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Background: No large-scale analysis of transposable element (TE) protein structures exists.
Results:We predicted and analyzed hundreds of proteins from a representative set of DNA and LINE transposable elements.
Conclusion:Weprovide new insights on TE evolution, structure, and frequency of sequence exchange events between TEs and
their hosts.
Significance: This is the first large-scale analysis of TE protein structures.

Despite the considerable amount of research on transposable
elements, no large-scale structural analyses of the TE proteome
have been performed so far.We predicted the structures of hun-
dreds of proteins from a representative set of DNA and LINE
transposable elements and used the obtained structural data to
provide the first general structural characterization of TE pro-
teins and to estimate the frequency of TE domestication and
horizontal transfer events. We show that 1) ORF1 and Gag pro-
teins of retrotransposons contain high amounts of structural
disorder; thus, despite their very low conservation, the presence
of disordered regions and probably their chaperone function is
conserved. 2) The distribution of SCOP classes in DNA trans-
posons and LINEs indicates that the proteins of DNA trans-
posons are more ancient, containing folds that already existed
when the first cellular organisms appeared. 3) DNA transposon
proteins have lower contact order than randomly selected refer-
ence proteins, indicating rapid folding, most likely to avoid pro-
tein aggregation. 4) Structure-based searches for TE homologs
indicate that the overall frequency of TEdomestication events is
low, whereas we found a relatively high number of cases where
horizontal transfer, frequently involving parasites, is the most
likely explanation for the observed homology.

In recent years, it has become clear that transposable ele-
ments (TEs)2 are not only a burden to their host but are also an
important source of evolutionary innovation in eukaryotic (and
probably also prokaryotic) genomes, by providing novel regu-

latory sites (1), modification of protein expression levels (2), or
domestication of TE sequences, the acquisition of a TE frag-
ment by host proteins (3, 4). Although several well described
cases have been reported for these evolutionary scenarios, the
extent to which sequences of TE origin become useful for the
host is unclear. Recent studies show that in the human genome,
the total amount of functional, conserved sequence is much
higher (5%) than the amount of coding sequence (1.5%), and
recent results from the ENCODE project (5) suggest that the
amount of non-conserved, nevertheless functional sequence
may even reach 80%, and a considerable fraction of it originates
fromTEs (6).However, in the case of domesticatedTEproteins,
estimates range from a few dozen to thousands, depending on
how conservative the analysis was: the human genome project
found 47 proteins with significant similarity to TEs (7), Zdob-
nov et al. (8) found only 35 proteins of retroviral/retrotrans-
poson origin inmammals, whereas a considerablymore relaxed
analysis (9) estimated that the human genome itself contains
almost 2000 proteins that contain remains of TEs. The key dif-
ficulty in identifying the actual number is that a very large frac-
tion of the TE-like protein hits are in the “twilight zone” and
show only remote similarity to a TE sequence; thus, they are
either false positives or highly diverged, ancient cases of TE
domestication where sequence similarity has deteriorated to
the degree that it is barely detectable. One alternative approach
is to use protein structures to identify distant homologs: the
structures of proteins are typically much more conserved than
their sequences; homologous protein sequences that have lost
almost all sequence similarity can show a very high degree of
structural similarity (although separating homologs from
structural analogs in such cases is challenging because of the
level of divergence overlap in the two), and protein sequences
above 35% identity are typically structurally similar (10).
This work has two goals: (i) first, since a general structural

characterization of proteins encoded by TEs is lacking, the first
aim is to predict and characterize a representative set of TE
structures, to identify common patterns among them like the
overrepresentation of certain folds, their age, or signatures of
selection that appear at the structural level. Because the num-
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ber of experimentally solved TE protein structures is still very
low, we used in silico methods and predicted the structures of
DNA transposon and LINE proteins with I-TASSER, the pro-
tein structure prediction software that performed best in the
last three CASP (critical assessment of techniques for protein
structure prediction) experiments (11, 12). (ii) Second, our aim
was to estimate the contribution of TE proteins to non-TE pro-
teins, andwe searched a recently published large-scale database
of predicted protein structures (13) for proteins with structural
and sequence homology to transposable elements and esti-
mated the most likely evolutionary process that resulted in the
observed homologies.

MATERIALS AND METHODS

Selection of a Representative Set of TEs—We selected a rep-
resentative set of TE proteins for the structure prediction as
follows. First, we selected all DNA transposons and LINE ret-
rotransposons from the RepBase Database (version 15.12) (14)
that were annotated as currently active, or their divergence
from the consensus sequence was less than 3% and were thus
active recently. Because the structure of proteins with sequence
similarity higher than 35% is approximately similar, we clus-
tered the selected proteins using a 35% identity threshold with
UCLUST (15) and folded only the longest element of each clus-
ter. In LINE retrotransposons, the ORF2 proteins show amuch
higher similarity to each other than ORF1 proteins (16), thus
restricted the clustering to ORF2 proteins. Altogether, this
procedure resulted in a set of 222 DNA transposon proteins
and 232 LINE proteins, representing all major families of
these repeats, including widely used transposon tools such as
the hyperactive Sleeping Beauty (17), and piggyBac (18)
transposases.
Domain Identification—In silico structure prediction is still

most efficient for relatively short proteins. In many cases, the
amino acid sequences of TEs were too long for building a reli-
able structure (i.e. the ORF2 proteins of LINEs, which are typ-
ically 1000–1400 amino acids long); thus, we split every protein
longer than 500 residues into smaller regions, with a maximum
length of 400–500 residues, which typically still contain several
domains. First, we identified conserved domains in the amino
acid sequences using the conserved domain search tool ofNCBI
(19). Next, we predicted domain boundaries with a method
based on the domain prediction tool FiefDom (20). Briefly,
FiefDom generates a PSSM using a query sequence and a refer-
ence database (nr) and searches for domain boundaries using
the distribution of hits from a structure database (SCOP (21) or
PDB (22)). Combining the coordinates of conserved domains
and the distribution of SCOP/PDB hits on the TE protein
sequence, we identified domain boundaries at the regions with
the lowest sequence coverage, and when these boundaries col-
lidedwith conserved domains, we adjusted themmanually (Fig.
1). We split the proteins at the identified domain boundaries,
and the resulting sequences, altogether 870 (see supplemental
Table 1), were subsequently submitted to I-TASSER (11, 12).
Structure Prediction of TE Proteins—Detailed descriptions of

I-TASSER can be found in Refs. 11 and 12. Briefly, I-TASSER
first identifies suitable templates in the PDB database through
sequence similarity searches (threading); second, using Monte

Carlo simulations, the identified templates and regions mod-
eled with ab initiomethods are assembled into a large number
of full-length conformations; third, by clustering the conforma-
tions, cluster centroids are identified, and the final models are
built by additional refinements of the cluster centroids. All pre-
dicted structures are available for download as supplemental
material.
C (Confidence) and Template Modeling (TM) Score Cal-

culations—The C score of the predicted structures is the com-
bination of the quality of the threading alignments (Z score)
and the density of the clusters, and is defined by the formula
shown in Equation 1,

C-score � ln[Z � �Ncl/Ntot� � �1/RMSD�] (Eq. 1)

where Z is the normalized Z score,Ncl is the number of confor-
mations in a given cluster, Ntot is the total number of confor-
mations used in the clustering, and r.m.s.d. is the average root
mean square deviation of the trajectories from the cluster cen-
troid in a given cluster. The local C score of domains was cal-
culated using the same formula; first, we calculated the local
r.m.s.d. for every amino acid position of the sequence, as the
r.m.s.d. between a particular position of the cluster centroid
sequence and the corresponding position of every conforma-
tion in the cluster. Next, we identified regions where the local
r.m.s.d. was consistently below5Å (see Fig. 2, in caseswhere the
average local r.m.s.d. of a structure was below 2Å, we used a 3.5
Å cut-off) and reran the clustering only for these regions.
Another measure of the quality of a predicted structure is its

estimatedTMscore. TMscoremeasures the similarity between
two structures (23); the estimated TM score is calculated from
C score and estimates the similarity of a predicted structure to
its experimentally determined structure (see Ref. 12 for details).
A rule of thumb is that the quality of a structure prediction is
good if the estimated TM score is at least 0.5.
Identification of SCOP Domains in the TE Structures and

Their Enrichment—To provide a functional characterization of
theTEproteins, we searched the SCOPdatabase (21) to identify
domains that are similar to the predicted TE proteins with a
minimum TM score of 0.5. We searched SCOP for structurally
similar domains, excluding the sequences with higher sequence
similarity than 95% (ASTRAL95) in an all versus all manner: all
TE structures were compared with all SCOP structures with
TMfold (24). From the hits, we kept only those with a TM score
higher than 0.5 and a minimum number of aligned residues
higher than 80, as the probabilistic background of detecting
shorter matches is not well understood (24). Because there is
large structural redundancy within SCOP domains, we applied
a further filtering step; from the overlapping SCOPmatches, we
kept only those most similar to the query TE structure, i.e.with
the highest TM score, and the highest number of aligned resi-
dues closer than 5 Å. This step removed the redundant hits and
resulted in 403 different SCOP hits to DNA transposon struc-
tures and 521 SCOP domains that are similar to LINE struc-
tures (see supplemental Tables 3 and 4).
The enrichment of SCOPprotein folds inTE structures (sup-

plemental Table 5) was calculated as the ratio of the frequency
of a fold in the TE structures and the frequency of the corre-
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sponding fold in the Uniprot database (25). For the latter, only
those folds were used in the normalization which also occurred
in TEs, i.e. the most common folds of TEs. This is necessary
because Uniprot, due to its size, contains a much higher diver-
sity of protein folds than a comparatively small set a proteins,
and in consequence, the frequency of a particular fold in Uni-
prot is necessarily much lower if all folds are used in the nor-
malization, which would result in a systematic overestimation
of the enrichment in TEs. The abundances of particular folds in
Uniprot were taken from the SUPERFAMILY database (26).
Because the frequencies of low resolution protein structures
(SCOP ID i.NN) are not present in the SUPERFAMILY data-
base, these were not included in the analysis.
Search for Cases of TE Domestication and Protein Incorpora-

tions into TEs—We used the TE structures to provide an esti-
mate of the frequency of TE domestication events using a
recently published database of the Proteome Folding Project

(PFP) (13). The database contains structural annotation of pro-
teins on a genome scale frommore than 94 organisms and pro-
vided novel structure predictions for 80,000 protein domains,
which could not be annotated with SCOP, predicted with the
Rosetta de novo structure prediction algorithm (28, 29). This
data set is useful for detecting ancient TE homologies for two
reasons: first, because de novo Rosetta does not use PDB tem-
plates for model building, the structural similarities are inde-
pendent of the model building procedure of I-TASSER, i.e. any
similarities are not due to using the same PDB structure as a
template; second, due to the large number of organisms
included in the PFP data set, it is possible to gain also informa-
tion on the evolution/life style of organisms having proteins
with TE homology.
Rosetta predicts an ensemble of structures for each submit-

ted sequence; we used the structure with the highest quality
score (Mammoth Confidence Metric, MCM) (30) for each

FIGURE 1. Domain annotation, structure prediction, and quality determination of the protein models using the ORF2 protein of the human L1HS
retrotransposon as an example. A, the ORF2 protein of the human L1HS transposon is 1275 amino acids long, thus, a reliable model of the entire protein could
not be built with current methods. Using a profile built from SCOP sequences similar to the target protein and annotation of conserved domains, we split the
sequence into three regions, corresponding to the functional units of the protein: the endonuclease region, reverse-transcriptase region, and a cysteine-rich
region with an unknown function (contains the Pfam conserved domain DUF1725). B, the I-TASSER protein model of the endonuclease region of the protein
and the local r.m.s.d. distribution. Because a solved experimental structure for the human L1 endonuclease region is available in PDB, the structure of residues
1–235 is essentially similar to it, is characterized by very low r.m.s.d., and has a correct structure (TM score, 0.97; blue), whereas for the remaining 100 amino acids
of the region, I-TASSER was not able to build a high quality structure. C, the predicted structure of the reverse-transcriptase region and the distribution of local
r.m.s.d. values. The overall quality of the structure is low (estimated TM score, 0.33); however, the r.m.s.d. distribution shows a clear dip at the reverse
transcriptase conserved domain, and the quality of the structure for this 170-residue region (residues 235– 405) is essentially correct (highlighted with blue),
with an estimated TM score of 0.59. D, the predicted structure of the region with the cysteine-rich domain and the distribution of the local r.m.s.d. values. The
structure has a somewhat better overall quality than the reverse transcriptase region (TM score of 0.41) and can be split to several regions with low local r.m.s.d.
(highlighted in red, blue, and green), which improves local TM scores to 0.45, 0.46, and 0.41, respectively.
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domain and also excluded all domains where the highestMCM
score was below 0.8; thus, the model was of low quality (13).
This reduced the set of PFP structures used in the analysis to 16
000. We used the same all versus all approach for structural
similarity searches as with the SCOP database (minimum
required TM score of 0.5 and minimum length of aligned resi-
dues of 80).
Monte Carlo Simulations to Test for Homology/Analogy

between SimilarTE-PFPStructures—Wetestedwhether theTE
structures with similar topology (TM score � 0.5) to a PFP
structure show any, at least remote sequence homology with a
randomization procedure. Using a substitution matrix explic-
itly derived for homologous structures with remote sequence
similarity (31), we calculated a sequence similarity score for the
TE-PFP structural alignments obtained by TMfold. Next, we
calculated 100,000 similarity scores between the TE sequence
and random sequences, where the probability of selecting an
amino acid for the random sequence was similar to the fre-
quency of the amino acid in the PFP database. Significance was
calculated with the formula shown in Equation 2,

p � �n � 1���N � 1� (Eq. 2)

where n is the number of random alignment scores equal or
higher than that of the TE-PFP alignment, and N is the total
number of random samples (100,000). Structure pairs with
p � � 0.001 were accepted as homologous, whereas pairs with
p � 0.001 were assumed to be analogous. The enrichment of
particular taxonomic groups in the PFP homologs in compari-
sonwith the entire ProteomeFolding Project database (Table 1)
was calculated as the ratio of frequencies in theTEhits and their
frequencies in the PFP database, and statistical significance was
calculated with Chi square tests.
Identification of Cases of TE Domestication or Protein

Incorporation—To decide whether the homology between a
PFP protein domain and the sequence of a TE is the effect of
transposon domestication or a different process, e.g. the incor-
poration of a host protein fragment into a TE, we implemented
a protocol similar to Ref. 32. First, we reconstructed a global
taxonomic tree of�180,000 taxa, using known taxonomic rela-
tionships defined by NCBI. Next, using the sequences from a
homologous sequence pair of a PFP protein and a transposable
element, we searched the Uniprot database with the sequence
fragment of the PFP protein using the jackhmmer tool of
HMMER (33) with a bit score threshold 27. Using the species of
the resulting matches, we identified the branch of the global
tree where the particular domain is present. We repeated the
same procedure for the TE fragment, using the six-frame trans-
lated RepBase as the sequence database, and then compared the
two branches. The branch that contains the other was assumed
to be the source of the sequence; for example, if a TE domain
was present in repeats across Metazoans, whereas the homolo-
gous PFPdomainwas restricted to primates, we then concluded
that this is a signature of the domestication of a TE protein in
primates. If, however, the phylogenetic distribution of the PFP
was broader than that of the distribution of the TE domain we
concluded that a host protein was incorporated into a TE. In
cases where the two branches were unrelated (for example

mammals and parasitic protists), we assumed horizontal
transfer.

RESULTS AND DISCUSSION

High Amounts of Disordered Sequence in ORF1 Proteins of
LINEs—As the first step of the structural analysis, we identified
the regions of the TEs that lack structure: the intrinsically dis-
ordered parts of the sequences. Intrinsically disordered pro-
teins are proteins, or regions of proteins, which, in their native
state, have no stable structure, except in the presence of their
substrate or in complex. The existence of short, flexible regions
in proteins that link rigid globular domains has been known for
decades. In the last decade, however, it has been discovered that
in some proteins, a large fraction of the sequence or even the
entire sequence has no well defined tertiary structure in its
native, functional form (34–36). Genome-wide analyses show
that disorder is more frequent in eukaryotes than in pro-
karyotes (37), disordered proteins evolve quickly (38) and are
typically involved in molecular recognition and interactions
(39).
We identified the amount of disordered sequence in the

RepeatPeps library, a collection of more than 5000 TE proteins,
which is distributed as part of the RepeatMasker software suite.
First, we identified coiled-coil domains using the Marcoil tool
(40, 41); next, in the remaining part (i.e. not coiled-coil) of the
protein sequences, we identified disordered regions with
IUpred (42) (we also used DISOPRED2 (37), another disorder
prediction tool that works on very different principles than
IUpred, which leads to similar conclusions as IUpred (data not
shown)). We probably underestimate the amount of intrinsi-
cally disordered sequence this way because disordered and
coiled-coil sequences are frequently linked (43), and also
regions that are disordered in the absence of other proteinsmay
assume a coiled-coil conformation in a protein complex. We
find that similarly to the human ORF1 (44, 45), a large fraction
of ORF1 proteins in the CR1, L2, and L1 clades of LINE retro-
transposons have a coiled-coil domain located close to their N
terminus (Fig. 2, A and B) and that ORF1 and Gag proteins of
LINE andLTR retrotransposons contain 5-fold higher amounts
of disordered sequence than the proteins of DNA transposons
or the ORF2/pol proteins of LINEs and LTRs (Fig. 2, C and D).
Although the location of coiled-coil regions is fairly similar in

the different LINE clades, the distribution of disordered regions
shows little similarity between the ORF1 proteins of different
LINEs (Fig. 2D), except that their amount is much higher than
in ORF2/pol proteins or DNA transposons. In the few repeats
where the structure and function of theORF1 protein is known,
such as the human L1 repeat (45, 46), these proteins have
nucleic acid chaperone function (47, 48) and show considerable
flexibility (45). It has been shown that high amount of disor-
dered sequence (49, 50) is a characteristic of chaperones; thus,
our findings suggest that despite the fact that ORF1 proteins of
different LINEs have independent origins (44), most of them
may have chaperone functions and evolved highly flexible
structures characterized by disorder and coiled-coil domains
via convergent evolution. In a recent study, Callahan et al. (51)
showed that human ORF1 proteins readily polymerize and
form large aggregates, in which ORF1p nevertheless remain
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functional. Because disordered protein fragments typically take
a stable conformation when bound to their substrate proteins,
we suggest that the high amount of flexible, disordered regions
in ORF1 proteins indicates that the multimeric structure
observed in humanORF1 can be generalized,may contribute to
the formation of aggregates, and prevent their denaturation.
Quality of the Protein Structures—The quality of the protein

models can be summarized with different quality scores: C
(confidence) score (see “Materials and Methods”), or the esti-
mated TM score with the native structure. The application of
these scores to multidomain structures can be misleading
(especially if the template coverage of the sequence is incom-
plete) because frequently individual domains within the struc-
ture are modeled correctly, but due to the uncertain structure
of the linker regions (i.e. the uncertainty in the relative position-
ing of the domains), global confidence scores remain low. To
account for this, besides the global confidence scores of the
protein models, we also calculated a C score for 1283 regions
(minimum length of 50 amino acids) in the proteinmodels that

FIGURE 3. Distribution of C scores of the low r.m.s.d. regions of the TE
structures. 61% of LINE low r.m.s.d. regions and 39% of DNA transposon low
r.m.s.d. regions have a C-score higher than �1.78; thus, their estimated TM
score is higher than 0.5.

FIGURE 2. Coiled-coil and intrinsically disordered regions in TE proteins. A, the fraction of coiled-coil sequence in different TEs. ORF1 proteins of CR1, L1,
and L2 families of LINEs are characterized by much higher amounts of coiled-coil sequence than ORF2 proteins or proteins of LTR retrotransposons. B, coiled-
coil regions in the ORF1/Gag proteins are present near the N terminus of the sequence. C, the fraction of disordered sequence predicted wit IUpred in different
TE protein types. ORF1/Gag proteins are characterized by �5-fold higher amount of disordered sequence than ORF2 proteins of LINEs, LTR polyproteins, or
DNA transposases. D, the distribution of disordered regions along the sequence of ORF1 proteins of LINEs and LTR Gag proteins.
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are characterized by low r.m.s.d. within the I-TASSER clusters
(see Fig. 1, B–D, and “Materials and Methods” for details). The
C and TM scores are correlated; the C score of TASSERmodels
typically falls in the range of�5 to�2, with scores above�1.78
indicating approximately correct topology, which means that
the TM score between the predicted structure and the true
structure is larger than 0.5.Overall, only 16%of LINE structures
and 16.5% of DNA transposon proteins have their global C
scores above �1.78 (supplemental Table 1); however, 61% of
LINE low r.m.s.d. regions and 39% of DNA transposon low
r.m.s.d. regions have the C score higher than �1.78, indicating
that the quality of the structures at the domain level is much
better than globally (Fig. 3 and supplemental Table 2).
Structural Composition of TE Proteins and the Time of Their

Emergence—The distribution of SCOP classes in the matching
TE domains reveals that the two types of TEs have different
structural composition: DNA transposons are characterized

predominantly by all-� domains and �/� domains, whereas
LINEs with a more even distribution of SCOP classes, with and
��� domains being the most abundant (Fig. 4). Despite the
differences in class composition, the examination of the most
common folds of these two TE types show that they frequently
use the same elements of the structural “alphabet” but with
different frequencies (supplemental Table 5), which suggests
that some of the domains shared by DNA transposons and
LINEs have common origins (i.e. the DDE domain of trans-
posases and retroviral integrases (52)).
Different protein structures were invented at different times

during evolution, for example DNA/RNA polymerases are
among the most ancient existing folds, whereas immunoglob-
ulins are relatively young and appeared after the emergence of
the vertebrate immune system. In consequence, the folds of a
protein contain also information on its age. In recent years, a
number of studies estimated the time of appearance of known

FIGURE 4. The SCOP class composition of TE proteins. DNA transposons are characterized mostly by all-� domains and �/� domains, whereas LINEs by
multidomain hits and ��� domains (see also supplemental Table 5).

FIGURE 5. The proteins of DNA transposons contain more ancient SCOP folds than LINE retrotransposons. The age of protein folds is measured as node
distance, a measure based on the phylogenetic spread of the fold; the larger the node distance, the younger the particular fold is, i.e. the more distant from the
most ancient protein folds on the phylogenomic tree (see Ref. 54 for details). The histogram shows that in DNA transposons, the most abundant protein folds
are among the most ancient ones, which were already present before the appearance of the first cellular organisms (�4 Bya), whereas the most frequent folds
in LINEs were invented later, approximately at the time of the specification of the three superkingdoms (�3 Bya), suggesting that DNA substituted RNA as the
carrier of genetic information already in the early Archean period.
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protein folds using methods, which rely on the reconstruction
of a global phylogenomic tree of folds, based on their abun-
dance across different genomes (reviewed in Ref. 53). The
observation that novel folds emerge at an approximately con-
stant rate has even been used to date ancient and major evolu-
tionary events such as the emergence of aerobic metabolism
(54) or metal binding protein structures (55). To compare the
age of proteins of DNA transposons and LINEs, we use the data
from Wang et al. (54), which contain age estimates of protein
folds (provided as node distance, the normalized number of
nodes from themost ancient fold at the base of the global tree of
folds) based on complete genomes from 749 species. The node
distance distribution of the detected SCOP folds indicates that
in DNA transposon proteins, the most abundant folds are
among the most ancient known folds, which existed already
before the appearance of the first cellular microfossils (3.4 Bya,
Fig. 5) (56) and thus were probably present already in the oldest
cellular organisms. Surprisingly, although reverse transcrip-
tases (and the process of retrotransposition) were suggested by
many authors to be among the most ancient proteins, which
may have their origins in the RNA world (reviewed in Ref. 57),
the analysis of their protein structures indicates that although
themost common protein folds of LINEs (SCOP IDs e.8, d.151)
are indeed very ancient, they appeared approximately at the
time of the specification of the three superkingdoms (Archaea,
Bacteria, Eukaryota, 3 bya, Fig. 5) (54) after the most common
folds of DNA transposons, and in consequence after the tran-
sition from RNA- to DNA-based replication.
Additional arguments for the ancient (Archean, � 2.5 Bya)

origin of DNA transposons and LINEs come from their ligand
binding. Both DNA transposon and LINE proteins bindmetals,
and differentmetal binding protein domains appeared at differ-
ent periods in the history of life, which to a certain degree mir-
rored the presence of these metals in the environment. The
history of metal utilization of proteins shows that the earliest
metal binding protein domains evolved already in the Archean
ocean andwere eithermanganese-binding or bound tomultiple
metals (55, 58). Both the endonuclease domain of LINEs and
the RNaseHdomain of DNA transposons bindmanganese ions
(and can also bind magnesium), which is in agreement with
their very early origins. Additionally, the endonuclease domain
of LINEs binds SO4

2� ligands. Oxidized sulfur was absent before
the first oxigenation of oceans �2.9–2.5 Bya (59), which indi-
cates that at least the current endonuclease domain of LINEs is
adapted to the presence of oxygen in the environment (which
does not necessarily mean oxygen in their microenvironment).
It is currently unclear what are the cofactors of the reverse
transcriptase (RT) domain of LINEs, but other RTs, i.e. telom-
erases (PDB code 3KYL) orHIVRT (PDB code 1VRT) are com-
plexed with magnesium, and in retrotransposons, elevated
manganese concentrations actually inhibit RT but not RNaseH
activity (60, 61).
The dominance of themost ancient�4 Bya old folds in DNA

transposons suggests that DNA transposons are as ancient as
the oldest known proteins, implying that the RNA/RNP world
did not last for billions of years, and, because DNA transposons
need a DNA-based host organism to replicate, DNAwas estab-
lished as the carrier of genetic information early on in the evo-

lution of life (although theoretically, it cannot be ruled out that
transposases originally acted on RNA andwere later adapted to
DNA). Our findings indicate that genomic parasites are as old

FIGURE 6. Contact order of TE proteins. A, the contact order of proteins of
DNA transposons is significantly lower than the contact order of the reference
CASP9 proteins (p �� 0.001, ANCOVA), indicating that DNA transposons are
under selection to fold rapidly. B, LINEs (non-LTR retrotransposons) do not
show the same pattern (p � 0.31, ANCOVA). C, contact order of highly soluble
and poorly soluble (prone to aggregation) E. coli proteins and DNA
transposons.

Transposon Protein Folding Project

MAY 31, 2013 • VOLUME 288 • NUMBER 22 JOURNAL OF BIOLOGICAL CHEMISTRY 16133



as genomes/proteins themselves, and from the twomainmech-
anisms of transposition (cut-and-paste mechanism of DNA
transposons and retrotransposition), the former is the older.
Further insights into their origins could come from in vitro
transposition assays, which could test the ability of TEs to
“jump” in conditions that simulate Archeal ecosystems, be it
hydrothermal vents, Archeal ocean, or other conditions (i.e.
complete anoxia, lack of oxidized sulfur, presence of various
cofactors, etc.).
DNA Transposon Proteins Evolved Low Contact Order, Pos-

sibly to Avoid Aggregation andMisfolding—Folding of proteins
is a complex process and is subject to errors (62). Misfolded
proteins are toxic due to aggregations, andmisfolding has been
proposed as one of themain causes for the variability in protein
evolutionary rates (63–65). The probability of aggregation
depends on the rate of folding, i.e., the amount of time the
proteins spend in unfolded state; thus, one “strategy” to avoid it
is simply to fold rapidly. In general, large, complex proteins fold
slowly, and their folding is normally guided by other proteins,
chaperones, that prevent aggregation andmisfolding (reviewed
in Ref. 62). The rate of protein folding has been measured for
relatively few proteins; however, in these, a strong correlation
has been established between folding rate and contact order
(66), a measure of structural complexity, defined as the average
distance along the sequence between non-hydrogen atoms that
are physically closer than 6 Å in the folded protein.
Transposable elements are frequently present in large num-

bers in their hosts; thus, their high copy number may result in
high protein abundance as well, at least in certain developmen-
tal stageswhen they are derepressed. Therefore, theymay face a
stronger evolutionary pressure to avoid protein aggregation
than “regular” proteins, with only one or few copies in the
genome.We calculated contact order for all TE structures with
a global TM score higher than 0.5 and compared it with the
contact order of proteins used in the CASP9 experiment, which
were folded with I-TASSER.
We found that DNA transposons are characterized by signif-

icantly lower contact order than the reference proteins; thus,

DNA transposons are under selection to fold rapidly (Fig. 6A).
We did not find the same pattern for LINE proteins (Fig. 6B);
most likely, the sizes of ORF2 proteins of LINEs are so big that
they have to rely on chaperones for correct folding. Our finding
indicates that DNA transposons are under selection for rapid
folding in vivo.
The low contact order of DNA transposons can be the result

of at least two phenomena: (a) DNA transposonsmight be built
from domains with lower contact order than other proteins or
(b) the domains in DNA transposons have lower contact order
than in their homologs in other proteins. We tested the second
hypothesis with the following method: we calculated the con-
tact order for the SCOP domains present in the high quality
(TM score � 0.5) DNA transposon structures and also for all
other domains from the same SCOP superfamilies. Their com-
parison (with ANCOVA) shows that the SCOP domains pres-
ent in DNA transposons have significantly lower contact order
than other domains of the same superfamilies (Fig. 7; p �
0.024). However, the effect is small (Fig. 7); thus, the observed
large difference in contact order between DNA transposons
and other proteins is more due to a different overall domain
composition and general topology of the proteins than due to
differences in homologous domains.
One possible explanation for this pattern is that rapid folding

is necessary to reduce aggregation, which is consistent with
experimental observations of overproduction inhibition in
DNA transposons (67, 68), i.e. that high amounts of trans-
posases actually result in reduced levels of activity. We tested
this hypothesis using Escherichia coli proteins, for which both
solubility was measured (69), and an experimentally derived
structure is also available in PDB (Fig. 6C). Although the soluble
E. coli proteins (andDNA transposons) have significantly lower
contact orders than insoluble ones (Fig. 6C), the results also
show that contact order is only one of the factors determining
solubility, and other properties of proteins (such as size or
exposed hydrophobic residues) also have a significant effect;
thus, aggregation propensitymay not be the only factor causing
the observed low contact order, although it probably contrib-

FIGURE 7. The contact order of DNA transposon folds is low even within the same superfamilies. A, correlations between length and absolute contact
order, for SCOP families present in the high quality DNA transposon structures, and all other families from the same SCOP superfamilies. B, although the
difference is small, SCOP families in DNA transposons have significantly lower contact order than other families from the same SCOP superfamilies (ANCOVA,
p � 0.02409).
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utes to it. The difference between DNA transposons and LINEs
may to a certain degree be explained with the different age of
the two types of repeats, as the low contact orders of DNA
transposonsmay reflect ancient, chaperone-free environments.
Search forNovel Cases of TEDomestication andEstimation of

Their Frequency—We compared the 16,000 high quality struc-
tures (MCMscore� 0.8) of the Proteome Folding Project data-
base with the TE structures (see “Materials and Methods”); we
found asmany as 3743 different PFP structures that show struc-
tural similarity to a TE protein. The high number of similar
structures is partly due to a structural redundancy among the

PFPhits: clustering the structure pairs from the 3743PFP struc-
tures with a TM score threshold of 0.5 indicates that only three
clusters containmore than 2600 of the hits. To separate homol-
ogous from analogous hits, we performedMonte Carlo simula-
tions to detect remote sequence similarities (p � 0.001)
between the TE and PFP structures, which reduced the set to
295 hits considered as homologous (Table 1 and see “Materials
and Methods” for details).
To investigate what process caused the observed homologies

(i.e. horizontal transfer, domestication by the host of TE, or
incorporation of a host protein into a TE sequence) we com-

FIGURE 8. The relationship between the quality of a PFP structure and the likelihood of detecting structural similarity/homology with a TE. A, the
probability of detecting homology between the TE structures and the proteome folding project structures depends largely on the quality (MCM score) of PFP
decoys. Structures with an MCM score of 0.8 have mostly correct topology (two of three are correct), whereas below MCM score 0.4, their quality is low and are
mostly incorrect. The quality of PFP structures has a very large effect on the number of detected homologs, which is the result of two independent processes:
1) the probability of detecting structural similarity (TM score � 0.5) between TE and PFP structures increases radically with the increasing quality (MCM score)
of the PFP structure (B); 2) in the identified similar structure pairs, the fraction of pairs with significant sequence similarity (p � 0.001) also increases with the
quality of the structures, although less dramatically (�2.5-fold; C). This has two consequences for the estimation of false positive rate of homolog detection.
First, the fraction of incorrectly detected structure pairs due to modeling errors is probably low: we detect real analogs and homologs (B). However, based on
the fraction of cases with significant sequence similarity (p � 0.001) where the structural similarity between a TE and a PFP decoy is likely to be an artifact
(C; MCM score of PFP structures � 0.4), the number of homologs is probably overestimated, with up to 40%.

TABLE 1
Taxonomic distribution of TE hits to the PFP database (both sequence- and structure-based searches) and their over- or under-representation
Enrichment was calculated as the (frequency of TE hits)/(frequency in the database); significance was calculated with Chi square tests.

Taxonomic group Structure hits Enrichment p Sequence hits Enrichment p Nr in database

Mobile elements 4 1.52 0.400 17 41.305 �0.001 145
Viruses, phages 3 0.35 0.052 0 0.000 0.240 473
Prokaryotes 127 0.86 0.020 1 0.044 �0.001 8076
Protists 46 1.63 �0.001 1 0.228 0.089 1547
Fungi 18 0.93 0.735 1 0.330 0.227 1068
Metazoans 52 1.22 0.128 6 0.899 0.778 2351
Plants 45 0.97 0.830 20 2.768 �0.001 2546
Total 295 46 16,206
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pared the phylogenetic spread of the TE proteins and the
homologous PFP proteins (see “Materials and Methods”) to
find out the most likely evolutionary scenario for each case
(supplemental Table 6). We found that 25 cases support TE
domestication, whereas the number of cases supporting the
opposite process, the incorporation of a host protein domain
into a TE is 100. In a large number of cases (80 cases), the lateral
transfer of a TE domain is themost likely evolutionary scenario
(supplemental Table 6). In 48 cases, it was not possible to find
out in what direction the protein domain was transferred
because both the TE and the PFP protein is present across the
entire eukaryotic kingdom; thus, these casesmay represent very
ancient domestications or incorporations of host proteins; and
in 41 cases, all homologs to the PFP hits were transposons or
uncharacterized proteins; these were excluded from the
analysis.
Comparison of Structure- and Sequence-based Searches—To

compare the efficiency of structure searches with traditional
sequence-based searches,we also performed sequence compar-
isons using hiddenMarkovmodels. The comparison shows that
the two methods have different strengths and weaknesses and
can be seen as methods that complement each other. Although
we identified 295 different PFP structures that were similar at
TM score � 0.5 level to a PFP structure and also passed the
homology filter (see “Materials and Methods”), searching the
TE sequences against the same PFP sequences with the
phmmer tool of the HMMER package (with an e-value cut-off
of 0.001) resulted only in 46 PFP hits (Table 1). From these, the
evolutionary analysis (see “Materials and Methods”) identified
only one case as domestication, 14 cases of protein incorpora-
tions into a TE, and in 29 cases, the origin of the sequence could
not be identified (supplemental Table 7).

Overall, the structure-based search identified more than six
times asmany PFP hits as the sequence-based search. However,
despite the higher sensitivity, structure searches are not with-
out pitfalls: first, structure space is much more limited than
sequence space (70), and in consequence, highly similar struc-
tures can be analogous not only homologous, and separating
remote homology from analogy is not a straightforward task.
We identifiedmore than 10 times asmany analogs as homologs,
and our estimated false positive rate for homology detection is
still high, possibly reaching 40% (see Fig. 8 for details). Second,
currently, it is not possible to make iterative searches with
structures, which offer much higher sensitivity for sequences.
Third, the probabilistic backgroundof structure comparisons is
far less developed than for sequences, and structural similarity
scores (including the TM score) typically represent global
structural alignments, which are meaningful only above a cer-
tain protein size and do not introduce gaps in the structures (i.e.
do not move structure fragments relative to each other). The
comparison of PFP hits identified by structure and sequence
searches shows that the two methods identify a very different
set of sequences (Table 1): in the case of structure searches,
most taxonomic groups are present relatively evenly, with par-
asitic protists significantly overrepresented, whereas bacterial
proteins are underrepresented. In contrast, sequence searches
identify mostly hits to transposable elements and plant pro-
teins, which, due to the relatively incomplete annotation of TEs

in most plant genomes, in many cases are also likely to be TEs
(Table 1).
Our findings indicate that the frequency of sequence

exchange between TEs and their hosts (either TE domestica-
tion or the incorporation of a host protein into a TE) is consid-
erably higher than it is detected by sequence searches. How-
ever, their number is still not high: from 16,000 PFP structures,
we identified slightly more than 2% as homologous to a TE. On
the other hand the relatively large number of cases of putative
horizontal transfer, many of which involves pathogenic bacte-
ria and parasitic protists corroborates recent hypotheses on the
importance of parasites inmediating horizontal transfer of TEs
(27, 71).
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