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Summary 

Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity 

in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory 

consolidation, while epileptiform (interictal) events are thought to be damaging. It is essential to grasp the 

difference between physiological sharp wave-ripples and pathological interictal events in order to 

understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity 

generated intrinsically in the CA3 region of the mouse hippocampus in vitro, using four different types of 

intervention to induce epiletiform activity. As a result, sharp wave-ripples spontaneously occurring in CA3 

disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of 

pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp 

wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and 

some axo-axonic cells stopped firing due to a depolarization block at the climax of the events in high 

potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, 

pyramidal cells started firing maximally at this stage. To understand the underlying mechanism we 

measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found 

that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory 

transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket 

cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be 

a crucial factor in the emergence of epileptiform events. 

 

Keywords: inhibitory cells, epilepsy, depolarization block, sharp wave-ripples, synchronous events 

Abbreviations: 4-AP: 4-aminopyridine, aCSF = artificial cerebrospinal fluid; AP= action potential; AP5= 

2R-amino-5-phosphonovaleric acid; CA = cornu Ammonis; CCK = Cholecystokinin; DG = dentate gyrus; 

EE = epileptiform events; GABA = gamma-aminobutyric acid; HFO = High frequency oscillation;  IIE = 

interictal events; NBQX = 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione; NMDA = N-

methyl-D-aspartate; PVBC = parvalbumin-positive basket cells; s.lm.= stratum lacunosum-molaculare; s.l.= 
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stratum lucidum; s.o.= stratum orines; s.p.= stratum pyramidale; s.r.= stratum radiatum; str = stratum; SWR 

= Sharp wave-ripples 

 

Introduction 

Brain states are characterized by behaviour-associated coordinated alternation of distinct EEG 

patterns in different cortical regions (Sirota et al., 2003, Buzsaki, 2006, Isomura et al., 2006). For instance, 

cortical slow oscillations are the result of the alternation of low activity down states and high activity up 

states (Steriade et al., 1993, Steriade et al., 1993, Steriade, 2001). A similar alternation of activity can be 

observed in the hippocampus during cycles of theta-embedded gamma oscillations (Soltesz and Deschenes, 

1993, Bragin et al., 1995) and during physiological sharp wave-ripples (SWRs, (Buzsaki, 1986, Ylinen et 

al., 1995). This suggests that the generation of recurring transient high activity (and therefore synchronous) 

events is an inherent and general property of healthy cortical networks. Physiological SWRs (that are 

different from pathological transient events observed in epileptic patients often referred to as sharp-waves by 

clinicians) can be considered to be their most simple manifestation in the hippocampus, and were shown to 

be important in memory consolidation (Girardeau et al., 2009, Jadhav et al., 2012). In the epileptic 

hippocampus, different pathological forms of transient high activity events, including interictal (IIE), pre-

ictal or ictal events (referred to as epileptic events, EEs) can be observed and are considered damaging 

(Engel, 1996, Aldenkamp et al., 2005, Holmes and Lenck-Santini, 2006, Zhou et al., 2007).  

Hippocampal slices can produce spontaneously-emerging in vivo-like SWRs (Kubota et al., 2003, 

Ellender et al., 2010), while EEs can be induced upon pharmacological intervention [e.g. increasing 

excitability with high K+ (Moody et al., 1974, Traynelis and Dingledine, 1988), applying 4-AP (Rutecki et 

al., 1987, Louvel et al., 1994), decreasing or eliminating inhibition (Schwartzkroin and Prince, 1977, Traub 

and Wong, 1983, Hablitz, 1984, Miles et al., 1984, Miles et al., 1988) or omitting Mg2+ (Mody et al., 1987, 

Jones and Heinemann, 1988, Dreier and Heinemann, 1991)]. As previously observed, the firing patterns of 

different hippocampal neurons were found to be modified during EEs. Most neurons increased their firing 

frequency, but some cells became silent, likely due to a depolarization block during the pathological events 

(Kawaguchi, 2001, Bikson et al., 2003, Ziburkus et al., 2006, Cammarota et al., 2013). 
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In the present study, our aim was to clarify some basic differences among physiological and 

pathological transient high activity events. Since in vitro hippocampal slices can generate several different 

forms of transient high activity events, including both SWRs and IIEs, we induced transitions from SWRs to 

IIEs by different epileptiform activity-inducing treatments in order to answer the following questions: 1) 

What is the phenomenological difference between physiological SWRs and pathological IIEs? 2) How do 

the same identified neurons behave during SWRs and IIEs? 3) What are the underlying mechanisms 

resulting in the transition from the physiological to the pathological network state? 

We found numerous differences in basic cellular and network parameters when comparing SWRs 

and IIEs (primarily the collapse of PVBC-mediated inhibition in the EE-producing state). These changes 

lead to a reorganization of synchrony and neuronal firing patterns, and result in physiological SWRs being 

replaced by IIEs. 

 

Experimental procedures 

Animals were kept and used according to the regulations of the European Community’s Council 

Directive of 24 November 1986 (86/609/EEC). Experimental procedures were reviewed and approved by 

the Animal Welfare Committee of the Institute of Experimental Medicine, Hungarian Academy of Sciences, 

Budapest.  

CD1 and Bl6 mice of both sexes (postnatal day 19-40) were used in the experiments. To measure selectively 

from cells containing the Ca2+ binding protein parvalbumin (PV), transgenic mice expressing enhanced 

green fluorescent protein (eGFP) controlled by the PV promoter  were also used in this study (Meyer et al., 

2002). CCK (cholecystokinin) -expressing interneurons were sampled in slices prepared from CCK DsRed 

transgenic mice (Table S1 and Fig. S1, for experimental details of the characterization of this mouse strain 

see Supplemental Experimental Procedures), where the expression of red fluorescent protein was under the 

control of the CCK promoter. In all cases, the mice were decapitated under deep isoflurane anaesthesia. The 

brain was removed into ice cold cutting solution, which had been bubbled with 95% O2-5% CO2 (carbogen 

gas) for at least 30 minutes before use. For contents of solutions see Table 1. Horizontal hippocampal slices 
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of 200 or 450 µm thickness were cut using a vibratome (Leica VT1000S or VT1200S), and slices were 

placed into an interface-type holding chamber for recovery. This chamber contained standard aCSF (Table 

1.) saturated with carbogen at 35ºC that gradually cooled to room temperature. After incubation for at least 

90 minutes, slices were transferred individually into a submerged-style recording chamber equipped with a 

dual superfusion system (Hajos et al., 2009) where slices were placed on a metal mesh and two separate 

fluid inlets allowed aCSF to flow both above and below the slices at a rate of 3-3.5 ml/min for each flow 

channel, at 32-34 oC.  

Standard patch electrodes were used in all recording configurations (i.e. in whole-cell patch-clamp, loose-

patch and field potential recordings). Pipette resistances were 3-6 MΩ when filled with the intrapipette 

solution (Table 1) or with aCSF.  

 

Field recordings and neuronal firing: 

Data were recorded with a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA). Local 

field potentials were monitored in stratum pyramidale of the CA3 area using aCSF-filled patch pipettes. For 

the recording of cell firing, individual neurons in CA3 were concomitantly recorded in loose-patch mode for 

about 20-35 minutes. Neurons were identified visually using differential interference contrast microscopy 

(Olympus BX61W). Then, the pipette was withdrawn and whole-cell patch-clamp recordings were 

performed on the same cells with another pipette filled with intrapipette solution 1 (for contents see Table 

1.). Access resistance was in the range of 5-20 MOhm. Only recordings where the access resistance did not 

change more than 25% during the recording were included in the study. Postsynaptic potentials (PSPs) and 

action potentials were recorded in current clamp mode, by de- and hyperpolarizing cells to different 

membrane potentials (from -70mV to -30mV, 5 mV each step).The depolarization was carried out by 

applying a maintained current injection for 1.5-2 minutes for each step. The resting membrane potential was 

recorded immediately after break-in. Both field and unit recordings were low-pass filtered at 2 kHz using the 

built-in Bessel filter of the amplifier. Data were digitized at 6 kHz with a PCI-6042E board (National 

instruments, Austin, Texas) using EVAN 1.3 software (courtesy of Prof. Istvan Mody, UCLA, CA), and 

were analyzed offline with custom-made programs written in MATLAB 7.0.4 and Delphi 6.0 by AIG.  
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Multichannel local field potential recordings 

The local field potential (concomitantly at different sites) was recorded with a laminar multielectrode 

array placed on the surface of the hippocampal slice, parallel to the orientation of pyramidal cell dendrites 

spanning all hippocampal layers (24 channels, 50 µm inter-contact distance, Neuronelektród Kft., Hungary). 

We used a custom-made referential amplifier system (pass-band 0.1 Hz to 7 kHz) (Ulbert et al., 2001, Ulbert 

et al., 2004). Signals were digitized with a 16 bit resolution analog-to-digital converter (National Instruments, 

Austin TX, USA) and recorded at 20 kHz sampling rate on each channel using a custom-made virtual 

instrument in LabView (National Instruments, Austin TX, USA). Current source density (CSD) calculations 

were made using the three-point formula smoothed by Hamming window (Ulbert et al., 2001). Results are 

depicted by heat maps using custom-made software. 

 

Stimulation-evoked postsynaptic currents 

To record stimulation-evoked currents, 200 µm thick slices were used to minimize spontaneous 

network activity. Evoked inhibitory postsynaptic currents (IPSC) and excitatory postsynaptic currents 

(EPSC) were recorded in pyramidal cells at a holding potential of -70 mV. A stimulating electrode made of 

theta glass was placed into stratum radiatum to activate Schaffer collaterals or inhibitory fibres, or into the 

border of strata pyramidale and lucidum to evoke inhibition with a perisomatic origin. To record IPSCs and 

EPSCs, intrapipette solutions 2 and 3 were used, respectively (Table 1.). When recording IPSCs, the aCSF 

contained 10 µM NBQX and 50 µM AP5 to block fast excitatory transmission; when EPSCs were recorded, 

the borders of CA3a-b and CA3b-c were cut to decrease the network size and minimize network activity. 

Data were digitized at 6 kHz with a PCI-6042E board (National instruments, Austin, Texas) using Stimulog 

software (courtesy of Prof. Zoltan Nusser, IEM, Budapest), and were analyzed off-line using the Evan 

software. 

 

Inhibitory synaptic transmission 
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For paired recordings, we used 200 µm thick slices to examine changes in perisomatic inhibition (in 

aCSF with normal- versus high K+). For the presynaptic cell, intrapipette solution 3 was used; the 

postsynaptic cell was recorded with intrapipette solution 2. The aCSF contained 10 µM NBQX and 50 µM 

AP5 to block fast excitatory transmission and exclude epileptic events that would interfere with the 

measurement of transmission. Presynaptic interneurons were held in current clamp mode around a 

membrane potential of -50 mV, and stimulated by a train of 30 action potentials at 150 Hz followed by 4 

action potentials at 300 Hz (similar to the firing pattern recorded in loose-patch mode), 2.5–3.5 nA. 

Pyramidal cells were clamped at a holding potential of -50 mV (to mimic the depolarized state in elevated 

K+). Series resistance was frequently monitored; cells for which the series resistance changed > 25% during 

recording were discarded from further analysis. 

 

Statistics 

Throughout the manuscript we applied non-parametric tests since data usually did not show a normal 

distribution. Thus, we used the notation nnnn (nnn; nnn) to indicate median and interquartile range.  

Statistical tests used were the following: Wilcoxon paired test, Mann-Whitney U-test, Kruskal-Wallis 

ANOVA, Friedman ANOVA, Kolmogorov-Smirnov test. 

 

 Further information on data analysis is available as Supplemental Information. 

 

Results 

Sharp wave-ripple-generating states can be switched into epileptiform event-generating states using 

four different epileptogenic treatments 

Physiological SWRs are spontaneously generated in 450 µm thick mouse (P20-P40) hippocampal 

slices in aCSF (Hajos et al., 2009) with features matching SWRs recorded in vivo (see Supplementary 

Results and Fig. S2). With four different epileptogenic treatments: high K+ [8.5 mM, n=86], 4-AP [30 µM, 

n=8], 0 Mg2+ (n=19) or Gabazine [2 µM, n=23], we could evoked transitions from the SWR-generating state 
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to epileptiform activity-generating states (Fig. 1). As shown in Fig. 1A, the elevation of extracellular K+ 

gradually eliminated SWRs and evoked a state characterized by a featureless EEG (transitory phase), 

followed by a state with recurring epileptiform events (Fig. 1) defined as large amplitude interictal-like 

events (IIEs) accompanied by high multi-unit activity. Both SWRs and IIEs could be recorded in 

hippocampal CA3 minislices in high K+ after cutting off the dentate gyrus and area CA1, indicating that the 

CA3 region on its own can generate these two types of network activities (n=4, not shown).  

Interictal-like events were observed in the other three models as well (Fig. 1B). In all four models, a 

transitory state that separated SWRs and IIEs appeared, with similar properties among models (Fig. S3). The 

duration of transition varied greatly among experiments within and between models. The shortest time 

necessary (from adding the pharmacological agent until the first EE) was 58 s (high K+ model), whereas the 

longest was 2218 s in the 0 Mg2+ model; the median time and interquartile range (for the four models 

together) was 538 s (313; 560), n=136. We observed a complex reorganization of multiunit activity during 

the transitory state in all models. Following the transitory phase the activity evolved into IIEs, and in certain 

models into more complex epileptic forms (for a more detailed description of the 3 models see Supplemental 

Results and Fig. S3). 

 

After demonstrating that we can successfully induce SWR-to-IIE transitions in four different ways, 

we focused our experiments to uncover the details of the transition in order to identify the accompanying 

changes in parameters and processes, with the aim of revealing the underlying mechanisms.  

Sharp wave-ripples and interictal events are different transient high activity events in the high K
+
 

model 

Analysing the occurrence of SWRs and IIEs in a large set of slices, we found that most slices 

producing large amplitude SWRs produced either small amplitude IIEs or no epileptic events at all. 

Conversely, slices with small, infrequently-emerging SWRs or no SWRs were more likely to generate 

epileptic events, present as large amplitude IIEs, indicating that the capability of a slice to generate either 

SWRs or IIEs is likely to be inversely related. To support this finding, the amplitude of SWRs and IIEs was 
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quantified (see Supplemental Experimental Procedures). Regression analysis showed a significant negative 

correlation between the amplitude/presence of these events (Fig. 1C, p=0.013, R=0.48, n=26). 

In cases when slices did produce SWRs under control conditions and IIEs in high K+, the two event 

types never appeared interleaved. Therefore, we quantified how SWRs are replaced by IIEs (n=25) (Fig. 

1D). The two types of oscillations excluded each other and were always separated by the transitory phase, 

strengthening the notion that they represent different network phenomena (median duration of this transitory 

phase was 315 sec with an interquartile range between 170 and 459 sec). 

Because IIEs (especially early ones, Fig. 1F) could easily be mistaken for SWRs (Fig. 1E) we 

quantified the dissimilarities: First, there is a significant difference in the amplitude of the two event types; 

135 µV (124.9; 141.1) for SWRs and 344 µV (299; 402) for early IIEs (Mann-Whitney U-test, p=0.039, 

differences were studied thoroughly in 10 slices). Second, SWRs and early IIEs can be separated based on 

their duration: SWRs lasted 46 ms (42.2; 57.4), whereas early IIEs lasted 104 ms (89.0; 115) (Mann-

Whitney U-test, p=0.026, n=26). In addition, a significant difference was found in the underlying multi-unit 

activity: it was 170 Hz (150; 190) for SWRs and 275 Hz (160; 282) for IIEs (compared within experiments, 

Mann-Whitney U-test, p<0.001). 

Early IIEs evolved into late IIEs that are more persistent events, and will therefore be examined in 

more detail in the present study (IIE shall refer to late IIEs from now on). We also compared their 

amplitude, duration and other features to those of SWRs (for SWR values see previous paragraph). A 

significant difference was found in the amplitude and duration of the two event types; IIE amplitude was 

640 µV (512; 692) (Mann-Whitney U-test, p=0.014,), duration was 129 ms (104; 157) (Mann-Whitney U-

test, p=0.008, n=26). The third difference we found was that the period separating events from each other 

was 637 ms (338; 813) for SWRs and 1112 ms (862; 1794) for IIEs (Mann-Whitney U-test, p= 0.02). 

Finally, a significant difference was found in the underlying multi-unit activity: it was 170 Hz (150; 190) for 

SWRs compared to 305 Hz (233; 466) for IIEs respectively (compared within experiments, Mann-Whitney 

U-test, p<0.001).  

Differences have been described in the high-frequency component of SWRs vs. IIEs (Bragin et al., 

2002, Foffani et al., 2007, Engel et al., 2009, Levesque et al., 2011), but we could not find a systematic 
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difference in the frequency of this component of the two types of events (using wavelet transformation), 

although oscillations during the peak of IIEs tended to be of slightly higher frequency and less regular than 

the ripples of SWRs (not shown). Current source density (CSD) analysis of the events did not demonstrate a 

significantly different picture either, although for the IIEs the initial source was spreading into stratum 

oriens and there were altered long-lasting sinks (red) and sources (blue) (Fig. 1E, F) in the later phase, 

similar to what was found in epileptic human tissue (Ulbert et al., 2004, Wittner et al., 2009). 

After describing basic differences between the two events, we analysed the transitory phase to 

understand how network synchrony becomes disorganized and rearranges later into a new form of transient 

high activity events. 

Rearrangement of synchrony during the transitory phase separates sharp wave-ripples from interictal 

events 

Multi-unit activity during SWRs and IIEs was organized into robust, transient synchronous bursts. 

However, during the transitory phase leading from SWRs to IIEs the multi-unit activity gradually became 

asynchronous, and only after a certain time did it rearrange into a new form of synchrony (IIEs, Fig. 2 A,B), 

presumably when the level of population firing activity and its synchrony reached a threshold level (de la 

Prida et al., 2006) and recovery dynamics after the previous event started to dominate (Staley et al., 2001). 

The time-binned autocorrelogram of multi-unit firing (Fig. 2D) displays how the clustered firing of SWRs 

had dissolved during the transitory phase and regrouped into another synchrony during the IIEs. To quantify 

and visualize the loss of synchrony leading to the transitory phase and gain of synchrony preceding IIEs, the 

instantaneous frequency of multi-unit activity was normalized to its low-pass filtered average. This measure 

clearly shows how often the firing exceeds baseline activity during the synchronous bursts. Thus the 

disruption and rearrangement of activity became visible (Fig. 2C). The local minima and maxima of the 

multi-unit firing frequency showed large differences during SWRs and IIEs (Fig. 2C), but approached each-

other during the transition period, suggesting a steady, elevated but less structured activity instead of high 

synchronies interspersed with silent periods. We also calculated the “burstiness” of multi-unit activity (see 

Supplemental Experimental Procedures), which showed a similar U-shaped curve (Fig. 2E). As a simple 
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measure of fluctuation we plotted the standard deviation of the local field potential or the multi-unit 

instantaneous frequency. We found that during SWRs the standard deviation values are relatively high and 

stable, during the transitory phase they drop and then eventually build up again to reach values higher than 

during SWRs (Fig. 2F, G). It is important to note that synchronization of multi-unit activity starts to 

increase long before (in the experiment shown, 2-3 minutes before) the field potential fluctuation associated 

with IIEs appears (period indicated with a box in Fig. 2F), indicating once more that an increase in multi-

unit activity leads the reorganization of network activity, and gross changes in the local field potential only 

appear later. 

 

So far we have described the phenomenological and behavioural differences of the hippocampal CA3 

area during SWRs, the transition phase and IIEs, and have defined certain features differentiating them from 

one another. However, to understand the mechanisms responsible for transition we need to clarify the effects 

of high K+ application on cellular and network features and parameters. 

Classification of the recorded CA3 neurons 

To uncover the spiking behaviour of distinct neuron types in CA3 during IIEs, we recorded local 

field potentials simultaneously with action potentials in loose-patch mode in neurons under visual guidance, 

and subsequently postsynaptic potentials (and action potentials) in whole-cell mode, followed by anatomical 

identification of neurons. Based on the dendritic and axonal arborisation, recorded neurons were grouped 

into five anatomical types: pyramidal cells (PC), parvalbumin-containing basket (PVBC) and axo-axonic 

cells (AAC), cholecystokinin-expressing basket cells (CCK+BC) and a mixed group of dendritic layer 

innervating cells (DC) (Freund and Buzsaki, 1996, Klausberger and Somogyi, 2008). The firing properties 

of these groups in relation to IIEs were compared (Fig.3). For detailed morphological descriptions see the 

Supplemental Results and Fig. S4. 
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Activity of identified cell types is different during physiological and pathological transient high 

activity events 

We examined the firing behaviour of identified CA3 hippocampal interneurons and pyramidal cells 

during the transition in the high K+ model. First we examined early IIEs. All neuron types increased their 

firing rate, and some showed decreased spike amplitude (Fig.3B). However, this altered firing pattern was 

changed further as early IIEs evolved into late IIEs. 

A noticeable difference among early and late IIEs was that the high-frequency oscillation (Boksa et 

al.) in the local field potential during the peak of the events was significantly longer during late IIEs (81.5 

ms (54.38; 92.25)) than during the early ones (27.25 ms (22.5; 40.63) (Wilcoxon paired test, p<0.01). This 

difference can be seen in the plot of relative power in the 150-400Hz band in the traces below the local field 

potential on Fig. 3B, C.  

The firing rate of all studied neurons changed during IIEs compared to SWRs (Fig. 3A-C, 4A and 

Table 2). Since the firing pattern of different neurons varied systematically during phases of a single IIE, we 

defined three phases where firing properties were analysed separately: 100 ms before the peak of the event, 

100ms during the event (after the multi-unit peak) and 100 ms immediately after the event (Fig. 3C, 4A, B).  

Almost all neurons showed a greatly increased firing rate during IIEs compared to SWRs, with the 

exception of PVBCs, where the maximal firing rate only slightly exceeded the firing rate during SWRs (Fig. 

4A, Table 2). In Table 2, spike numbers are described during the entire event, (duration was approximately 

300-400 ms). Since SWRs last roughly 100 ms, it may be more appropriate to compare spike numbers fired 

during SWRs to spike numbers fired during either the "before", "during" or "after" phases. In this way we 

could compare spike numbers fired over similar epochs. 

Pyramidal cells (n=12) fired with low spiking probability during SWRs (usually no spikes were 

detected, but in a larger, recently published dataset (Hajos et al., 2013) we encountered pyramidal cells 

firing in association with SWRs). The firing probability significantly increased during IIEs; moreover, 

pyramidal cells fired bursts of action potentials between IIEs. The firing rates of pyramidal cells varied 

significantly between different phases of the IIEs, with a significant rise during the event, followed by a 
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significant drop immediately after (Friedman ANOVA and post hoc Wilcoxon paired test (Fig. 3C, 4A, 

Table 2)).  

PVBC (n=10) and axo-axonic cells (n=6) fired numerous action potentials during SWRs, and fired 

with a somewhat higher frequency 100-150 ms prior to the large negative peak of the IIE (“before”). 

However, when the field event reached its negative peak (“during”), most PVBC cells and axo-axonic cells 

dropped their firing rate, and spike amplitude decreased gradually (Fig. 4B, C, Table 2). In all PVBCs and 

one axo-axonic cell, this decrease continued until action potentials were no longer detectable (Table 2). 

After the IIE, when the local field potential amplitude was close to baseline, the firing of the cells 

progressively recovered, and the spike number increased. Significant changes among phases were found for 

PVBCs when “before”, “during” and “after” phases were compared (Friedman ANOVA and post hoc 

Wilcoxon paired test, Fig. 4A-C Table 2), but not for axo-axonic cells. 

Most CCK+ basket cells (n=5) and dendritic layer innervating cells (n=15), unlike the previous cells, 

fired with a moderate probability during SWRs, and increased their firing rate further during IIEs (Fig. 3A-

C Table 2). Close to the initial negative peak of IIEs, CCK+ basket cells and dendritic layer innervating 

cells started firing, continued to do so during the entire event, and decreased their firing rate after the event 

(Friedman ANOVA and Wilcoxon paired test) (Fig. 4B, C Table 2). 

Next, we compared the normalized changes (given as %) in firing rate (between the IIE phases) 

among the five neuron groups, where 100% was the number of spikes produced in the “before” phase. When 

examining changes between the “before” and “during” phases, PVBC values were significantly smaller than 

those of pyramidal cells, CCK+ basket cells and dendritic layer innervating cells; axo-axonic cell values 

were significantly smaller than pyramidal cell values. However, no other groups showed significant 

differences (differences among groups were tested with Kruskal-Wallis ANOVA followed by post hoc 

Mann-Whitney U-test with Bonferroni correction). When firing rate changes were compared between 

“before” and “after”, pyramidal cell and PVBC values were significantly smaller than axo-axonic cell and 

dendritic layer innervating cell values, (Kruskal-Wallis ANOVA, Mann Whitney U-test, Fig. 4C, Tables 2 

and 3). 
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In the next step, we studied the extracellular spike amplitude evolution. Although only PVBCs and 

one axo-axonic cell decreased their firing amplitude to zero, all recorded neuron types showed somewhat 

decreased spike amplitude in the “during” phase. When normalized amplitudes were compared among the 

three activity phases for each neuron group (amplitude in the “before” phase was 100%), a significant 

decrease was found for pyramidal cells, PVBCs, axo-axonic cells and dendritic layer innervating cells, 

whereas CCK+ basket cells showed significant differences only when comparing the “during” phase to the 

“after” phase (Wilcoxon paired test). These data suggested that all neurons received a massive 

depolarization, causing a decrease in their spike amplitudes; however, the severity of the decrease differed 

greatly among cell types (Fig. 4C, Table 2). 

Finally, changes in normalized spike amplitudes were compared among neuron groups, where 100% 

was the amplitude of spikes produced in the “before” phase. The decreased spike amplitude values of 

PVBCs and axo-axonic cells were significantly smaller than that of CCK+ basket cells and dendritic layer 

innervating cells. In addition, significant differences were found between CCK+ basket cells and dendritic 

layer innervating cells (normalized spike amplitude was significantly smaller for dendritic layer innervating 

cells, Kruskal-Wallis ANOVA, Mann Whitney U-test, Fig. 4C, Tables 2 and 3). 

 

Membrane potential changes of hippocampal CA3 neurons during interictal events 

The decrease in extracellular spike amplitudes and the cessation of firing suggested that cells might 

receive a strong depolarization and some interneurons would enter into depolarization block during IIEs. To 

strengthen this hypothesis we recorded the activity of neurons in whole-cell current clamp mode 

simultaneously with local field potential recordings. The value of the resting membrane potential and 

depolarization during IIEs was estimated in three different ways. This redundancy was necessary since our 

recordings were carried out in whole-cell mode, and even the most carefully chosen intrapipette solution can 

alter the intracellular ion milieu, and thus the firing of a cell. First, we compared the firing pattern recorded 

in loose-patch mode to the action potential pattern in whole-cell mode at different membrane potentials (Fig 

5A-C). As shown in Fig. 5D, the intracellularly-recorded firing matched the loose-patch-recorded firing best 
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when cells were held at potentials around -30 to -40 mV between IIEs using a constant injected current. 

When the membrane potential was recorded in I=0 mode immediately after break-in, the membrane 

potential between IIEs was -35.0 mV (-40.3, -30.7) for pyramidal cells (n=8), -39.7 mV (-40.2, -39.6) for 

PVBCs (n=5), -45.1 mV (-45.3, -43.1) for axo-axonic cells (n=3), -41.8 mV (-42.5; -40.9) for CCK+ basket 

cells (n=3) and -29.7 mV (-30.4 – -29.1) for dendritic layer innervating cells (n=3). We found no significant 

difference among cell groups (p=0.46, Kruskal-Wallis ANOVA), or between membrane potentials estimated 

with the two methods (p=0.318, paired sample Wilcoxon test; to enhance readability, results are summarized 

in Fig. 5, Table 4). Finally, we calculated the approximate depolarization caused by the increase of 

extracellular K+ according to the Nernst equation, which resulted in a depolarization of 23 mV (calculated 

with 8.5 mM K+ in the extracellular solution compared to 3.5 mM). Since the extracellular K+ concentration 

likely increases transiently during IIEs (as a result of elevated firing) (Gnatkovsky et al., 2008), this result 

may underestimate the actual depolarization, which may reach approximately 30 mV according to previous 

estimates (Frohlich et al., 2008, Cressman et al., 2009), relative to a resting potential of -64±1 mV under 

control conditions (Spruston and Johnston, 1992). With all calculating methods, the depolarization of the 

membrane potential in the high K+ solution was about +25-35 mV compared to the estimated control 

membrane potential in aCSF. 

Even though the baseline membrane potential showed no significant difference between cell groups 

in high K+ when IIEs occurred, the membrane potential further depolarized, and the magnitude of this 

deflection varied among neuron groups. Since the level of this depolarization may determine whether a cell 

enters into depolarization block or not, we compared the maximum of the low-pass-filtered (30 Hz) 

membrane potential that different cell types reached during IIE peaks (in several cases this was the value of 

spike threshold, but in other cases membrane potential increased further during spiking, see Fig. 5B PVBC). 

Pyramidal cells and PVBCs experienced the largest depolarization (for pyramidal cells -15.5 mV (-21.5; -

11.9), for PVBCs -17.6 mV (-19.9; 0)). However, only the PVBC depolarization differed significantly from 

the depolarization of other cell types, namely from CCK+ basket cells (p=0.037, Mann-Whitney U-test), and 

dendritic layer innervating cells (p=0.036, Mann-Whitney U-test) (Fig. 5E, Table 4), indicating that the 

strong depolarization can be a factor responsible for the depolarization block of PVBCs. This strong 
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transient depolarization cannot be the result of the temporal change in K+ concentration (due to elevated 

firing during the peak of IIEs) since different cell types showed different depolarization levels. 

To uncover firing characteristics of distinct cell types at different depolarization levels (threshold and 

depolarization block threshold), neurons were recorded in current clamp mode at different membrane 

potentials from -70 to -30 mV (5 mV steps, Fig. 5E) and the number of spikes (Table S2) were compared 

between different neuron types and different potentials. We found that when pyramidal cells, CCK+ basket 

cells and dendritic layer innervating cells were held around -70 mV, they fired with a low firing probability 

compared to what we recorded in loose-patch mode (around -40- -45 mV). For all three cell types, their 

firing probability was lowest at -70 mV. However, as we gradually depolarized these cells, the spiking 

frequency increased during IIEs (Fig. 5E). Conversely, in the case of PVBCs and axo-axonic cells, the firing 

frequency was quite high at -70 mV and gradually decreased as the cells were depolarized (lowest at -30 for 

PVBCs and -40 for axo-axonic cells). When the depolarization of PVBCs reached approximately -45 mV, 

they decreased their firing, and entered into depolarization block during IIEs, similarly to loose-patch 

recordings.  

 

Firing pattern of pyramidal cells and PV+ basket cells during interictal events in other models 

Since depolarization block seemed to be an important event in the generation of IIEs, we examined 

how the two key cell types, pyramidal cells and PVBCs, fire during IIEs in the other three models (Fig. 6). 

We found that both cell types, similar to their behaviour in high K+, strongly increased their firing frequency 

during IIEs. In the 4-AP and 0 Mg2+ models, PVBCs first increased their firing frequency and then entered 

into depolarization block around the peak of the IIE. While PVBCs were inactive, HFO appeared in the local 

field potential and pyramidal cells fired. In the gabazine model, although the firing did not stop at this stage, 

the amplitude of the spikes dropped temporarily, suggesting strong intracellular depolarization. Pyramidal 

cell firing again coincided here with the HFO period of the local field potential. 

Since in the previous set of experiments we proved that progressive drop in extracellular action 

potential amplitude is the result of depolarization block of firing due to strong intracellular depolarization, 
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we did not make systematic experiments for the other three models. Nevertheless, we measured the 

membrane potential in some cells and found that, in agreement with the findings of the cell-attached 

recordings, cells are strongly depolarized in the 4-AP (resting membrane potential (RMP) -35±7.1 mV, n=2 

for PVBC cells, RMP: -39±6.5 mV, n=3 for pyramidal cells) and 0 Mg2+ models (RMP: -40±4 mV, n=3 for 

PVBC cells, RMP: -54±5.9 mV, n=3 for pyramidal cells) but not in the gabazine model (RMP: -55±8.7 mV, 

n=3 for PVBC, RMP: -53±2.7 mV, n=2 for pyramidal cells. 

 

Firing recorded in loose-patch mode (in all models) and intracellular potentials (examined in detail 

only in the high K+ model) correlated closely with phases of the epileptic field potential. Notably, we 

observed interaction among firing of different cell types. Therefore, we investigated in detail the correlation 

between the field signal and the relative timing of the firing of different cell types. 

Stages of an epileptic event correlate with intracellular potentials  

Analysing local field potential features recorded simultaneously with intracellular potentials of 

pyramidal cells and interneurons with no injected current (I=0) in the high K+ model, we found four 

characteristic phases of IIE evolution (Fig. 7): 

-During the first phase, a mild negative deflection of the local field potential was associated with a 

small depolarization of pyramidal cells and a significant depolarization and firing frequency increase in the 

PVBCs, accompanied by an increase in multi-unit activity (Prida and Sanchez-Andres, 1999, de la Prida et 

al., 2006).  

-In the second phase, a steep negative shift visible on the local field potential was associated with a 

more pronounced pyramidal cell depolarization, and a steep depolarization of PVBCs accompanied by 

accelerated firing and drop in action potential amplitude. The multi-unit activity increased further.  

-The onset of the third phase was defined by the blockade of PVBC firing and by a simultaneous 

strong depolarization of pyramidal cells associated with multiple action potentials (Trevelyan et al., 2006). 

The HFO (see also Fig 3 B and C) that appears in this phase is most probably the population spike of the 
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active pyramidal cells. By the end of the phase, after an initial increase, the multi-unit activity and the 

pyramidal cell firing started to drop. 

-During the fourth phase, the local field potential slowly returned to baseline through a negative 

period, the firing of PVBCs gradually recovered, pyramidal cells became repolarized to a baseline 

membrane potential, and stopped at a certain level of repolarization. At the same time the multi-unit activity 

returned to baseline (Fig. 7). 

These phases could be distinguished in the field and cell-attached recordings of the early and late 

high K+-induced IIEs (compare Fig. 3 B and C), as well as in the other 3 models. It was the relative length 

and strength of the phases that were different in the early vs. late IIEs. 

 

As we have shown above, the firing pattern of neurons becomes altered during the states that 

generate epileptiform activity. This can be the result of either changes in cellular parameters important in 

signal integration, or alterations in the parameters of excitatory and inhibitory transmission. In the next steps 

we set out to reveal the possible basis of the observed alterations.  

High K
+
 application alters cellular and network parameters

 

First we measured basic parameters of pyramidal cells (n=9) in high K+ and compared them to 

control conditions. As shown in Fig. 8A we found that the membrane potential of cells depolarized from -

59.2 mV(-62.1; -56.4) to -35.5 mV (-41.2; -27.1), their input resistance decreased from 68.2 MOhm (42.1; 

114.8) to 29.1 MOhm (28.8; 44.2), and the threshold of the current injection required to induce at least one 

action potential (during a step protocol with 800 ms long de-and hyperpolarising steps) decreased from 177 

pA (153; 213) to 37 pA (-156; 124).  

Next we measured the effect of high K+ on excitatory and inhibitory transmission. In pyramidal cells 

we recorded inhibitory postsynaptic currents (IPSCs) evoked with local electric stimulation at the border of 

strata pyramidale and lucidum (to measure changes in perisomatic inhibition), or in stratum radiatum (to 

estimate the alteration in dendritic inhibition). In both cases we found a significant decrease in IPSC 

amplitude to 45% of control (29.4; 54.9) for perisomatic inhibition (p=0.004 paired Wilcoxon test, Fig. 8B) 
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and to 58.5% of control (36.2; 78.9) for dendritic inhibition (p=0.002 paired Wilcoxon test, Fig. 8C). Then 

excitatory postsynaptic potentials (EPSCs) evoked in stratum radiatum were recorded in pyramidal cells. 

When K+ was elevated, we found a significant increase in EPSC amplitude to 132.6% of control (92.3; 

216.1) (p=0.002, paired Wilcoxon test, Fig. 8D and E).  

The question arose if altered action potential shape (amplitude and/or width, charge transfer) can be 

responsible for the changes in excitatory and inhibitory transmission. We examined how these parameters 

changed during high K+ wash in (for more details see Supplemental Results). Since in both inhibitory cells 

and in pyramidal cells we saw similar changes (Fig. S6), this cannot be a mechanism responsible for the 

simultaneous increase of excitatory transmission and decrease of inhibitory transmission. 

 

These data indicate that the efficiency of synaptic inhibition is decreased, whereas excitatory 

synaptic transmission is increased in high K+. We observed the strongest depression in perisomatic 

inhibition, which is considered to be the most important in the control of pyramidal cell firing (Cobb et al., 

1995, Miles et al., 1996). Therefore, we carried out paired recordings of monosynaptically coupled 

perisomatic inhibitory-pyramidal cell pairs (PVBC-pyramidal cell, axo-axonic cell-pyramidal cell and 

CCK+ basket cell-pyramidal cell) to uncover the exact changes affecting the transmitter release of different 

perisomatic interneurons. 

The strength and short-term depression of PV-containing basket cells inhibitory action is modulated 

by high K
+
 application. 

Presynaptic cells were targeted in slices prepared from transgenic mice expressing fluorescent 

markers in PV- or CCK-containing neurons. Postsynaptic currents were evoked by a train of action 

potentials triggered in the presynaptic cell, similar to the firing of these cells recorded during IIEs (30 APs 

with 150 Hz followed by 4 action potentials with 300 Hz). We compared the peak amplitudes and inhibitory 

charges recorded in pyramidal cells in control conditions and in elevated K+ (probably due to plastic 

processes in high K+, washout did not typically result in a complete reversal of the effects of treatment (see 

Fig. 8D)). IPSCs in pyramidal cells evoked by PVBCs (n=7) and axo-axonic cells (n=7) significantly 
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decreased in amplitude in high K+. However, IPSCs in pyramidal cells evoked by CCK+ basket cells (n=5) 

remained fairly intact (for IPSC peak amplitudes: p=0.03 for PVBC-pyramidal cell pairs, p=0.03 for axo-

axonic cell-pyramidal cell pairs and p=0.44 for CCK+ basket cell-pyramidal cell pairs; for inhibitory charge: 

p=0.03 for PVBC-pyramidal cell pairs, p=0.03 for axo-axonic cell-pyramidal cell pairs and p=0.625 for 

CCK+ basket cell-pyramidal cell pairs, paired Wilcoxon tests; to enhance readability, results are 

summarised in Fig. 8F and Table 4). We also found that both during control conditions and in high K+ the 

IPSCs often disappeared before the train ended during the train from PVBCs and axo-axonic cells, 

indicating that neurotransmission cannot be sustained at the high frequency of firing throughout IIEs. In 

contrast, a sustained transmission and asynchronous release was found (Hefft and Jonas, 2005, Szabo et al., 

2010) (Szabo et al., 2010) in case of CCK+ basket cells, even in the presence of high K+. 

Our final question was whether short-term depression becomes altered in high K+. Therefore, the 

amplitude of the first 10 IPSCs was compared to the amplitude of the first IPSC (Pn/P1), illustrated in Fig. 

8H. In the case of PVBCs (n=7), short term depression became more pronounced in high K+ (grey) for the 

first 10 peaks compared to control conditions (black, p<0.01, Kolmogorov-Smirnov), whereas no such 

change appeared in the case of axo-axonic cells (n= 7, p=0.42, Kolmogorov-Smirnov). In contrast, when 

IPSCs originating from CCK+ basket cells (n=5) were studied in high K+, the depression was less 

pronounced. Moreover, plasticity could transiently switch from depression to facilitation (p<0.01, 

Kolmogorov-Smirnov, Fig. 8G).  

Thus, perisomatic inhibition provided by PV+ interneurons becomes largely ineffective during an 

epileptic event, whereas the inhibitory transmission of CCK+ basket cells remains fairly intact or 

occasionally, even slightly increased. 

 

Discussion 

In the present study we wished to describe the difference between physiological SWRs and IIEs. 

Unfortunately, the term sharp wave-ripple used by neurobiologists for physiological events is misleading for 

neurologists/clinicians who use the term “sharp wave” to identify an EEG element occurring in association 
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with epilepsy. This term was borrowed by the biologist from the clinical EEG nomenclature, but it identifies 

a healthy pattern essential in learning and memory formation. 

We have shown that: 1) in vitro SWRs and IIEs are indeed different network phenomena with 

distinct properties. Upon pharmacological interference SWRs disappear and, following a transitory phase, 

the network activity reorganises into a new form of activity in all examined models. 2) During IIEs all CA3 

neurons fire with increased firing rate compared to SWRs. However, the firing of PVBCs and some axo-

axonic cells stop (except for the gabazine model) due to depolarization block before the climax of the event. 

3) During IIEs the firing of PVBCs and pyramidal cells are complementary; i.e., pyramidal cells start firing 

when PVBCs get into depolarization block, while dendritic inhibitory cells fire strongly during all phases of 

the IIEs. 4) In high K+ the balance of excitation to inhibition is shifted: inhibitory transmission is 

compromised, excitation is enhanced, and the integrative properties of pyramidal cells also change, resulting 

in higher excitability. 5) Inhibition collapses for several synergistic reasons: first, as PVBCs and axo-axonic 

cells enter into depolarization block, they stop firing action potentials; second, even when action potentials 

are generated, GABA release is greatly decreased (this is true for all recorded inhibitory cells, but mainly for 

PVBCs and axo-axonic cells); and, finally, the short-term depression of IPSCs originating from PVBCs is 

increased in high K+. 

 

Physiological sharp wave-ripples and interictal events are distinct types of transient high activity 

events 

Though the field potential signal of SWRs and IIEs recorded in stratum pyramidale may look similar 

in shape, they differ in several features (amplitude, duration, accompanying multi-unit activity, firing pattern 

of neurons). As opposed to SWRs, during IIEs all pyramidal cells are repetitively active. We proved that 

IIEs never evolve from SWRs but are separated by a featureless transitory phase, where coordinated firing 

characteristic of SWRs is disrupted, the baseline activity (multi-unit activity) increases and disorganised 

firing evolves. 
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Highly active low synchrony states similar to the one observed during the transition phase were 

found in other in vitro epilepsy models induced by decreasing GABAergic inhibition (Cohen et al., 2006, de 

la Prida et al., 2006), adding 4-AP (Perreault and Avoli, 1991, Barbarosie and Avoli, 1997), omitting Mg2+ 

(Whittington et al., 1995, Huberfeld et al., 2011), or decreasing Ca2+ (Bikson et al., 2003), strengthening the 

hypothesis that SWRs and EEs represent different types of network activity. However, this activity did not 

persist as a stable network state. When the population activity reached a critical level, a new type of 

synchrony, IIEs, (as well as at later stages EEs of different complexity) appeared in our slices, similar to 

results published earlier (Khosravani et al., 2005). The results of the theoretical paper by Brunel and Wang 

(Brunel and Wang, 2003) might explain why the two types of transient synchrony are mutually exclusive, as 

well as the presence of the unstructured gap between them. They explored the effect of changing excitatory 

and inhibitory transmission parameters, showing that network dynamics could be pushed from one type of 

oscillation to a mechanistically different one with an unorganised/asynchronous state in between. They 

reasoned that there are parameter ranges where the network cannot generate a synchronous state, since the 

proper timing of recurrent feed-back mechanisms is not ensured. 

Inhibitory control, especially from PV+BCs, fails during interictal events for several reasons  

At the beginning of an IIE the spontaneous firing of highly excitable pyramidal cells may reach a 

level of run-away excitation (Lux and Heinemann, 1978, Frohlich et al., 2008) and the build-up of excitation 

in the initiating pyramidal cell population is manifested as the first step of depolarization both in inhibitory 

neurons and pyramidal cells (Fig. 8). Although in our set of pyramidal cells we could hardly see any spiking 

in association with SWRs, in a recently published, larger dataset we did see a subset of pyramidal cells firing 

before and during SWRs (Hajos et al., 2013). Furthermore, as shown on Fig. S5 and Figs. 5 and 7 phase 

1&2, intracellular recordings reveal that SWRs and IIEs are preceded by a build-up of depolarizing 

potentials, indicating increasing excitatory neuron activity. 

In parallel with the increase in excitation, inhibitory neuron populations start to be activated. There is 

a level of excitation, however, when PVBCs and some axo-axonic cells enter into depolarization block (in 

most models), and the build-up of excitation enters an uncontrolled state where all pyramidal cells (relieved 
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from perisomatic inhibition) fire repetitively. In the 0 Mg2+ model it has previously been shown that 

pyramidal cells do activate, and IIEs can propagate with a larger speed when inhibition is terminated 

(Trevelyan et al., 2006, Trevelyan et al., 2007).  

Similar inactivation (depolarization block) of fast-spiking cells has previously been described in cortical 

slices using the 0 Mg2+ or the 4-AP model (Kawaguchi 2001, Cammarota 2013). The validity of our finding 

is further supported by recent clinical findings in epileptic patients showing that inhibitory cells enter into 

depolarization block at the beginning of seizures (Omar J. Ahmed, Wilson Truccolo, Jacob A. Donoghue, 

Emad N. Eskandar, G. Rees Cosgrove, N. Stevenson Potter, Andrew S. Blum, Leigh R. Hochberg, Sydney 

S. Cash; Human inhibitory single neurons switch off before dramatic increases in seizure intensity, AES 

Meeting, San Diego, 2012). In addition, recent animal studied have shown that decreasing the activity of 

pyramidal cells, could delay electrographic and behavioural initiation of status epilepticus (Sukhotinsky et 

al., 2013) or dcrease paroxysmal activity in cell culture (Tonnesen et al., 2009). Besides inhibiting 

pyramidal cells, activating PV-containing cells can also reduce seizure frequency of epilepsy (Krook-

Magnuson et al., 2013), indicating that restoring the activity of PVBCs could effectively decrease pyramidal 

cell firing and control network activity. It is a future task however, to build a clinical approach aiming to 

normalize the firing of strategically crucial neuron types. 

 

Why is inhibitory control sufficient during SWRs, whereas it fails during IIEs? It seems that 

inhibition is compromised in the high K+ state at three stages: 1) there is a general decrease of inhibitory 

transmission strength even for single action potentials, especially for perisomatic inhibition (Fig 8B and C),  

2) the transmission of PV+ cells, characterized by multiple high-frequency spiking during an EE suffers a 

strong (for PVBCs an almost complete) short-term depression (Fig 8G) and 3) the most effective inhibitory 

neurons, PVBCs, enter into depolarization block before the peak of IIEs (Figs 3, 4 and 5). Although 

dendritic inhibitory neurons and CCK+ basket cells keep firing with increasing frequency and their 

transmission is potentiated somewhat, it seems that they cannot control the runaway firing of pyramidal cells 

during IIEs (they actually might even promote pyramidal cell firing by reducing their entry into 

depolarization block, see below). 
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Features of PV+ basket cells that make them vulnerable to excess excitation 

The next question is why PVBCs and some axo-axonic cells get into depolarization block while other 

interneurons and pyramidal cells escape. Depolarization block of neurons was observed in pioneering in vivo 

studies of neocortical and hippocampal seizures using intracellular recordings from single unidentified cells 

(Kandel and Spencer, 1961, Matsumoto and Marsan, 1964). The involvement of Na+ channels and persistent 

sodium current has been shown to be critical in the evolution of depolarization block (Bikson et al., 2003). 

The transition from sustained spiking to depolarization block can be described using dynamical systems 

theory (Izhikevich, 2007, Dovzhenok and Kuznetsov, 2012). Although no detailed mathematical analysis of 

the relationship between cellular parameters and the input current required for depolarization block has been 

performed, the conditions leading to depolarization block likely depend on the properties (such as the 

voltage-dependence and kinetics of channel activation and inactivation) and densities of spike-generating 

currents, but may also be influenced by slower (e.g., adaptation) currents. The properties of both Na+ and K+ 

channels are known to be different in PVBCs and pyramidal cells (Martina and Jonas, 1997, Martina et al., 

1998). Another important factor which determines whether depolarization block occurs is the net input 

current (synaptic current) received by the neuron, which may differ substantially among the different cell 

types. In fact, we showed here that during IIEs, PVBCs and axo-axonic cells reach more depolarized 

membrane potentials compared to other cell types. This can be explained by the fact that PV+ cells receive 

significantly more excitatory (~15,000) inputs, balanced with a weak inhibition (6%) compared to CCK+ 

(~5000 excitatory input, 35% inhibition) and dendritic inhibitory neurons (~2600 excitatory input, 29% 

inhibition (Gulyas et al., 1999, Matyas et al., 2004). On the other hand, pyramidal cells have a dendritic 

input organization that is rather similar to that of PV+ cells. They receive a large amount of excitatory input 

(~30,000 synapses) that is balanced only by a weak inhibition (5.3%, (Megias et al., 2001)); still, they do not 

get into depolarization block during IIEs. One of the reasons for this is probably the observed differences in 

spike-generating current as discussed above; another important difference may be the presence of slower 

adaptation currents (such as M-type and sAHP K+ currents) in pyramidal cells, but not in PVBCs. Most 

importantly, the perisomatic input organization of the two cell types is different. While PVBCs do receive 
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perisomatic and somatic excitatory inputs, pyramidal cells are devoid of them, and therefore might not 

experience the same depolarization block as PVBCs do (Gulyas et al., 1999, Megias et al 2001). It has been 

shown that in neurons not receiving perisomatic excitation, the soma and the axon are electrotonically 

distant (Rancz and Hausser, 2010), and therefore might not experience the same depolarization as neurons 

with perisomatic excitatory input. Thus, a unique combination of cellular and connectivity parameters in 

PVBCs may act synergistically to explain the presence of depolarization block during IIEs. As a result, the 

enhanced excitation effectively activates pyramidal cells without causing a depolarization block, and 

without PVBC-mediated control over spiking, the network activity further increases. 

Spike time histograms showed that except for PVBCs, all neuron types could considerably increase 

their firing rate during IIEs compared to SWRs. An important implication of our results is that PVBCs, by 

receiving a large amount of excitatory input and expressing the proper combination of ion channels, are 

tuned to be able to fire maximally during physiological, transient, high activity events, i.e., the SWRs. On 

the other hand, a detrimental consequence of this fine tuning is that when they receive a pathologically high 

level of excitation, they enter into depolarization block – i.e. the fuse blows. 

Absolute and relative changes in cellular and network properties underlie the switch from healthy to 

pathological synchrony in the high K
+
 model 

Combining the results of Brunel and Wang with our findings (long-term changes of cellular and 

network parameters and transient changes in inhibitory transmission, firing patterns of different cell types) 

as well as with earlier results demonstrating that pyramidal cells and interneurons become activated at 

different times during IIEs (Trevelyan et al., 2006, Ziburkus et al., 2006, Spampanato and Mody, 2007), we 

suggest the following sequence of events during the evolution of IIEs: 

1) Initiation stage: Deflections in the local field potential, increasing spiking of neurons (multi-units 

and cell-attached spikes) as well as two-phased depolarization of intracellular potentials suggest that 

excitatory activity starts to build up gradually at the beginning of an IIE (phase 1 and 2 of Fig. 7), similar to 

the case of SWRs (Hajos et al., 2013). However, since the strength and the balance of excitatory and 

inhibitory transmission, as well as cellular excitability, is shifted by high K+ application (compared to 
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SWRs), although inhibition is still present in this phase, it can not restrain the excitation from building-up 

further in the recurrent system of CA3. 

2) Pyramidal cell firing/HFO stage: As the activity in the system increases beyond the 

physiological level, inhibition totally fails (phase 3) through different synergistic mechanisms 

(depolarization block of PVBCs, short term depression of IPSCs) and most pyramidal cells start to fire at 

high frequency. These high frequency, synchronized action potentials are manifested as HFO in the local 

field potential (Dzhala and Staley, 2004, Foffani et al., 2007). It is important to note that since perisomatic 

inhibitory transmission has collapsed at this point, synchronous IPSPs do not contribute to local field 

potential generation in stratum pyramidale, unlike in the case of the generation of the ripples of SWRs 

(Csicsvari et al., 1999, Klausberger et al., 2003, Le Van Quyen et al., 2008, Hajos et al., 2013). 

3) Termination stage: Examining phase 4 in Fig. 7 might give a clue as to why IIEs terminate. Here 

we can see that pyramidal cell firing accommodates and starts to slow down, while PVBCs are still in 

depolarization block (the same is visible in the drop of multi-unit frequency for all models in Fig. 1B). So it 

is the refractoriness of the pyramidal cells that is the first step in the termination. As pyramidal cells fire 

less, inhibition regains control and terminates the IIE. Paradoxically, the depolarization block of PVBCs 

(evidently a refractory mechanism) can help terminate IIEs, since while the cells are not firing their 

inhibitory transmission might recover from the strong depression, and when the cells start firing again their 

inhibition is effective. The decreasing firing frequency of PVBCs in phase 4 (Fig.7) indicates that their 

excitatory drive decreases (note that before they stop firing due to depolarization block their firing frequency 

keeps increasing, so they do not slow due to accommodation, but due to decreasing drive). Most probably 

several refractory mechanisms are engaged by the end of phase 3 due to the repetitive high frequency firing 

of the pyramidal cells. Collapse of glutamatergic transmission or refractoriness of the firing might be 

elements that result in decreased pyramidal cell firing and the recovery of inhibition. 

Isomorphic mechanisms might lead to IIEs in different models and play a role in the generation of 

more complex EEs 

We measured in detail how cellular and network parameters change in the high K+ model. We found 

that the excitability of neurons, as well as the absolute and relative values of excitatory and inhibitory 
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transmission, become altered. Other employed epilepsy-inducing treatments also evoke changes in these 

critical parameters. 4-AP application causes a blockade of voltage-gated K+ channels (Glover, 1982, Rudy, 

1988, Choquet and Korn, 1992), and thus changes input resistance and membrane potential. Zero Mg2+ 

activates NMDA receptors and induces an increase in excitatory transmission, leading to direct 

depolarization (Flatman et al., 1983, Coan and Collingridge, 1985, Mody et al., 1987) and long term 

potentiation of synaptic transmission (Kauer et al., 1988). Gabazine directly increases excitability by 

blocking synaptic and non-synaptic GABAA receptors, thus eliminating inhibition and depolarizing cells 

(Heaulme et al., 1987, Aradi and Maccaferri, 2004, Wlodarczyk et al., 2013), as well as by increasing input 

resistance (Cope et al., 2005). Recent work by Aivar and Prida (personal communication) also demonstrates 

changes in the strength and ratio of excitatory and inhibitory transmission in an in vitro epileptic model 

induced by low Ca2+ concentration. 

The findings of Brunel and Wang (2003), especially in the light of their later study (Geisler et al., 

2005), leaves enough room for possible parameter changes to push the system into different dynamics. The 

work of Marder (Marder, 2011) also emphasizes that in the case of neurons and networks, several different 

sets of parameter combinations can result in similar or identical behaviours. Recent results of genetic studies 

revealed that epilepsies with similar symptomatology can be caused by highly distinct mutations in different 

genes (Poduri and Lowenstein, 2011, Allen et al., 2013). 

These ideas drove us to suggest a common framework for all the studied models: As a first step, 

shifts of different nature in excitability, and a change in the ratio of excitation vs. inhibition, are induced in 

the different epilepsy induction models, resulting in a pathological, uncontrolled increase of activity during 

the initiation phase of IIEs. 

As a second step, inhibition fails during the pyramidal cell firing/HFO stage in all but the gabazine 

model. After the activity builds up to a sufficiently high level, excitatory drive makes PVBCs fire at a non-

physiologically high frequency, resulting in strong short term depression of inhibitory transmission that 

releases pyramidal cells from inhibition, which then start firing at high frequency, generating the HFO in the 

local field potential. Inhibition is further damaged because PVBCs enter into an additional depolarization 
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block that evolves because elevated K+, 4-AP and zero Mg2+ causes direct strong depolarization of the 

membrane that is further boosted by the strong excitation during the initiation stage. 

PVBCs do not enter depolarization block in the gabazine model, probably because although gabazine 

causes some depolarization by inhibiting synaptic and non-synaptic GABAA currents (Cope et al., 2005), 

this depolarization may not be enough to push the membrane into depolarization block. Yet, the pyramidal 

cell firing/HFO stage is present in this model too. We believe that the initiation stage starts due to 

compromised inhibition (so the lack of PVBC depolarization block is irrelevant), and at some stage the 

uncontrolled build-up of excitation causes masses of pyramidal cells to reach the threshold for high 

frequency firing, and the IIE enters the pyramidal cell firing/HFO stage. 

In these models, the last step, the termination stage of IIEs, is possibly driven by the same refractory 

mechanisms in the excitatory system as in the high K+ model, since we see a similar drop in pyramidal cell 

firing by the end of the second stage. 

 

To explain all stages of the IIEs, we invoked two layers of parameter changes on different time 

scales. The prolonged parameter modulation, the difference between the healthy and the epileptic state, 

manifests on the several-minute time-scale of epileptiform activity induction. In epileptic patients this is 

probably the original reason why epilepsy starts: later events are consequences. The alteration of parameters 

means that IIEs are initiated instead of SWRs. As a second layer, short term changes (collapse of inhibition, 

refractoriness of excitation on the 200-1000msec scale of an IIE) allow uncontrolled firing and later 

termination of a single cycle. If we want to explain the evolution of EE forms (early and late interictal, 

preictal and ictal), we have to invoke a third layer of changes that is a superimposed slow drift in the 

parameters (on the 1-5 minute scale), most probably evoked by pathologically high activity (changes in K+ 

levels, metabolic exhaustion, potentiation of synaptic weights, etc). This drift results in changes in the 

initiation rate and recurrent structure of IIE like bursts, as well as in the relative length of their different 

stages (e.g. HFO stage is longer during late IIEs than during early IIEs). We propose that preictal and ictal 

events are combinations of repetitive, degenerated IIEs. There must be a secondary refractory mechanism 
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associated with the third layer as well, since repetitive ictal events are almost always followed by silent 

periods lasting for minutes.  
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Table 1: Composition of extra-and intracellular solutions 

Extracellular 

solutions          

 

 

in mM Sucrose NaCl KCL NaHCO3 CaCl2 MgCl2 NaH2PO4 glucose      
  

aCSF 0 126 3.5 26 1.6 1.2 1.25 10      
  

cutting 205 0 2.5 26 0.5 5 1.25 10      
  

            
 

Intracellular 

solutions  pH 7.39, osmolarity of 285 mOsm⁄L          
 

  

in mM 

K-

gluconate CsCl MgCl HEPES NaCl Mg-ATP ATP GTP 

Creatine 

phosphate 

QX-

314 

biocyti

n  

Intra 1 110   0 40 4 2 0 0.3 0 0 0.20%  

Intra 2 

80 (Cs-

gluconate) 60 1 10 3 0 2   0 5 0.20%  

Intra 3 138 3 0 10 0 4 0 0.4 10 0.2 0.20%  
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Table 2: Spiking characteristics of different hippocampal CA3 neurons during SWRs and during different 

phases of EEs, and values of significance when comparing them. Numbers in italics are significant p values 

(<0.05). 

  PC PV+ BC AAC CCK+ BC DN 

spike/SWR 0 2.9 (0.9;5.1) 2.1 (0.9; 2.5) 0.6 (0.2; 0.8) 0.8 (0.4; 1.8) 

spike/IIE 

11.8  

(4.7; 11.6) 

6.7  

(7.7; 11.5) 

12.8 

 (7.1; 18.6) 

15.1 

 (11.5; 14.7) 

11.7  

(8.9; 15.9) 

Wilcoxon test p values <0.001 0.038 0.008 0.03 <0.001 

     

Median number of APs 

across events in different 

phases PC PV+ BC AAC CCK+ BC DN 

APs "before" phase 2.5 (2.4; 4.9) 4.5 (3.5; 8.1) 7 (3.9; 8) 4.89 (4.1; 5.8) 3.69 (3.3; 5.3) 

APs "during" phase 8.5 (4; 9.3) 0.76 (0.5; 1) 4.18 (2.6; 4.7) 6.88 (1.6; 5.7) 5.13 (0.6; 1.6) 

APs "after" phase 0.17 (0.1; 4.2) 1.1 (0.4; 1.5) 3.74 (3.3; 5.4) 2.5 (1.7; 3.2) 3.1 (1.5; 4.2) 

     

change in firing rate 

(spike number in 

"before" phase: 100%)           

"before" to "during" 

211  

(148.5; 325%) 

12.5  

(7.6; 23.9%) 

100.4  

(58.2; 136.2%) 

129  

(107; 154%) 

129  

(33.1; 200.1%) 

"before" to "after" 6.7 (3.5; 8.9%) 

36.81  

(14.1; 37%) 

76.6  

(73.7; 121.8%) 

47.9 

 (33.3; 65.1%) 

69.1  

(55.5; 93%) 

"during" to "after" (during 

was 100%) 4.3 (2.1; 7.7%) 

223.4  

(58.1; 421%) 

89.5  

(34.2; 126.6%) 

41  

(38.9; 46.9%) 

62.9  

(32.6; 99.7%) 

Friedman ANOVA <0.001 0.007 0.8 0.015 0.011 

Post hoc corrected 

Wilcoxon test p values           
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"before" to "during" 0.026 0.024 0.68 0.29 0.4 

"before" to "after" 0.016 0.02 0.5 0.13 0.03 

"during" to "after" 0.014 0.024 0.92 0.043 0.42 

      

change in spike amplitude 

(amplitude in "before" 

phase: 100%)         

"before" to "during" 

54.4%  

(66.7; 87.6) 

65.3%  

(49.5; 75) 

54.89% 

 (54.9; 68.4) 

98.5% 

(96.4; 103.1) 

73.14%  

(63.9; 86.7) 

"before" to "after" 

78.4%  

(61.2; 86.3) 

71.2% 

(61.2; 76.5) 

66.94%  

(66.3; 76.4%) 

111.6% 

(107;113.3%) 

89.87%  

(77.4; 98%) 

"during" to "after" (during 

was 100%) 

109.8%  

(76.5; 112.6) 

109.1%  

(102; 128.9) 

125.9 % 

(108.9; 138.6) 

106%  

(102.5; 117.4) 

116.1%  

(103; 128.5) 

Wilcoxon test p values           

"before" to "during" 0.009 0.005 0.043 1 0.004 

"before" to "after" 0.018 0.005 0.028 0.144 0.012 

"during" to "after" 0.57 0.05 0.075 0.043 0.004 
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Table 3: Spiking characteristics of different hippocampal CA3 neurons during SWRs and during different 

phases of EEs, and values of significance when comparing them. Numbers in italics are significant p values 

(<0.05). 

Levels of significance when comparing relative changes of firing rate and amplitude  

among cell groups. As post hoc test, Mann-Whitney U-test is used with Bonferroni correction. 

Kruskal-Wallis ANOVA: p=0.011   PC PV+ BC AAC CCK+ BC 

Firing rate change: before to during PC         

  PV+BC <0.001       

  AAC 0.046 0.062     

  CCK+BC 0.137 0.014 0.27   

  DN 0.084 0.002 0.35 0.89 

 
 

     

Kruskal-Wallis ANOVA: p=0.006   PC PV+ BC AAC CCK+ BC 

Firing rate change: before to after PC         

  PV+BC 0.27       

  AAC 0.023 0.023     

  CCK+BC 0.056 0.143 0.39   

  DN 0.036 0.018 0.48 0.35 

       

Kruskal-Wallis ANOVA:  p<0.001   PC PV+ BC AAC CCK+ BC 

Spike amplitude change: before to 

during PC 

        

  PV+BC 0.24       

  AAC 0.098 0.85     

  CCK+BC 0.08 0.012 0.004   

  DN 0.16 0.043 0.13 0.028 
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Kruskal-Wallis ANOVA: p<0.001   PC PV+ BC AAC CCK+ BC 

Spike amplitude change: before to after PC         

  PV+BC 0.015       

  AAC 0.22 0.7     

  CCK+BC 0.06 0.012 0.028   

  DN 0.5 0.008 0.028 0.038 
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Table 4: Membrane potential characteristics of different CA3 neurons during EEs.  

Transmission parameters of different perisomatic-pyramidal cell pairs among different conditions. 

Membrane pot. closest 

to loose patch pattern PC PV+ BC AAC CCK+ BC DN 

Membrane pot. I=0 

-30.8 mV 

 (-32; -30.3) 

-39.7 mV 

(-40.2; -39.6)  

-45.1 mV 

(-45.3; -43)  

-41.8 mV 

(-42.5; -40.9) 

-29.7 mV 

 (-30.4;-29.1)  

Membrane pot at IIE 

peak 

-13.1mV 

(-15.4; -11.9) 

-17.6 mV 

(-19.9; 0) 

-19.9 mV 

(-20.2; -15.2) 

-29.9 mV 

(-33.8; -29.1) 

-28 mV 

 (-29.1; -27.8) 

Membrane potential 

where firing probability 

is the highest 

-35.1 mV 

(-36.4; -33.8) 

-40.4 mV 

(-45.1; -29.8) 

-40.4 mV 

(-45.2; -40.2) 

-44.8 mV 

(-45.1; -42.3) 

-30.4 mV  

(-32.8; -30.1) 

       

IPSG (nS) %  PV+ BC AAC CCK+ BC    

high K+ (control: 100%) 

45.3%  

(33.4; 49.1) 

37.3%  

(11.2; 56.5) 

73.44%  

(54.3; 93)   

 

Washout 

57.5% 

 (38.4; 88.9) 

61.7%  

(54.5; 139) 

93.7% 

 (72.2; 167.5)   

 

       

amplitude (pA) %  PV+ BC AAC CCK+ BC    

high K+ (control: 100%) 

42.2% 

 (26.3; 51.7) 

65.3% 

 (51.9; 70.4) 

76.9%  

(73.7; 80.8)   

 

Washout 

98.3%  

(93; 137.8) 

97.5% 

 (88.1; 111.2) 

98.9%  

(91.8; 106)   
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Figure 1: Transition from sharp-wave ripples to epileptiform events and their differences  
A) IIEs were induced by elevating extracellular K+ concentration. A highly active, desynchronized state 
separates the physiological, transiently highly active SWR state from the pathological, transiently highly 

active IIEs. Note that an increase of multi-unit frequency precedes IIEs. Upper traces: local field potential of 
the transitory phase. Lower traces: Plot of multiunit frequency demonstrating network activity during the 
transition. B) Enlarged image of a SWR and accompanying multi-unit activity at two time scales, as well as 
the transitory phase and IIEs and the underlying multi-unit activities appearing in four different epilepsy 
models. C) Physiological and pathological transient high activity events are plotted to compare their 

correlation. A negative correlation is present in the rate of amplitude of the two types of events (n=26). D) 
The rate of SWRs and IIEs at three different phases of the transition from several experiments. During 
control conditions SWR rate is high (and EE rate is 0), but after the pharmacological intervention it 

disappears completely. After the transitory phase (when the rate of both SWRs and IIEs is 0) the rate of IIEs 
starts to increase, whereas SWR rate remains at zero. Note that for slices able to generate both SWRs and 

IIEs, the IIEs cannot be seen until SWRs disappear completely (n=25).  
SWRs (E) and early IIEs (F) may appear similar (see insets), however, compared to SWRs, IIEs (even early 
ones) have a larger amplitude, a longer duration (top trace) and are accompanied by several-fold higher 
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multi-unit activity (bottom trace). Analysis of current source densities (centre) showed only minor shifts in 
the organization of sinks (red) and sources (blue), especially in the second half of an event.  

 
199x222mm (300 x 300 DPI)  
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Figure 2: Reorganization of synchrony during sharp-wave ripple to epileptiform event transition induced by 
high K+  

During the transition the synchrony of multi-unit activity drops and then builds up again until the network 

reaches the level of synchrony where IIEs start. A) Local field potential during the transitory phase. Areas 
emphasized with grey bars (SWR, T1, T2, T3 and IIE) indicate different phases of the transition and are 

magnified in B. The raster plot of multi-units and the multi-unit frequency are shown below the local field 
potential. C) Upper trace shows how multi-unit frequency (grey) and its low-pass-filtered baseline (black) 
increases during the transition. The lower graph shows the baseline-normalized instantaneous frequency 
fluctuation. D) Time-binned autocorrelogram of multi-unit activity showing that the synchrony of firing 

during SWRs falls apart during the transitory period and reorganizes into a different synchrony during IIEs. 
E) A U-shaped curve of "burstiness" of multi-unit frequency shows that during the transition phase, 

synchrony decreases in the system. F) A decrease and gradual recovery can be seen both in the standard 
deviation (s.d.) of local field potential values and in the s.d. of instantaneous multiunit frequency. Note that 
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the s.d. of multi-unit frequency starts to increase several minutes earlier than the s.d. of the local field 
potential signal (framed area), and a high level of synchrony evolves before anything is seen in the local 

field potential. G) Changes in the standard deviation of multi-unit instantaneous frequency from SWRs to the 
transition phase and to IIEs in 6 recordings. Scale: B upper 100 µV, lower 60 Hz, time scale: 500 ms  

 
202x292mm (300 x 300 DPI)  
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Figure 3: While parvalbumin-positive basket cells stop firing during epileptiform events, other cells increase 
their firing rate  

A) Firing of anatomically identified CA3 neurons during SWRs recorded in loose patch mode. Somata and 

dendrites of cells are shown in black, axons in red. Firing of the cells can be seen in the lower rows. B-C) 
Firing of neurons during early and late IIEs, respectively. All examined neurons increased their firing rate 
and changed their firing pattern during early IIEs. During late IIEs they increased their firing rate further, 
and some cells (PVBCs) stopped firing at the peak. Below the local field potential the relative power in the 
150-400Hz band is plotted to show the duration of high-frequency oscillation during the IIEs. HFO coincided 
with pyramidal cell firing and the silent phase of PVBCs. For quantification, firing of neurons was separated 
into three phases of 100 ms: before (b), during (d) and after (a) the peak of the IIE. PVBCs stopped firing at 

the peak (grey area, approximately "during" phase) of IIEs.  
 

248x295mm (300 x 300 DPI)  
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Figure 4: Firing rate varies among different phases of epileptiform events induced by high K+  
A) Spike distribution histograms of individual neurons during SWRs (grey: individual traces, dashed red: 

average) and IIEs (black: individual traces, red: average) show that the firing pattern becomes altered and 
the firing rate increases. B) Statistical comparison of the average number of spikes fired by different 
neurons during SWRs (s), in the “before” (b), “during” (d) and “after” (a) phases. Note that the spike 

number significantly increases from SWRs to IIEs (marked with asterisks). Firing also differs greatly among 
different phases of IIEs. C) Changes in normalized firing probability and amplitude for different neuron types 
(normalized to “before” phase).  Upper graphs compare changes in normalized values between the “before” 

and the “during” phases, whereas lower traces compare changes among the “before” and “after” phases. 
Grey area indicates a decrease (below 100%), asterisks indicate significance at p<0.05).  

 
202x193mm (300 x 300 DPI)  
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Figure 5: Parvalbumin-positive basket cell firing is blocked due to strong depolarization  
A-C) Three examples show that in the epileptogenic aCSF the membrane potential of neurons is 

approximately -40mV before IIEs (baseline), since their loose-patch-recorded spiking matches the firing 
pattern recorded at -40mV in current clamp during IIEs. Upper pair of traces show loose-patch-recorded 
firing (black) during an EE (grey: local field potential). Similar sequences of spikes were recorded from the 
neuron at -40mV (middle traces), but not at -70mV (lower traces). The similarity to the -40 mV potential 

was true for all examined cell types. A pyramidal cell (A), a PVBC (B) and a CCK+ basket cell (C) are shown. 
D) The membrane potential where neurons fired with a similar pattern to that seen in loose patch mode is 

indicated with the lower striped grey box and whiskers (baseline), whereas the membrane potential 
recorded immediately after break-in (in I=0 mode) is shown with white box and whiskers. Higher grey box 
and whiskers plots indicate the membrane potential recorded during the IIE peak. This value was markedly 

higher compared to the former two time points, and was more variable among cells.  
E) Change in spiking rate as a function of depolarization is shown for CA3 neurons. Some neurons increase 
their firing rate upon depolarization (pyramidal cell, CCK+ basket cell, dendritic layer innervating cell) while 

others decrease it (PVBC, axo-axonic cell). To compare neurons with inherently different spiking rates, 
membrane potential-dependent changes were normalized to the peak firing rate of individual neurons. Grey 

line indicates 100% as maximal firing. The figure shows that PVBCs and axo-axonic cells fire already 
maximally close to normal resting potential (note that PVBCs may completely stop firing, whereas, axo-

axonic cells only drop their firing rate until a certain point). Other neurons, most importantly pyramidal cells, 
can increase their firing rate with depolarization.  

 
120x112mm (300 x 300 DPI)  
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Figure 6: Firing pattern of pyramidal cells and parvalbumin-positive basket cells in other models  
The firing of pyramidal cells (A) and PVBCs (B) was recorded in loose patch mode (upper rows) 

simultaneously with local field potential recordings (middle rows) in 3 further models of IIEs. The relative 
power in the 150-400 band (base-normalized to the period before the IIEs) was also calculated and plotted 
(lower trace) to indicate the period when high frequency oscillation (Boksa et al.) was present in the local 
field potential. Pyramidal cells mostly fired at (and after) the peak of IIEs. PVBCs cease to fire (similarly to 

the high K+ model) at this stage in the 4-AP and 0 Mg2+ models (suggesting they received strong 
depolarization), but only decrease their spike amplitude in the gabazine model with a continued firing. The 

high-frequency oscillation in the local field potential coincided with strong pyramidal cell firing in all models. 
C) The firing frequencies in the different models during different phases for the two cell types.  

 
245x274mm (300 x 300 DPI)  
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Figure 7: Build-up of depolarization during epileptiform events and its effect on neuronal firing: pyramidal 
cells start to fire massively when inhibition from parvalbumin-positive basket cells collapses  

During the late IIEs we studied, 4 phases can be distinguished: 1. Primary depolarization, PVBCs depolarize 

and start firing, pyramidal cells start to depolarize, multi-unit activity starts to increase. There is a slow 
negative deflection in the local field potential. 2.Secondary depolarization, the frequency of PVBC firing 

further increases while the amplitude drops as the cell depolarizes even further, pyramidal cells depolarize 
further but do not fire yet, multi-unit activity increases heavily, steep negative drop in local field potential 
appears. 3. IIE builds up, the power in the 150-400Hz band increases, PVBCs cease to fire (depolarization 
block) and pyramidal cells start firing as a result of the additional depolarization due to loss of inhibition, 
multi-unit activity stagnates and starts to drop. A high frequency, large amplitude component (most 

probably pyramidal cell extracellular spikes, units) appears in the local field potential, accompanied by a 
positive envelope. 4. The local field potential normalizes, PVBC firing gradually recovers as cells exit the 
depolarization block, pyramidal cells stop firing and multi-unit activity drops. The figure illustrates the 
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behaviour of the two cell types in order to compare them; the local field potential was recorded 
simultaneously with the PVBC, whereas the pyramidal cell was recorded in another experiment. However, in 

our experiments, pyramidal cells and PVBCs fired during the given phases as illustrated in the figure.  
 

48x98mm (300 x 300 DPI)  

 

 

Page 52 of 72

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

  

 

 

Figure 8: High K+ increases excitability, and decreases inhibitory transmission relative to excitatory 
transmission  

A) When the extracellular K+ concentration is increased, pyramidal cells become more depolarized (top), 

input resistance of cells drops to 49±4% (middle), and excitability increases (bottom), since cells fired the 
first action potential at a smaller membrane current in high K+ compared to control conditions (n=7). B-E) 

shows the increase in the ratio of excitatory to inhibitory transmission in high K+. The charge of IPSCs 
evoked by stimulating perisomatic inhibitory axons (stratum lucidum/pyramidale) dropped after high K+ 

application (B). Similarly, in the case of dendritic IPSCs evoked by stimulating stratum radiatum the charge 
decreased in high K+ (C). However, when EPSCs were evoked in high K+ the charge increased (D). E) 
summarizes the effects on synaptic transmission. F and G) Paired recordings show that inhibitory charge 

decreases in high K+ in the case of PVBCs (n=7) and axo-axonic cells (n=7), but remains fairly intact in the 
case of CCK+ basket cells (n=5). H) Compared to control conditions (black), short term depression becomes 
more pronounced in high K+ (grey) for the first 10 peaks (afterwards the  synapse efficacy drops greatly) 
for PVBCs, whereas it does not change in the case of axo-axonic cells. In the case of CCK+ basket cells, in 

high K+ the depression was less pronounced. Moreover plasticity could transiently switch from depression to 
facilitation. Asterisks illustrate significance at p<0.05.  

 
164x163mm (300 x 300 DPI)  
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Supplemental Results: 

Characterization of CCK-DsRed mice 

To facilitate the targeting of CCK-positive GABAergic interneurons, a transgenic 

mouse strain was generated in which DsRed fluorescent protein was specifically expressed in 

CCK-positive neurons (Mate et al., 2013). In the hippocampus, CCK -positive neurons occur 

in all layers of the cornu Ammonis. Accordingly, DsRed cells could be found throughout all 

layers, mostly pyramidale, radiatum and lacunosum-moleculare (Fig. S1). In the dentate 

gyrus, CCK -positive cells are known to be located most frequently at the border between the 

stratum granulosum and the hilar region, where the DsRed -fluorescent cells were found.  

Coexpression of CCK- and DsRed was quantified by combining the intrinsic red 

fluorescence with green fluorescent immunostaining (Alexa 488) for CCK. In the CA1 and 

CA3 regions, all layers were involved in the quantification except for str. pyramidale. This 

was due to the fact that pyramidal cells expressing CCK are extremely dense in these layers, 

and it is quite difficult to differentiate them from CCK-expressing interneurons. However, 

our main goal was to characterize the DsRed-expression of CCK-positive GABAergic cells 

(Fig. S1).  

A total of 250 cells were quantified and characterized based on their DsRed-

expression and CCK suprathreshold immunpositivity, and 85.35% proved to express both 

DsRed protein and CCK. Details are shown in Table S1. In 5.92% of the quantified cells, 

only DsRed protein was visible, but CCK concentration was below the detection threshold. 

However, the electrophysiological properties of these cells were similar to that of previously 

recorded CCK-positive cells. The expression of DsRed fluorescent protein was almost 
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complete in CCK-immunopositive interneurons; only 8.73% of all quantified cells showed a 

CCK-immunoreaction without any detectable signal for DsRed protein.  

Correspondence of in vitro SWR-like events to in vivo physiological SWRs 

It is an important question to what extent in vitro models can reproduce activity 

patterns recorded in vivo. Mere similarity in the amplitude, duration and shape of an activity 

pattern in field potential recordings from a single layer does not necessarily mean identical 

generation mechanisms. Therefore, the activity patterns observed in our in vitro preparations 

might be more appropriately named SWR-like activity. However, for the sake of readability 

we refer to them as SWRs. 

Nevertheless, several lines of evidence indicate that the generation mechanisms of 

these events in vivo and in vitro are in fact similar. Although SWRs are considered to be 

generated in the CA3 region and only spread to the CA1 region via the Schaffer collaterals 

(Buzsaki, 1986), in vivo results derive from the CA1 area. Due to the different connectivity of 

the two regions and the fact that SWRs only propagate to CA1, the generation mechanisms of 

SWRs in the two areas are most probably somewhat different (e.g., ripple frequency is known 

to be higher in CA1). Yet in vivo SWRs in CA1 (Buzsaki, 1986, Penttonen et al., 1997, 

Csicsvari et al., 1999, Csicsvari et al., 2000, Buzsaki et al., 2003) and several (though not all) 

in vitro SWR models share important characteristics.  

Below we list the features of the SWRs we observed in our slices (see also Fig. S2, S5 

and Fig. 1 for CSD). For those parameters where in vivo data are available from the CA1 area 

(Buzsaki, 1989, Csicsvari et al., 1998, Csicsvari et al., 2000, Buzsaki et al., 2003, Sullivan et 

al., 2011), the in vivo values are shown in square brackets. 

 

1) SWR episodes occur simultaneously (with a slight delay in CA1) in CA3 and CA1 areas of 

our slices. 

Page 55 of 72

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

3 

 

2) The basic parameters of SWR episodes are as follows: 

- incidence: 0.86±0.50 Hz (range: 0.02 – 2.04 Hz) [in vivo: 0.02 – 3 Hz] (n=82) 

- amplitude: 170±196 µV (range: 14 – 615 µV; median: 107 µV; interquartile range: 59 – 225 

µV; n=82) 

- duration: 30.4±7.6 ms (range: 16.0 – 53.3 ms) [in vivo: 40-100 ms] (n=82). 

3) Sharp waves are accompanied by high frequency ripples. In our sample: 

- ripple frequency: 186.2±35.0 Hz (range: 109 – 254 Hz) [in vivo: 140-200 Hz] (n=66) 

- ripple duration: 25.9±13.0 ms (range: 0 – 56.6 ms) [in vivo: 25-40 ms] (n=82). 

4) SWRs are accompanied by increased unit firing, which is phase-coupled to the negative 

peaks of the ripple oscillation in str. pyramidale (in our sample, the duration of high spiking 

activity was 35.9±10.5ms [in vivo: 50-70ms], n=63). 

5) The shape of sharp wave field potentials in different hippocampal layers was found to be 

similar to in vivo recordings and resulted in a similar CSD profile  (Fig. 1, compare to Figs. 

1D and 3 from Ylinen et al. (Ylinen et al., 1995), Fig. S2). 

6) In a recent paper (Hajos et al., 2013), we examined the firing properties of a large set of 

anatomically identified hippocampal neurons in loose-patch configuration during in vitro 

SWRs in the CA3 region and found that their firing shows similar phase locking to SWRs as 

identical neuron types examined by Klausberger et al (Klausberger et al., 2003). We note, 

however, that the latter results are from the CA1 area, but since no such measurements are 

available so far from CA3, these may be used as a first approximation. 

7) We did not use stimulation or any drugs in our baseline conditions; rather, SWRs occurred 

spontaneously. 

Quantification of the evolution of epileptic events 

Applying four different epileptogenic methods caused the development of simple EEs 

followed by more and more complex forms. We aimed to categorize them in order 
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characterize their features. We are aware that in vitro EEs are not necessarily equivalent to 

human EEG patterns, nevertheless, our identification and classification of EEs was based on 

characteristics similar to those used in human epileptic patients, as described in the literature 

(Panzica et al., 1999, Fabo et al., 2008, de Curtis et al., 2012, Fanella et al., 2012). EEs could 

be categorized as 1: interictal-like events (occurring in all slices and studied in detail later), 2: 

preictal-like events or 3: ictal-like events, based on their amplitude, duration, structure and 

incidence (Fig. 1B).  

1: We defined interictal-like events (IIE) as single, large amplitude 320 µV (220; 

520), long duration 140 ms (110; 155) positive field events followed by a negative deflection, 

and accompanied by high multi-unit activity prior to the rise of the amplitude (the highest 

multi-unit peak was used for event detection, see Supplementary Experimental Procedures). 

They occurred at an interval of 800 ms (557; 1250). IIEs were seen in most slices (and in all 4 

models) producing EEs (high K
+
 n=86, Gabazine n=23, 4-AP n=8, 0 Mg

2+
 n=19) (Fig. S3) 

2: The appearance of preictal-like events was preceded by a negative peak (with a 

robust increase of multi-unit activity), similarly to interictal-like events. However, preictal-

like events were immediately followed by 1-5 smaller events with negative deflections, 

followed by a large positive peak (Fig. S3). They appeared less frequently compared to 

interictal-like events (high K
+
 n=48, gabazine model n=14, 4-AP n=8, 0 Mg

2+
 n=9), with 

large amplitude 3300 µV (1187; 4000) and duration 465 ms (335, 793). These events 

appeared with a recurrence of 1400 ms (637, 7750) due to differences in EE induction. 

3: Ictal-like events were seen in a moderate number of slices (mostly in the 0 Mg
2+

 

model n=10, in the gabazine model n=5, and once in the high K
+
 model), manifesting as 

successive large amplitude positive and negative deflections (amplitude: 3500 µV (2200; 

4000), duration: 6650 ms (1537; 8000), recurrence: 19000 ms (8200; 25475), where peaks 

were separated by less than 150 ms and the entire sequence lasted more than 1.5 sec. Field 

Page 57 of 72

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

5 

 

deflections were always accompanied by an increase in multi-unit activity (2-2.5-fold larger 

than during SWRs) (Fig. S3).  

 

• Description of Epileptiform events in different models 

All models lead to a new, highly active network pattern, with similar manifestations. 

Nevertheless, certain differences were found in this development. For this reason we shall 

describe briefly the most typical properties of the 0 Mg
2+

, 4-AP and gabazine models. 

The 4-AP model 

After adding 30 µM 4-AP to the extracellular solution, SWRs disappeared after 8-10 minutes 

(duration of transitory phase: 583; 400,642 (median; interquartile range)). In most cases EEs 

appeared as interictal-like events and further developed to preictal-like events (n=5). In other 

cases EEs appeared immediately as preictal-like events (n=3). Preictal-like events were the 

most typical and stable EEs in this model, and did not evolve into ictal-like events. (For the 

quantification of different event types in different models see Table S3). 

The 0 Mg
2+
 model 

After switching the bath media to one lacking Mg
2+

 it took a relatively long time for the first 

EE to appear (duration of transitory phase was: 1045; 972,1372 (median; interquartile 

range)). In some cases mild events (interictal-like events) similar to the most typical event 

type in the high K
+
 model occurred. However, these events proved to be ephemeral, and in 

most cases they transformed into preictal-like events and later to ictal-like events (n=9). (For 

the classification of different EE types, see Supplemental Results/Quantification of the 

evolution of epileptic events).In other cases (n=10) there was no gradual build-up seen, EEs 

appeared either as preictal-like events (n=1) or immediately as ictal-like events (n=9). Ictal-
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like events proved to be the most stable event type in the 0 Mg
2+

 model, as they occurred in 

nearly all experiments (n=17). (Also see Table S3) 

 The gabazine model 

When 2 µM gabazine was added to the bathing media SWRs disappeared after few minutes, 

the time till the first EEs occurred varied greatly among experiments (duration of transitory 

phase was: 382; 295,896 (median; interquartile range)). The duration of the transitory phase 

did not correlate in any way to the type(s) of EE that developed later. In some cases (n=9) 

interictal-like events were the first to manifest and developed into preictal-like events and 

occasionally further into ictal-like events (n=5). In other cases the first EE type to appear 

were the preictal-like events (n=14). Interestingly, in these cases ictal-like events appeared, 

but the morphology of the events proved to be quite conserved throughout the recording. (For 

the quantification of different event types in different models see Table S3) 

 

Morphological identification of biocytin-filled neurons 

All recorded neurons were filled with biocytin and visualized with 

immunofluorescence. Their location and the features of their dendritic and axonal arbours 

were used to identify them.  

-Pyramidal cells had spiny dendrites spanning all layers, and their rarely branching axons 

were found mainly in stratum oriens and partially in stratum radiatum (PC, n=12, Fig. 3A). 

-Three types of perisomatic region-targeting interneurons can be found in the hippocampus. 

We distinguished them by using transgenic mice (expressing eGFP under the control of the 

parvalbumin promoter or expressing red fluorescent protein under the control of the CCK 

promoter). The somata of CCK+ basket cells were found in str. oriens or lucidum (CCK+ 
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basket cell, n=5), their dendrites were found in all layers of CA3 (Fig. S4). The axon ramified 

mainly in stratum pyramidale, but some axon collaterals could be observed both in strata 

lucidum and oriens (Fig. S4, Fig. 3A). In PV-eGFP mice, both basket cells (PVBC, n=10) 

and axo-axonic cells (axo-axonic cell, n=6) express eGFP; therefore, Ankyrin G staining was 

used to label the axon initial segments of pyramidal cells and to visualize any associations 

with the biocytin labelled axons (characteristic of axo-axonic cells) (Fig. S4). Their dendrites 

were seen in most layers, and appeared either smooth or occasionally spiny. The axon arbour 

of both cell types was predominantly present in stratum pyramidale (Fig. S4, Fig. 3A), with 

collaterals in str. oriens and, in the case of PVBCs, in strata lucidum and radiatum. We 

characterized the firing of all of our recorded cells with a variable current step protocol, and 

although the majority of PVBCs proved to be fast-spiking and the majority of CCK+ basket 

cells were regular-spiking, the correspondence was far from perfect (see,(Pawelzik et al., 

2002)). Thus, we will use the anatomical terms PVBC and CCK+ basket cell to identify the 

two cell populations instead of referring to them as fast-spiking basket cells and regular-

spiking basket cells. 

-Interneurons with axons in the dendritic layers (n=15) were treated as a single group here 

since their behaviour during EEs was fairly similar. The majority of these cells had their 

somata either in str. oriens or in str. radiatum, their smooth or spiny, mostly horizontal 

dendrites in str. oriens or str. radiatum, whereas their axonal arbourisations were widespread 

in strata oriens and radiatum and occasionally in str. lacunosum-moleculare (presumably 

OLM cell) or str. pyramidale (presumably trilaminar cell).  Some cells had their soma, 

dendrites and axon collaterals restricted to str. radiatum, rarely penetrating str. lucidum or str. 

lacunosum-moleculare. 
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Changes in spike amplitude and half width at increasing K
+
 concentration 

As we have shown in Figs. 3, 4 and 5, the firing pattern of neurons becomes altered 

during the states that generate epileptiform activity. Even though this change appears to be an 

important factor in this type of network activity, alterations in the amplitude and half width of 

action potentials (influencing charge) may influence presynaptic transmitter release. 

Therefore, we calculated the spike amplitude and half width at different levels of K
+
 by 

plotting mean values at different time points after washing in increased K
+
 (0, 0.5, 1, 2, 5 and 

10 minutes). In the case of both pyramidal cells and PVBCs, amplitude and half width 

gradually increased as a function of time (K
+
 concentration) (Fig. S6).  

While this growth could explain the increased EPSC amplitude and charge recorded in 

high K
+ 

(Fig. 8D), the same change of interneuron spike parameters cannot be used to explain 

the drop in inhibitory transmission, and therefore we must conclude that factors other than 

changes in spike-properties cause the loss of inhibition. 

Supplemental Tables: 

Table S1. Colocalization of DsRed protein and CCK in hippocampal inhibitory neurons. 

  all % double % only % only 

CA1, str. Oriens 17 88.24 0.00 11.76 

CA1, str. Radiatum 38 78.95 7.89 13.16 

CA1, str. lacunosum- 22 77.27 13.64 9.09 

CA3, str. oriens 28 71.43 10.71 17.86 

CA3, str. lucidum 10 80.00 0.00 20.00 

CA3, str. radiatum 54 81.48 14.81 3.70 

CA3 str. lacunosum- 16 93.75 6.25 0.00 

Hilus 51 82.35 5.88 11.76 

DG, str. moleculare 9 100 0.00 0.00 

DG, str. granulosum 5 100 0.00 0.00 
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Table S2: Median number of APs fired at different membrane potentials in CC mode (median 

and interquartile range is given). 

Number of 

APs  -70 -65 -60 -55 -50 -45 -40 -35 -30 

PC 

1.7 2.4 2.9 3.3 3.8 3.9 4.2 4.7 1.6 

 (0.8; 

2.5) 

 (0.8; 

3.6) 

 (0.9; 

4.7) 

 (0.8; 

5.8) 

(1.1; 

6.2) 

(1.5; 

6.2) 

 (2.3; 

5.6) 

 (3.3; 

5.2) 

(1.1; 

2.2) 

PV+BC 

40 35.4 28.5 25.6 20.7 14.7 8.2 1.6 0.5 

(32.2; 

9.5) 

 (31.3; 

36.1) 

 (25; 

33.2) 

 (20.7; 

28.3) 

 (17.7; 

22.9)  (13; 16) 

 (6.6; 

15.5) 

 (0.4, 

15) 

 (0; 

11.6) 

AAC 

16.6 38.3 29.3 20.1 20.7 17.9 11.2 4.4 3 

(8.3; 

19.3) 

 (29; 

50.6) 

 (24.7; 

33.2) 

 (17.3; 

28) 

 (19; 

22.8) 

 (13.4; 

19.7) 

 (7.9; 

15.3) 

 (2.4; 

10.8) 

 (1.6; 

5.7) 

CCK+BC 

0.8 2.5 4.2 4.1 4.0 4.1 5.2 3 0.2 

(0.5; 

1.3) 

 (1.4; 

2.8) 

 (2.4; 

4.3)  (2.5; 5) 

 (3.2; 

5.3) 

 (3.9; 

6.5) 

 (4.3; 

6.9) 

 (2; 

5.8) 

 (0.1; 

3.5) 

DN 

2.2 2.1 2.5 2.9  3.0 3.1 3.3 3.6 0.8 

(1.9; 

2.5) 

 (2.1; 

2.2) 

 (2.2; 

2.9) 

 (2.3; 

3.6) 

 (2.2; 

3.8)  (2.1; 4) 

 (2.2; 

4.4) 

 (2.3; 

4.9) 

 (0.6; 

0.9) 

 

Table S3: Quantification of different EE types in different models. First number indicates 

median value, second a third indicate interquartile range (median;Q1,Q3). 

  interictal     preictal     ictal     

  
duration 

(ms) 

occurrence 

(ms) 

amplitude 

(µV) 

duration 

(ms) 

occurrenc

e (ms) 

amplitude 

(µV) 

duration 

(ms) 

occurrenc

e (ms) 

amplitude 

(µV) 

high K
+
 

130; 

115,150 

1250; 1200, 

1400 

320; 300, 

402 

315; 305, 

348 

565; 470, 

688 

3750; 

3400, 4050 1260 990 2200 

4-AP 

210, 188, 

260 

750; 595, 

1000 

217; 213, 

245 

795, 738, 

800 

7300; 

1300, 

13000 

1050; 993, 

1138       

0 Mg
2+

 

106.5; 95, 

111 

415, 290, 

519 

475; 403, 

565 

855; 838, 

873 

4550, 

3825, 5275 

5900; 

4850, 6950 

8000; 

6988, 

8225 

25300, 

22000, 

26000 

3700; 

2225, 5625 

gabazine 

153; 147, 

320 

11950; 7670, 

15975 

800; 775, 

875 

525; 470, 

588 

5000; 

4000, 

15000 

2500, 

2050, 3400 

1298.5; 

1179, 

1418 

6800; 

5200, 8400 

3250; 

3125, 3375 
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Supplemental Figures: 

 

 

Figure S1: CCK-positivity in DsRed-protein expressing cells 

In the CA1 and CA3 regions, most DsRed-positive interneurons are immunopositive for CCK 

(A-F). Double positive interneurons (white arrows) can be found mostly and very densely in 

str. pyramidale (since CA1 pyramidal cells express CCK), in radiatum, at the border of strata 

radiatum and lacunosum-moleculare (A-C) and str. oriens (D-F). Nevertheless, occasionally, 
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DsRed-expressing cells do not show detectable CCK-positivity (E, red arrow). Higher 

magnification (G-I) shows that DsRed-positive cells express the protein in their 

somata and inner membrane compartments (H), whereas CCK-immunoreactions visualize the 

protein in the cytoplasm (G). Scale: A-F: 50 µm, I: 5 µm.  
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Figure S2: Features of in vitro-recorded SWRs.  

A) Components of a SWR demonstrated on unfiltered (upper most) and filtered local field 

potentials. Low pass filtering (30Hz, second row) shows the sharp wave-ripple envelope and 

the following negativity without ripples and units. High pass filtering (500Hz, third row) 

shows the timing of unit activity. The lowest, band-pass-filtered trace shows the ripple 

activity and the phase-locking of unit spikes (raster lines below) to ripple troughs. B: local 

field potential recorded with a multi-electrode array shows layer-specific reversals of SWR-

related potentials similar to those observed in vivo. The CSD created from these recording 

(shown in Fig 1) also matches the CSD observed in vivo. 
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Figure S3: Transition from sharp-wave ripples (SWRs) to epileptiform events (EEs) is similar 

in 4 different models  

EEs can be induced either by elevating extracellular K
+
 concentration, omitting Mg 

2+
 from the 

extracellular solution, blocking GABAA receptor activation, or adding the K
+
 channel blocker 

4-aminopyridine (4-AP) to the extracellular solution (4 subsequent rows). In all cases, after a 

transitory period, characterized by low synchrony and high activity (first column), highly 

synchronous epileptiform events appeared (3 subsequent columns on the right). The amplitude 

and complexity of EEs could vary among different models; however, phenomenologically 

similar events occurred with different pharmacological interventions (occurrence of interictal, 

preictal- and ictal-like activity).  
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Figure S4: Anatomical identification of CA3 neurons 

 Camera lucida drawings of the 5 hippocampal neuron types distinguished in CA3. 

PV+ axo-axonic cells (A) and basket cells (B) were separated using double-fluorescent 

staining against ankyrin G (selectively labelling AISs) and biocytin (visualizing the axons of 

the filled cells). While boutons of the AACs outline the ankyrin G-stained AISs (arrows C1, 
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C2) of the pyramidal cells, there are no associations between boutons of basket cells and the 

ankyrin G-stained AISs of the pyramidal cells (D1,D2). Pyramidal cells and dendritic layer-

targeting interneurons were distinguished by axonal and dendritic arborisation, whereas 

CCK+ basket cells innervated the perisomatic region and were immunopositive for CCK and 

CB1R. Scale: 50 µm 
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Figure S5: SWRs are preceded by a build-up of depolarizing potentials.  

Local field potential from a SWR-producing slice (grey) and intracellular potentials recorded 

in current clamp mode under control conditions. The pyramidal cell was held at either -70 or 

-40 mV. At both potentials a depolarization step (arrows) was observed before the local field 

potential peak, indicating that a build-up of excitation precedes SWRs.  
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Figure S6: Changes in spike amplitude and half width during the increase of extracellular K
+
 

Graphs illustrate the increase in cell-attached spike amplitude and half width as a function of 

time (increase of K
+
 concentration). Cells were recorded in loose-patch mode throughout the 

experiment. In the case of pyramidal cells (and similarly in PVBCs), the rate of increase 

appeared to be similar for spike amplitude and half width, indicating that the increase in half 

width appears as a consequence of amplitude growth. 
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Supplemental Experimental Procedures 

Characterization of CCK-DsRed mice 

Production of BAC/DsRedT3/CCK transgenic mouse line 

BAC engineering technology was used to produce transgenic mice that expressed the T3 

variant of the Discosoma red fluorescent protein (Bevis and Glick, 2002) under the control of 

the CCK promoter and regulation region (DsRedT3/CCK) 

v. For more detailed description see Mate et al 2013 (Mate et al., 2013).  

Immunfluorescent staining to establish CCK-DsRed colocalization 

To quantify the colocalization of DsRed protein and CCK, 3 CCK-DsRed mice were 

transcardially perfused under equithesine anaesthesia (chlornembutal 0.3 mL ⁄ 100 g), first 

with physiological saline (3 min)and then with a fixative containing 0.25% glutaraldehyde 

(TAAB, UK), 2% paraformaldehyde (TAAB, UK) in a 0.1 M sodium-acetate buffer (pH: 6) 

for 4 min and finally with another fixative containing 0.25% glutaraldehyde (TAAB, UK), 

2% paraformaldehyde (TAAB, UK) in a 0.1 M borate buffer (pH: 8.5). Then, 60 µm thick 

vibratome sections were cut from the brains, followed by washing in PB. Sections were 

processed for immunostaining as follows: after being thoroughly washed  in TRIS buffered 

saline (TBS, pH, 7.4) several times, non-specific immunostaining was blocked with 10% 

normal goat serum (diluted in TBS) for 40 minutes, followed by incubation with a 

monoclonal mouse antibody against CCK (Cure Antibody lab., UCLA) for 3 days (dilution 

was 1:2000). For the visualization of the immunopositive elements, Alexa 488-conjugated 

donkey anti-mouse secondary antibody (Invitrogen, Carlsbad) was used (incubation for 3 

hours, dilution was 1:400). Afterwards, sections were thoroughly washed in TBS (3x10 min) 

and mounted in Vectashield (Vector Laboratories). A minimum of 3 images per layer per 

region were taken with an A1R confocal laser scanning microscope (Nikon Europe, 
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Amsterdam, The Netherlands) using a 20× objective. Then DsRed and/or CCK-

immunopositive somata were counted in each micrograph. 

 

Data acquisition and processing 

Event detection and analysis.  

Signals were filtered with a two-way RC filter to preserve phase. All automatic 

detection steps were supervised. Spike detection in loose-patch recordings was done on 500 

Hz-high-pass-filtered traces using a threshold value of 3 times the standard deviation of the 

signal. For detecting the frequency of multi-units during recordings, events were detected on 

a 500 Hz-high-pass-filtered field recording using a threshold value of 1.5 times the standard 

deviation of the signal, and instantaneous frequency was calculated using a Gaussian kernel 

with a width of 500ms. 

Since a common aspect of EEs was the robust increase of multi-unit activity at the 

beginning of the event, EEs were detected using this feature. On a 500 Hz-high-pass-filtered 

field recording, root mean squares were calculated; this way the largest peak represented the 

largest multi-unit activity and the peak of the EE (IIE). A threshold value of 7 times the 

standard deviation of the signal was used for event detection. Using this time point as the 

peak of the event, we measured the duration, the amplitude, and the frequency of occurrence 

of the IIE on the original trace. The number of spikes were calculated during each IIE and 

spikes were assigned to three phases of IIEs: spike occurring 100 ms prior the peak (“before” 

phase), spikes occurring 100 ms following the peak (“during” phase) and spikes occurring 

from 100 to 200 ms after the peak (“after” phase).  

Action potentials during IIEs at different membrane potentials were calculated using 

the same algorithm, carrying out spike detection in loose patch mode.  
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Synaptic currents and conductances were calculated by measuring the peak of the 

postsynaptic current and the area using OroginPro 8.6 software (OriginLab corporation, 

Northampton, MA, USA). 

 

Quantification of SWR and IIE generation across slices 

Slices were categorized into groups 0-3 based on the mean amplitude of SWRs and 

IIEs as follows: For SWRs, group 0:  mean amplitude <2* sd of baseline, group 1: mean 

amplitude >2-4.5*sd of baseline, group 2: mean amplitude >4.5-7*sd of baseline and group 

3: mean amplitude >7*sd of baseline. For IIEs, group 0:  mean amplitude <8*sd of baseline, 

group 1: mean amplitude >8-10*sd of baseline, group 2: mean amplitude >10-16*sd of 

baseline and group 3: mean amplitude >16*sd of baseline. 

Quantification of HFO power 

To quantify the HFO component (Figs 3 and 7) an FFT was made on the local field potential 

and the power content in the 140-400Hz band was summed and plotted against time. It was 

then normalized to the value of the baseline power in the -200-400msec window before IIEs 

in the same band. This normalized value was plotted and used to detect the high HFO period. 

Detection threshold was set to 8 times the standard deviation during baseline period. 

Quantification of changes in synchrony.  

To quantify changes in the organization of unit firing we defined different measures of 

fluctuations in the level of instantaneous multi-unit firing. First we detected multi-units using 

negative threshold crossings of the high-pass-filtered (500Hz) field potential. We then 

calculated instantaneous frequency of multi-unit firing using a Gaussian kernel with a width of 

500 ms. We then normalized this to its low-pass filtered (0.1Hz) version (essentially 
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instantaneous multiunit frequency divided by the average) to show unit frequency fluctuation 

without the systematic increase in baseline frequency. We then calculated a time-binned 

(10sec) standard deviation (sd) of the value and plotted it together with the sd of the low-pass 

filtered (200Hz) local field potential (Fig. 2F, bottom). We also detected local minima and 

maxima in the normalized frequencies and segmented the recording into short activity bursts 

by cutting it up into sections containing a maximum and its two flanking minima. The 

duration, the minimum and maximum values, the total number of spikes and the length of a 

burst could be calculated and plotted against time.  In this way we could detect the duration of 

activity bursts, but we could not say how focused the activity increase was within the burst. To 

quantify this, we defined a "burstiness index"; the ratio of maximum frequency difference 

(between the minimum and maximum frequency) versus the average frequency during the 

burst. This expressed the relative height (and the narrowness) of the frequency increase during 

the bursts regardless of the baseline frequency. The burstiness value was again plotted against 

time (Fig. 2E).  

There is an issue that should be discussed here. When activity is highly synchronous 

during the peak of transient high activity events, unit spikes collide and there is no algorithm 

that can separate them, so multi-units are under-detected and the instantaneous frequency 

peaks are lower than what is probably expected. However, this does not influence the 

conclusion of the analysis qualitatively, only quantitatively. The transitional drop in the 

synchrony of multi-units would be flanked by somewhat higher synchrony values if all spikes 

were detected.  

Anatomical identification of the neurons 

The recorded cells were filled with biocytin. After the recording the slices were fixed 

in 4 % paraformaldehyde in 0.1 M phosphate buffer (PB; pH=7.4) for at least 3 hours, 
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followed by washout with PB several times. Then sections were blocked with normal goat 

serum (NGS, 10%) diluted in Tris-buffered saline (TBS), pH 7.4, followed by incubations in 

Alexa-488 conjugated streptavidin (Molecular Probes, Vienna, Austria, 1:3000). Sections 

were then mounted on slides in Vectashield (Burlingame, CA, USA). To distinguish basket 

cells and axo-axonic cells, slices were re-sliced to 40 µm thick sections and processed for 

immunofluorescence double labelling. Ankyrin G-immunostaining was applied together with 

biocytin visualization as described above. Staining was carried out as described previously 

(Gulyas et al., 2010, Szabo et al., 2010). The staining was analysed and z-stacks were taken 

with a Nikon A1R confocal laser scanning microscope, using a 20x objective (Nikon Europe, 

Amsterdam, Netherlands). Representative neurons were reconstructed using z-stack maximal 

intensity projections of each slice (PV+ cell), other cells were reconstructed using a drawing 

tube (Camera Lucida, Leitz Wetzlar, Germany).  
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