
Introduction

As new powerful statistical and GIS tools have been

available, predictive habitat distribution models are in-

creasingly used in ecology (Guisan and Zimmermann

2000). There is a growing need for sensitive tools to pre-

dict spatial and temporal patterns of plant species or com-

munities (Kienast et al. 1996). The present study focuses

on optimizing the prediction of vegetation properties for

monitoring purposes on a fine scale.

Predictive vegetation mapping has developed over the

past three decades. Research is driven by the demand

from environmental planning and nature conservation

and by the scientific interest in the quantitative analysis of

the underlying relationship between vegetation and envi-

ronment (Franklin 1995). Commonly applied mapping

techniques can be divided into image classification proce-

dures (Franklin 1995) and predictive habitat distribution

models (Guisan and Zimmermann 2000). These model-

ling approaches rely on predictor variables that are de-

rived from remotely sensed spectral data or from relief

features. However, both data sources have inherent limi-

tations for simulating vegetation, especially at the land-

scape level and below. Various non-floristic effects on the

reflectance properties of vegetation units (Holopainen

and Wang 1998, Dean et al. 2000, Gao et al. 2000, Broge

and Leblanc 2001, Mikkola and Pellikka 2002, Brandt-

berg et al. 2003) and spectral similarities among floristic

entities (Frank 1988, Treitz et al. 1992, Nilsen et al. 1999,

Dirnböck et al. 2003) prevent the identification of floristic
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groupings in spatial detail. On the other hand, environ-

mental variables only predict potential rather than exist-

ing vegetation and thus do not reflect stochastic distur-

bances and transient dynamics (Zimmermann and

Kienast 1999).

Prediction results can be improved by combining the

complementary strength of both data sources in a single

modelling process in order to minimize the respective

shortcomings (Hutchinson 1982, Warner et al. 1991,

Warner et al. 1994, White et al. 1995, Treitz and Howarth

2000, Wiegand et al. 2000, Brossard et al. 2002). Recent

models, that combine both data types to predict vegeta-

tion at the local scale, usually have to work with insuffi-

ciently accurate data which prevent them to capture the

dominating fine-scale environmental gradients (Dullinger

et al. 2001, Dirnböck et al. 2003).

The study presented in this paper employs high reso-

lution spectral and topographical data sets of 50 cm pixel

size and below to simulate fine-scale vegetation proper-

ties at the very local scale of Swiss mire sites. Among en-

vironmental measurements, biophysical parameters have

little predictive power at this scale (Guisan and Zimmer-

mann 2000). Therefore, topography is emphazised and

analyzed as a surrogate for fine-scale surface energy

budget, soil properties and water flow conditions (Moore

et al. 1991, Dirnböck et al. 2002).

The study design was developed for a monitoring pro-

gram to examine the efficiency of conservation measures

required by the Federal Decree on Mire Conservation.

The specific objective is to sample the entire variety of

Swiss mire ecosystems and to provide fine-scale mapping

results that are relevant to the given monitoring and con-

servation tasks. Therefore, high accuracy and wide appli-

cability of the model predictions are both required.

The modelling itself relies on ordinary multiple linear

regression and is calibrated by a field data sample. To find

the optimal predictor variables, primary and compound

attributes are derived from both, relief and spectral data

sets, and tested in terms of predictive power and accuracy

(Guisan and Zimmermann 2000). Since model perform-

ance decreases when the number of observations (i.e.,

calibration data) does not markedly exceed the number of

predictor variables (Stahel 1995), the number of predictor

variables has to be minimized. We employed a new

method – termed composite modelling – to achieve vari-

able reduction. This method combines the advantages of

being independent from the scale of the predictor vari-

ables, and of being transferable among various data sets

at the same time. Instead of plant species or communities,

mean indicator values (i.e., indicator values averaged by

sampling units) are employed as response variables (El-

lenberg 1974, Landolt 1977, Ellenberg et al. 1992).

Material and methods

This study is part of the Swiss mire monitoring pro-

gram initiated in 1996 at the Swiss Federal Research In-

stitute WSL in partnership with the Swiss Agency for the

Environment, Forest and Landscape. To provide valid

data for the whole country, a stratified random sample

was drawn from the mires listed in the federal mire inven-

tories (Grünig et al. 1986, Broggi 1990). The sampling

takes into account the geographic region, the altitudinal

belt, the type (bog or fen) and the size of the mire. The

resulting selection comprises 103 mire sites. Some addi-

tional mires were investigated as a reference to assess the

causes of possible changes. The mire sites chosen for test-

ing the model in this study belong to these reference

mires.

Study areas

For our model development we choose the two study

areas “Gross Moos” and “Les Sagnes de la Burtignière”.

“Gross Moos” is located in Schwändital on the northern

slope of the Alps at an altitude of about 1250 m. It is a

percolated sloping bog of about 16 ha.

In the 1920’s the farmers made an effort to transform

the mire into pastures by draining it with a system of

ditches. The result was the destruction of the hydrology

of the mire, but no valuable pastures were gained. Up to

about 1990, the entire site was grazed and therefore heav-

ily degraded. Then the site became a protected area and

the cattle was removed, first from the central parts and in

1996 from further areas.

In 2000, one of the big ditches in the centre was filled

up with sawdust and sealed with palisades to raise the

ground water level in the centre of the mire.

The second study area, the raised bog of La Burtig-

nière is among the few bogs in the Jura mountains which

are quite intact. It shows large patches of primary raised

bog vegetation in the central part and fen communities on

the fringe of the bog. Wet meadows and pastures surround

the mire. Situated in the Vallée de Joux at a mean altitude

of 1000 m, the mire is in close relationship with the river

Orbe, which lines it on its north-western part and mean-

ders in a mostly unaltered state for 30 km.

Response variables

In most of the sites investigated for the Swiss mire

monitoring, field survey is restricted to a limited number
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of plots, selected by stratified random sampling (Fig. 1).

Field work consists of a full record of vascular plants and

bryophytes for each patch selected for investigation. In

addition, some parameters such as tree cover, Sphagnum

cover, open water, bare peat etc. are recorded.

In this study, three data sets are used: “Schwändital

1996” comprises about 1000 relevés covering the whole

surface of the mire, recorded in 1995 and 1996.

“Schwändital 2001” includes about 280 relevés of the

same site which are a stratified random sample based on

remotely sensed information (Fig. 1), recorded in 2001.

The “Burtignière” data set consists of about 440 relevés

taken in 1996, covering the whole surface of the mire.

Fully automatic and semi-automated procedures for

image segmentation have been a main research focus in

the area of image analysis for many years. Some algo-

rithms (Woodcock and Harward 1992) were tested at the

beginning of the monitoring program, but the results were

not satisfactory for the complex floristic patterns and the

delineation quality needed for field work and modelling

purposes. Therefore in the present study image segmenta-

tion is realised by visual photographic interpretation of

overlapping pairs of analogue CIR aerial photos with a

scale of 1:5000 under a stereoscope. Vegetation patches

are delineated which meet certain criteria of homogeneity

in terms of colour, texture and structure.

Patches visited during field work can consist of both

wooded and open parts. If the corresponding polygons

(i.e., the plots delineated on the aerial photo) are subdi-

vided into wooded segments and open segments (see the

section “Stratification” for details), then the field data

have to be split as well. The tree species and the herba-

ceous species growing under the trees have to be assigned

to the wooded segments. However, the field records do

not contain any information about the locations of plants

within the patches. The woodland species have to be iden-

tified in an indirect way.

To do this, all relevés available from the Swiss mire

monitoring program (i.e., about 20,000 relevés) are

grouped into two classes: records with trees and bushes,

and records without. The IndVal algorithm (Dufrêne and

Legendre 1997, Legendre and Legendre 1998) applied to

the presence - absence data results in three groups of spe-

cies: (1) species typical for woodland, (2) species typical

for open land, and (3) indifferent species. When model-

ling is applied to open land segments only, the woodland

species as defined above are removed from the data set.

We selected indicator values as the main criterion to

indirectly describe the vegetation and site properties since

no ground geo-chemical and geo–physical measurements

were available.

Indicator values characterize the physiological optima

of organisms along multiple environmental gradients.

The indicator values assigned empirically to vascular

plants (Landolt 1977) for Switzerland and by Ellenberg

(Ellenberg 1974, Ellenberg et al. 1992) for Central Europe

are the most commonly used (Persson 1981, Diekmann

and Dupre 1997, Hawkes et al. 1997, Hill and Carey 1997,

Gegout et al. 2003). Landolt’s values for moisture, light,

temperature, continentality, nutrients, soil reaction, hu-

mus value and dispersity are scaled in ordinal levels from

1 to 5.

Figure 1. Orthoimage of Mire Schwändital taken in 2001 with an ortho-corrected a priori delineation of floristic groupings

superimposed. The plots selected for field work are outlined in white.
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The indicator values used as response variables in this

study are adapted for mire habitats on basis of 20,000

relevés from the Swiss mire monitoring program. The

calibration is realized by calculating the mean indicator

values of the relevés in which the considered species is

present, and then computing the 10% trimmed mean of

these relevé means. The procedure is repeated for any oc-

curring species. Finally, the scale of the resulting metric

values is adjusted by fitting the mean and the standard de-

viation of the new indicator value set to the range of Lan-

dolt’s values. For further information about calibrating in-

dicator values, see ter Braak (1995).

The indicator values selected for tests in this study are

for moisture, nutrients and light. The response variables

consist of the mean indicator values without weighting

the species cover (i.e., the average per sampling unit, us-

ing presence – absence information).

Spectral and topographical predictor variables

Accurate CIR orthoimages with a ground resolution

of 32 cm and a root mean square error (RMSE) of 5-25

cm constitute the spectral data base for fine-scale model-

ling. The aerial photographs offer three colour bands of

numerical information (visible green: 500-600 nm, vis-

ible red: 600-700 nm and near infrared: 750-1000 nm).

Radiometric calibration methods are not applied.

The spectral predictor variables derived for the mod-

elling process are compiled in Table 1 together with relief

and surface descriptors. The variables are calculated from

vegetation segments used as spatial modelling units. This

list groups the variables in thematically coherent classes.

It specifies the number of variables comprised in each

variable group and indicates the way of derivation and the

respective environmental relevance.

Accordingly, we compute various colour band values

and colour band ratios for each delineated polygon or its

possible subsegment in case of stratification (see subsec-

tion “Stratification”). Such band-ratio techniques are

commonly applied to reduce the effect of varying illumi-

nation and topography on reflectance properties (Bajwa

and Tian 2002). To consider vegetation-specific band ra-

tios, the Normalised Difference Vegetation Index

(Richardson and Wiegand 1977, Wiegand et al. 1991),

Enhanced Vegetation Index (Huete et al. 2002) and Modi-

fied Soil Adjusted Vegetation Factor 2 (Qi et al. 1994)

were calculated.

To capture fine-scale textural characteristics, the mul-

tiple colour information is simplified by an unsupervised

classification, using the ISODATA clustering algorithm

based on the migrating means technique and the mini-

mum Euclidian distance (Richards 1993). We thus group

the numerical three-band information into 24 discrete

classes within one layer. Then, contiguity indices are cal-

culated for each colour class in a moving window of 3 ×
3 pixels to determine relative colour class proportions

(percentage of each colour class), colour class agglomera-

tions and homogeneity of the colour class distributions

(see Table 1, for details). Given a pixel size of 32 cm, the

evaluated area of one square meter is likely to reflect

vegetation composition in spectral detail.

A digital terrain model with a ground resolution of 25

m (DHM25©2003 Bundesamt für Landestopographie

DV 455.2) is used to assess vegetation response to broad-

scale topographical gradients. Prior to computations, the

terrain model is smoothed and resampled to a resolution

of 1 m.

Northing, easting and terrain slope indices are calcu-

lated for the centroid label (ESRI 1995) to describe the

polygon’s exposure (for a full list of the topographical

predictors see Table 1). Additionally, a compound topo-

graphic index (Curvature25) is computed to describe the

convexness of a location and to emphasize topographic

features such as ridge, slope, slope bottom and sink. The

applied algorithm calculates the concaveness or con-

vexness of a topographic position within a varying mov-

ing window radius of 10 to 30 m and hierarchically inte-

grates the most extreme measures into a single grid (for

details about the algorithm, see Zimmermann 2000).

For assessing fine-scale vegetation structure and to-

pography stereo matching techniques are applied to gen-

erate DSMs with a resolution of 50 cm (Ginzler and De

Laporte 2001). The resulting relief represents ground ter-

rain or objects on the ground. It even reveals small ele-

ments such as single trees and bushes (Fig. 2).

Slope and curvature indices are derived from the

DSM 50 cm as described above for the DTM. Curva-

ture05 is calculated within a varying moving window ra-

dius of 2 to 5 m and for open land only by excluding sur-

face objects hiding the ground (for the procedure of

excluding surface objects see subsection “Stratifica-

tion”). Again, image processing techniques are applied to

compute textural characteristics such as surface composi-

tion and roughness. These features are considered to be

important e.g., for the recognition of tree canopies. As

with the classification process described for spectral data,

continuous slope values are grouped into eight classes and

processed by moving window techniques (3 × 3 pixels) to

calculate relative class proportions and contiguity meas-

ures.
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Table 1. Spectral and topographical predictor variables used for simulating a priori delineated polygons or possible sub-seg-

ments in case of stratification. The variables are arranged in thematically coherent sections. The table describes the variable

groups employed for modelling (see section „Statistical model“). Columns 2, 3 and 4, respectively, give the number of vari-

ables comprised in each variable group, their data source and the respective derivation.

Fine-scale modelling of mire ecosystems 59



Stratification

Stratifications were applied in order to pre-select the

model data sets, by i) shadow and ii) tree layer masking.

Field data and remotely sensed data are expected to show

little correlation in areas which are covered by objects on

the ground or are affected by shadow. Therefore, we sup-

pose that distinguishing shadow-free open land and hid-

den ground areas may enhance the predictive capability

of our model.

Today, airborne laser scanning and radar techniques

provide powerful tools to separate ground surface from

objects on the ground (Lim et al. 2003). Since multiple

surface data were not available in this study, an alternative

multi-stage procedure is applied to mask all objects that

bulge on the terrain. The method relies upon surface mod-

els (DSM 50 cm, DTM 25 m) in conjunction with spectral

data.

A normalized DSM is used to calculate a preliminary

tree layer (Fig. 3). The algorithm developed incorporates

a slope threshold, minimum segment sizes for tree canopy

and gaps, noise filters as well as expand and shrink func-

tions to produce compact polygons.

The resulting layer contains two types of systematic

errors. First, it reproduces systematic errors of the stereo

matching process which tends to create by mistake pyra-

mids in structure-poor areas such as lake surfaces or har-

vested fields. Second, trees and bushes might be mixed up

with steep fine-scale terrain elements such as road or

doline slopes and with similar shaped surface objects such

as houses, cars or cows.

In a post-processing step, most of these errors are

identified and cleared semi-automatically using object-

based image processing techniques. The procedure com-

prises hierachical image segmentation based on a bottom-

up region merging technique (Baatz and Schäpe 2000)

and image classification using membership functions

with robust band-ratios. Due to distinct spectral charac-

teristics of the focused objects, little manual adjustment is

necessary to considerably improve the accuracy of the

tree layer.

Statistical model

The response values used in this study are mean indi-

cator values for moisture, nutrients and light, derived

from the vegetation data recorded in the field. The scale

of these indicator values is continuous. Therefore, a linear

regression model is expected to be suitable for predicting

the site properties described by mean indicator values.

The modelling chosen for this study is based on ordinary

least square regression. In order to satisfy linearity condi-

tions, some of the predictor variables listed in Table 1 are

transformed. Variances are replaced by their square root

before entering the model, proportions are transformed by

computing the arc sine of the square root (Zar 1986,

Schlittgen 2000).

In multiple linear regression models, the number of

predictor variables is restricted by the number of observa-

tions. If there are fewer observations than variables, the

model is statistically undetermined. If the number of ob-

servations is not considerably higher than the number of

variables, the modelling results will not be reliable (see

e.g., Stahel 1995). Commonly used methods to reduce the

Figure 2. Perspective view of shaded DSMs (50 cm resolution) representing two temporal stages of the same mire

(Schwändital). Fine-scale terrain and surface changes such as the refilling of a drainage ditch or a tree being overturned (see

arrows) are clearly documented. (Generating tool: ATE, a component of the photogrammetry workstation SocetSet from

LHSystems.)
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number of predictor variables are principal component

analysis (Mardia et al. 1979, Johnson and Wichern 1982,

Dillon and Goldstein 1984) and stepwise model selection

(Draper and Smith 1981, Miller 1984, Miller 1990).

Principal component analysis yields results which de-

pend on the scales of the variables. If there is no theoreti-

cally founded way to compare the scales of the variables,

principal components will be difficult to interpret with re-

spect to a response variable which in our case is an indi-

cator value.

Stepwise model selection optimizes the model fit and

not necessarily the predictive power of a model. It can be

useful in validation of models when development is on-

going, but it cannot replace background knowledge about

the variables entering the model.

To avoid these shortcomings, a new method is tested

which we will call composite modelling. It consists of two

steps: (1) fitting individual models to thematically coher-

ent groups of predictor variables (such as those listed in

Table 1, every row corresponding to a variable group), (2)

calculating a second level model based on the fitted val-

ues resulting from the first models (which represent a re-

duced data space in analogy to principal component axes).

In this study, models using two or more predictor vari-

able groups are Composite Models, whereas models com-

prising only one variable group are simple multiple re-

gressions.

Model performance

To validate the predictive power and the accuracy of

the models and variables, or the effect of stratification, the

data sets are subdivided into calibration samples and con-

trol samples.

The correlations between the predicted values and the

corresponding observed control data values are taken as a

measure of the predictive capacity of models.

To quantify the predictive power, score points are as-

signed to correlations. Correlations of 0.8 and higher get

4 points, correlations between 0.7 and 0.8 get 3 points,

correlations between 0.6 and 0.7 get 2 points and corre-

lations between 0.5 and 0.6 get 1 point. Correlations be-

low 0.5 get no points. The performance of the predictor

variables is tested by a predefined set of 9 trials (see last

paragraph of this section). The performance scores of the

9 trials are added up, so that the maximum total score is

36 points (9 × 4 points).

The accuracy of a model can be estimated by analyz-

ing the absolute differences between each predicted value

and its corresponding control data value (i.e., the absolute

errors). Among various possible parameters (such as the

mean, the median or arbitrary quantiles) of the absolute

errors, the 95% quantile is chosen as accuracy measure in

the present study.

If two or more predictor variables are highly corre-

lated, adding to the model more than one of them will in-

Figure 3. Preliminary tree layer (green), superimposed to a normalized, hillshaded DSM (50 cm resolution), also displaying

an object of no interest (small house in the right front).
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crease only little the amount of data variance explained.

Once one of the correlated variables is included in the

model, the other can be regarded as redundant.

A widely used method to eliminate such redundant

variables is stepwise model selection, existing in several

modifications (forward, backward, etc., see Draper and

Smith 1981, Miller 1984, Miller 1990). In this study, we

use backward stepwise model selection, based on the AIC

criterion (Osborne 1976) .

If a given predictor variable is repeatedly eliminated

from various models using data from various mire sites,

we can assume that it adds little to the prediction of mire

site properties. Thus, performing a predefined set of

model selections and counting how many times given

variables drop out can help to find redundancies.

If vegetation properties are to be predicted by using

remotely sensed data, the modelling might be expected to

work best when the ground surface is free from hidden

areas such as trees and shadow. In order to check this as-

sumption, the following data sets are derived from the

mire site data (Schwändital 1996, Schwändital 2001, Bur-

tignière):

• Data set 1 (no stratification) includes the spectral

and topographical data of all segments delineated on

the orthoimage, including areas covered by trees and

shadow.

• Data set 2 (partial masking) excludes the patches

which are covered totally by trees or shadow, i.e.,

the patches without any sight of the ground are

masked.

• Data set 3 (full masking) excludes every segment

covered by trees or shadow, i.e., segments within

patches are masked if they are covered by trees or

shadow. Only the parts of patches with full sight

onto the ground vegetation are evaluated.

To quantify the effect of masking hidden areas on model

performance, composite models for the three masking

levels are tested. The models include all predictor vari-

ables listed in Table 1.

The model performances are tested using the follow-

ing design:

• The tests (except the test for stratification) are car-

ried out for shadow-free open land. Wooded and

shaded areas are ignored as well as segments smaller

than 10 m
2
.

• Each of the three data sets is subdivided into a cali-

bration set of 100 randomly sampled relevés and a

control comprising the remaining data.

• For each of the three data sets, moisture, nutrient and

light indicator values are modelled, which results in

nine combinations of sites and indicator values.

• The calculations aimed at correlations and accuracy

are repeated 20 times for each of the nine combina-

tions, drawing a new calibration sample (100

relevés) every time. The final result consists of the

10% trimmed means of correlations and quantiles re-

sulting from the 20 repetitions, i.e., nine correlation

values and nine quantile values according to the nine

combinations of sites and indicator values. The cal-

culations involving model selection are repeated ten

times each, resulting in 3 × 3 × 10 = 90 model for-

mulae generated by stepwise variable dropping.

Results

Predictive power of single variable groups

Table 2 shows the performance scores of the single

variable group models. The scores presented have to be

interpreted as in the following example: e.g., the EVI vari-

able group achieved correlations up to 0.7. In one of the

nine trials, the correlation was between 0.6 and 0.7, which

gets 2 score points. Four trials resulted in a correlation

falling between 0.5 and 0.6, which is 1 point each, so that

the total score of all nine trials is 6 points. The four trials

with correlation values below 0.5 get no points.

The scores of the textural variables derived from col-

our bands are highest, even higher than the scores of the

colour bands themselves, just as the textural variables de-

rived from slope values yield higher scores than the slope

values themselves. Compound textural values seem to be

more powerful predictors than primary attributes.

Within the data sets used for this test, variables based

on relief characteristics (DTM 25 m and DSM 50 cm) are

less powerful predictors than the spectral variables (see

Table 2). Even though the ranking of certain variable

groups may be low, combining them can yield remarkable

scores (e.g., as can be seen with the combination of Cur-

vature05 and MSAVI2).

Redundant predictor variable groups

The results of backward stepwise model selections

among predictor variable groups are shown in Table 3.

The values displayed in this table have to be interpreted

as in the following example: the NDVI variable group
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was retained in 21 of 30 models predicting mean moisture

indicator values, indicating a high relevance of the NDVI

variable group for modelling the moisture site factor. In

the models for nutrients and light, the same variable group

remained in seven models predicting mean nutrient val-

ues and in eight models predicting mean light values. In

total, the NDVI variable group entered into 36 of the 90

final models.

Each of the 15 variable groups remained in more than

10 of the 90 final models. This means that every variable

group contributes significant information to the model.

However, this result is not sufficient to detect all redun-

dancies. If there are two redundant variable groups, one

of them will be eliminated from the model. It is accidental

which of the two will remain in the model. Therefore, the

matrix of the variable groups remaining in the final mod-

els has been analyzed visually.

The variable groups Curvature05 and Slope05 oc-

curred together only once, thus indicating a high redun-

dancy of this pair of variable groups. The same is true for

Table 2. Performance scores of each predictor variable group within open land. Every score is based on 9 correlation values.

See Methods section, for details.

Table 3. Counts of each variable group remaining in final models after stepwise model selection (starting with all groups).

Data: shadow-free open land. Number of trials: 10 per study area and indicator value = total of 90.
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the variable group pair Curvature05 and Slope class ag-

glomeration. But considering the flat topography of the

mire sites investigated for this study it might be premature

to drop these variables definitely.

Performance of composite models

The predictive power and accuracy of the composite

models using all variable groups are presented in Table 4.

High correlation refers to high predictive power and a

small error quantile reflects high accuracy. The overall

performance of the composite models presented in Table

4 is higher than the performance of models comprising

only a part of the available predictor variables (Table 2).

This confirms the relevance of all variable groups for ex-

plaining data variance.

The predictive power and accuracy of the models dif-

fer for the response variables. The predictive power is bet-

ter for the nutrient values (the correlations mostly lying

between 0.8 and 0.9) than for moisture and light values

which lie between 0.65 and 0.8. The best accuracy of the

models is for the light values (most of the error quantiles

lying between 0.15 and 0.25), followed by the moisture

values (between 0.35 and 0.45) and nutrient values (be-

tween 0.63 and 0.77).

These values can be taken only for comparisons

within models aimed at the same response variable. An

absolute interpretation would yield contradictory state-

ments. For example, the models predicting nutrient values

have both high correlations and high error quantiles with

respect to the models predicting moisture or light values,

which would denote a higher predictive power, but a

lower accuracy. Actually correlations and error quantiles

depend on the variability of the modelled site factor

within the particular mire.

There are different model performances for different

survey dates. The better performance of the models for

moisture and nutrient values on Schwändital 2001 in

comparison with Schwändital 1996 can be explained

through the better quality of the spectral and topographi-

cal data available for 2001.

There are also different model performances for dif-

ferent mire sites. The model for the moisture indicator

value in the Burtignière mire is weaker than the corre-

sponding model in Schwändital 2001, whereas the nutri-

ent and light models show similar performances. This can

be explained by the different variability of the corre-

sponding site factors in the two mires.

Effect of stratification on model performance

Masking areas which are covered by trees or shadow

enhances the performance of the models (see Table 4).

According to correlations between predicted and ob-

served values in the control data sets, the models with

fully masked trees and shadow have the highest predictive

power. In terms of accuracy measured by error quantiles,

the models with partial masking are nearly equivalent to

Table 4. Performance of models based on (1) unstratified data, (2) data excluding patches covered completely by trees or

shadow, (3) data from shadow-free open land segments only (see “Methods” section). Units according to Landolt (1977).
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Figure 4. Map of mean nutrient values in Schwändital in 1996. a. observed values; b. modelled values, the calibration set is

outlined; c. differences between modelled values and observed real values.

a

b

c
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the models with full masking of trees and shadow. The

models without masking are the weakest.

Masking hidden areas markedly enhanced the per-

formance of models aimed at light, whereas the effect on

models predicting nutrient or moisture values is smaller.

In order to illustrate the performance of a model, Fig.

4 displays the nutrient indicator values derived from ob-

served field data directly, the nutrient values predicted on

the basis of 100 field relevés and finally the differences

between the two values. The data are from Schwändital

96, without masking areas covered by trees or shadow.

The correlation of the predicted and observed data values

is 0.8, the 95% quantile of errors is 0.68.

The map based on predictions (Fig. 4b) well reflects

the values derived from observations (Fig. 4a). On both

figures 4a and 4b, the main structures of the mire site are

visible. The nutrient-poor bog centre is surrounded by nu-

trient-rich pastures and tall-herb communities. Big

ditches and a natural runoff cross the mire.

A closer inspection of details reveals differences be-

tween the predicted and the observed nutrient values. For

example, all ditches are predicted to be nutrient-rich (Fig.

4b), whereas in reality some of them are not (Fig. 4a).

Some patches in Fig. 4b are blank. The corresponding

predicted nutrient values have been filtered out because

they are extreme with respect to the range of the calibra-

tion data. The patches affected mostly represent forest

where the ground is completely hidden.

Discussion and conclusions

The aim of the study was to optimize fine-scale pre-

diction of vegetation properties by combining high reso-

lution spectral data and digital surfaces models. Mean in-

dicator values for nutrients, moisture and light were used

as response variables.

A new approach to deal with a great amount of predic-

tor variables, called the composite modelling, is pre-

sented. Given a certain number of observations, the new

modelling procedure enables the use of more predictor

variables than simple regression, without decrease of the

predictive performance.

Exploiting both spectral data and relief characteristics

of mire sites results in a powerful modelling of indicator

values, with correlations of up to 0.9 between predicted

and observed control data values. The predictive power

and the accuracy of the model differs for indicator values.

Among the tested values, the best predictive power is for

the nutrients, whereas the best accuracy is for light.

Developing and testing the model revealed limitations

inherent to the method and to the nature of the available

data. Some of these limitations are discussed below.

Limitations of spectral and topographical predictor

variables

The basic idea of modelling on spectral data is simple:

what looks similar on an aerial picture is assumed to be

similar in nature as well. Adding topographical predictor

variables to the model extends the concept without alter-

ing it substantially.

It will work as long as the underlying assumption is

true. But there are floristically different plant communi-

ties that may appear physiognomically similar, although

the dominating plant species change (Dirnböck et al.

2003). This problem occurs with alkaline small sedge fens

and semi dry grasslands in the Swiss mires. The predic-

tion of indicator values is inaccurate for such vegetation

types. To find a topographical or spectral variable which

would distinguish such similarly appearing units is a pos-

sible solution. In the case of spectral variables, additional

colour bands may be available in the future due to digital

photography.

Another difficulty of the method concerns areas cov-

ered by trees or shadow. The stratification procedure pre-

sented in this paper can solve the problem only partially.

The ground covered by trees or shadow is not visible, i.e.,

there is no spectral information about it. Modelling in

wooded areas using spectral information is restricted to

the visible tree canopy surface.

Increasing the resolution of predictor surfaces does

not necessarily improve the accuracy of mapping results.

In particular pixel-based prediction tools have difficulties

in exploiting contextual information within high resolu-

tion data sets. In this study an a priori delineation was per-

formed in order to create appropriate spatial units for

modelling. The inevitable simplification of actually com-

plex and heterogeneous groupings, which results from the

polygon mapping techniques (Goodchild 1992, Bettinger

et al. 1996, Walker and Kenkel 2001) is compensated by

the extraction of powerful predictor variables including

textural characteristics for each polygon.

Spectral inconsistencies within aerial photos can be

caused by lens effects (Dean et al. 2000), varying surface

structure (Ravan and Roy 1997, Brandtberg et al. 2003),

solar direction and viewing angle (Holopainen and Wang

1998, Mikkola and Pellikka 2002) or diffuse soil back-

ground reflectance.
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Composite modelling, a new variable reduction

method and its limitations

Composite modelling enables the use of many predic-

tor variables (about 130 in this study, see Table 1), al-

though the number of variables still has to be restricted for

several reasons:

• Within the first level models, the number of predic-

tor variables is still limited by the number of obser-

vations. So is the number of variable groups entering

the second level regression.

• Dealing with a great number of variables by com-

posite modelling in three or more levels (instead of

two as described in this paper) is not a solution: the

correlation structure of the composite variables en-

tering the highest level regression would be prob-

lematic (collinearity of predictor variables, see e.g.,

Stahel 1995). Further, deriving more and more vari-

ables from the same data is likely to produce redun-

dancy.

Composite modelling seems to be a high performance

tool to deal with a great amount of predictor variables,

even if it does not solve all problems. It can favour a struc-

tured and issue-related selection of predictor variables.
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