basin

was demonstrated by Brack and Rieber (1993). The ammonoid fauna of the Latemar

Platform is especially diverse, as portrayed by Brack and Rieber (1993) and Manfrin

et al. (2005).

In the Balaton Highland the Tagyon Platform was growing in the Pelsonian, and the

Budaörs Platform existed in the late Illyrian and prograded toward the basins in the lat-

est Anisian (Budai and Vörös 2006). The short-lived, local Piramita Platform (or plat-

form tongue) developed in the intervening middle Illyrian time in the Eastern Bakony

(Budai et al. 2001). Just as in the case of Eastern Lombardy, the temporal relationship

between platform growth and ammonoid diversity is well-established in the Balaton

Highland (Fig. 10).

This relationship can be interpreted in terms of habitat diversification by opening

new niches. It is supported by the fact that many of the genera which originated during
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the late Anisian Reitzi Zone (Hungarites, Parakellnerites, Aplococeras, Latemarites)

were claimed to be ecologically connected to the platform or peri-platform environ-

ments (Brack and Rieber 1993; Vörös 2002). It seems that this remarkable diversity

peak was due to high turnover rates and increasing number of newly originated

ammonoid genera, and that this evolutionary burst was driven by the large-scale, at

least Tethys-wide environmental change: the rejuvenated growth of carbonate plat-

forms. In other words this major diversity peak can be regarded as a manifestation of

the co-evolution of the Tethyan carbonate platforms and the ammonoids in the Middle

Triassic.

Conclusions

The temporal changes in generic richness and turnover rates of Middle Triassic

ammonoid genera show two pulses of diversification: one in the middle Anisian

(Pelsonian) and another, more prominent one, near the end of the late Anisian (late

Illyrian).

The Pelsonian global diversification was connected to global sea-level rise and a

rapid migration episode of many ammonoid genera (Balatonites, Acrochordiceras,

Bulogites, Ismidites, Ptychites and Proarcestes) along the low-latitude belts of the

Tethys and Panthalassa oceans. Opening of previously restricted basins and flooding

of former land areas increased the number of vacant niches and the amount of organic

matter and nutrients for the food chain of the marine ecosystem.

In the early Late Anisian (Early Illyrian) the ammonoid generic richness decreased

both in the western Tethys and in Nevada. The diversity minimum coincides with

strong endemism in both the western Tethys and Nevada.

The latest Anisian (Late Illyrian) global peak of ammonoid diversity shows marked

spatial differences. For the Nevadan ammonoid succession this relatively low peak

and the rather steady Anisian diversity curve can be explained by the uniform nature of

the local sedimentary environment and is supported by low inherent rates of

ammonoid evolution (low turnover, few originations).

Despite the absence of major global changes (e.g. stabilization of the carbon cycle)

the Late Illyrian diversity peak is very prominent in the western Tethys: beside the

peak in ammonoid generic richness, the turnover is also very high, with high propor-

tion of originations. This prominent peak is interpreted in terms of major changes of

two regional environmental factors: coeval volcanic activity and the control of nearby

carbonate platforms.

The frequency and volume of volcanic ash falls culminating in the Late Illyrian may

have provoked the dramatic increase of ammonoid generic richness by fertilization,

i.e. supplying nutrients and/or iron, thus increasing the primary productivity in the pe-

lagic environment.

Carbonate platforms, as novel elements of the Tethyan marine environment re-ap-

pearing after the end-Permian crisis in the Anisian, significantly promoted the diversi-
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fication of marine biota, including ammonoids. The platform margins enhanced habi-

tat diversification with newly available niches, whereas the microbial mats and algae,

as primary producers, supplied suspended organic matter for the higher trophic levels

and eventually the ammonoids.

The deeper basins of the western Tethys were surrounded by fast growing carbon-

ate platforms in the late Anisian and the fossil assemblages probably reflect the com-

positions of different ammonoid communities once living in different habitats.

In the western Tethyan regions platform growth significantly increased in the late

Illyrian and was strictly followed by the remarkable increase of ammonoid generic

richness. Many of the genera, originated during the late Anisian Reitzi Zone

(Hungarites, Parakellnerites, Aplococeras, Latemarites), seem to be ecologically con-

nected to the platform or peri-platform environments. It is supposed that this promi-

nent diversity peak is a manifestation of the co-evolution of the Tethyan carbonate

platforms and the ammonoids.
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