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Abstract. The purpose of this paper is to prove some results concerning permuting triderivations
and permuting generalized triderivations on prime and semiprime rings which partially extend
some results contained in [9] and [10].
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1. INTRODUCTION AND PRELIMINARIES

Throughout this work, R will represent an associative ring and Z will denote the
center of R. We shall write [x, y] for xy — yx. Recall that a ring R is prime, if
xRy = {0} implies x = 0 or y = 0, and it is semiprime if xRx = {0} implies x = 0.

It is very interesting and important that the similar properties of derivation which
is the one of the basic theory in analysis and applied mathematics are also satisfied
in the ring theory. The commutativity of prime rings with derivations was introduced
by Posner in [12]. An additive map d : R — R is called derivation if d (xy) =
d (x)y + xd (y) holds for all x,y € R. Recently, a lot of work has been done on
commutativity of prime rings with derivation (see [1], [2], [3], [14]).

In [4], Bresar defined concept of generalized derivation. An additive map d :
R — R is called generalized derivation if there exists a derivation o of R such that
d(xy)=d (x)y+xa(y)forall x,y € R. Thus the concept of generalized derivation
contains both the concepts of a derivation and of a left multiplier (i.e., additive maps
satisfying f (xy) = f (x)y for all x,y € R). Basic examples are derivations and
generalized inner derivations (i.e., maps of type x — ax + xb for some a,b € R).
In [4], Bresar showed that if R has the property that Rx = {0} implies x = 0 and
h: R — R is any function, d : R — R is any additive map satisfying d (xy) =
d(x)y+xh(y) for all x,y € R, then d is uniquely determined by 4 and moreover
h must be derivation. In [5], Bresar defined concept of generalized bi-derivation and
investigated some its properties.
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In [7] and [8], Maksa defined biderivation in ring theory mutually to partial deriv-
ations and examined some properties of this derivation. Amap D (.,.) : RXxR — R
is said to be symmetric if D (x,y) = D(y,x) forall x,y € R. Amapd : R— R
defined by d (x) = D (x, x) is called the trace of D (.,.) where D (.,.): Rx R — R is
a symmetric map. Itis clear that if D (.,.) is biadditive (i.e., additive in all arguments),
then the trace d of D (., .) satisfies the identity d (x + y) =d (x)+d (y)+2D (x,y)
forall x,y € R. A symmetric biadditive map D (.,.) : R x R — R is called symmetric
biderivation if D (xz,y) = D (x,y)z+xD (z,y) forall x,y,z € R. Forany y € R,
the map x — D (x, y) is a derivation. The trace of D (.,.) is an even function. In [11]
and [13], the authors investigated some properties of symmetric biderivation.

In [10], Oztiirk defined concept of permuting triderivation. A map D (.,.,.) :
R x Rx R — R is called permuting if D (x,y,z) = D(x,z,y) = D(z,x,y) =
D(z,y,x)=D(,z,x) =D (y,x,z) hold for all x,y,z€ R. Amapd: R— R
defined by d (x) = D (x,x, x) is called trace of D (.,.,.), where D (.,.,.) : Rx Rx
R — R is a permuting map. It is obvious that, if D (.,.,.) : Rx Rx R — R is permut-
ing triadditive ( i.e., additive in both arguments ), then the trace of D (.,.,.) satisfies
the relationd (x +y) =d (x) +d (y)+3D (x,x,y)+3D (x,y,y) forall x,y € R.
A permuting triadditive map D (.,.,.) : Rx R x R — R is called permuting trideriv-
ation if D (xw,y,z) = D (x,y,z)w+xD (w,y,z) forall x,y,z,w € R. The trace
of D (.,.,.) is an odd function. Let D (., .,.) be a permuting triderivation of R. In this
case, for any fixed @ € R and for all x,y € R, amap D;(.,.): R X R — R defined
by Di(x,y) = D (a,x,y) and a map d, : R — R defined by d (x) = D (a,a,x)
are a symmetric biderivation (in this meaning, permuting 2-derivation is a symmetric
biderivation) and a derivation, respectively. In [9] and [15], the authors investigated
some properties of permuting triderivation.

Lemma 1 ([6, page 6, Corollary 2]). If R is a semiprime ring and I is an ideal of
R, then I N Annl = {0}.

Lemma 2 ([10, Lemma 5]). Let R be a 2,3-torsion free ring, D a permuting
triadditive map of R and d the trace of D. If d (x) =0 for all x € R, then D = 0.

In this paper, our aim is to prove some results concerning permuting trideriva-
tions and permuting generalized triderivations on prime and semiprime rings which
partially extend some results contained in [9] and [10].

2. RESULTS

Lemma 3. Let R be a 2,3-torsion free prime ring and {0} # I be an ideal of R.
If D is a permuting triderivation such that D (x,x,x) = 0 for all x € I, then either
D =0 or R is commutative.

Proof. Let D (x,x,x) =0forall x € I. Replacing x by x + y forall x,y € I, we
get
D (x,x,y)+D(x,y,y) =0 (2.1
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Replacing y by —y in 2.1 and comparing with 2.1, we have
D(x,x,y)=0,forall x,y € I.

Replacing y by ry, r € R, we get D (x,x,r)y = 0. Replacing x by x +z,z € I,
we get D (x,z,r)y = 0. Substituting sx for x, we obtain that D (s,z,r)xy =0, s €
R. Substituting ¢z for z, we get D (s,t,r)zxy = 0. From here D (s,¢,r) I [x,y] =
{0}. Primeness of R yields [x,y] =0or D (s,t,7) =0, forall x,y € I and s,t,r € R.
Thus we have [/, ] = {0} and R is commutative or D = 0. O

Theorem 1. Let R be a 2,3-torsion free prime ring and {0} # I be an ideal of R.
If D is a permuting triderivation with trace d such that D (d (x),x,x) = 0 for all
x € I, then either D = 0 or R is commutative ring.

Proof. For any x,y €1,
DAx+y),x+y,x+y)+Dd(—x+y),—x+y,—x+y)=0
and since R is 2, 3-torsion free we get
0=2D(d (x),x,y)+D(d(y),x,x)+6D(D(x,y,y),x,y) (2.2)
+3D (D (x,x,y),x,x)+3D (D (x,x,y),y,y).
Replacing y by y + z in 2.2 and using 2.2, we obtain
0=D(D(y.z,2),x,x)+D(D(y,y,2),x,x)+4D (D (x,y,2),x,y) (2.3)
+2D (D (x,y.y).x,2) +4D (D (x.y.2),x,2) +2D (D (x.2.2).X,)
+2D (D (x,y,y),x,2)+ D (D (x,x,y),z2,2) + D (D (x,x,2),y,y)
+2D (D (x,x,2),y,2)

since R is 3-torsion free.
Replacing y by —y in 2.3 and comparing with 2.3, we get

0=D (D (y.y.2).%. %) +4D (D (x,5.2),x.9) +4D (D (x.7.y).x.2) (24)
+D (D (x,x,2),,¥)

since R is 2-torsion free.
Replacing z by yz in 2.4 and using 2.4, we get

0=d(()D(x,x,2)+D(x,x,y)D(y,y,2)+4D (x,y,y) D (x,y,z) (2.5)
+4D (x,x,y) D(x,y,2) + D (x,x,y) D (y.y,2) +d (y) D (x.,x,2).
Replacing y by x in 2.5, we get
d(x)D(x,x,z) =0, forall x,z €[ (2.6)

since R is 2, 3-torsion free.
Replacing z by yz, y € I in 2.6 and using 2.6, we have

d(x)yD (x,x,z) =0, forall x,y,z € I.
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Therefore d (x) yd (x) =0 for all x,y € I. And so, yd (x) Ryd (x) = {0}. Since
R is prime ring, we get yd (x) =0 forall x,y € I. Thatis, d (x) =0 forall x € I.
From Lemma 3, we obtain that D = 0 or R is commutative ring. g

Theorem 2. Let R be a 2,3,5-torsion free prime ring and I be an ideal of R.
If D1, Dy are the permuting triderivations of R with traces di, d» respectively,
such that dy (x)d, (x) = 0 for all x € I, then either D1 = 0 or Dy = 0 unless R is
commutative.

Proof. Assume that R is not commutative. Then linearization of the relation

di(x)dr(x) =0forall x € I 2.7
give as
0=di (x)d2(y)+3d1(x) Da(x,x,y) +3d1 (x) Da(x,y,y) (2.8)
+d1(y)da(x) +3d1 (y) D2 (x.x,y) +3d1 (y) D2 (x.y.y)
+3D1 (x,x,y)d2(x)+3D1 (x,x,y)d2(y) +9D1 (x,x,y) D2 (x,x, )
+9D1 (x,x,y) D2 (x,y,y) +3D1 (x,y,y)d2(x) +3D1 (x,y,y)d2(y)
+9D1(x,y,y) Da(x.x,y) +9D1(x,y,y) D2 (x,y.y).
Replacing y by —y in 2.8, and comparing with 2.8, we have
0=di(x)D2(x,y,y)+d1(y) D2(x,x,y)+ D1(x,x,y)d2(y) (2.9
+3D1(x,x,y) D2 (x,x,y) + D1 (x,y,y)d2 (x) +3D1(x,y,y) D2 (x,y,y),

since R is 2, 3-torsion free.
Replacing y by y 4+ 2z, z € I in 2.9 and using 2.9, we get

0=2d1(x) D2(x,y,2) +d1(y) D2(x,x,2) +d1(2) Da(x,x,y) (2.10)
+3D1(y,y,2) Da(x,x,y) +3D1(y,y,2) D2(x,x,2) +3D1(y,2,2) D2 (x,x, )
+3D1(y,2,2) D2 (x,x,2) + D1 (x,x,y)d2(2) +3D1 (x,x,y) D2 (y,.2)
+3D1(x,x,y) D2(y,2,2) + D1(x,x,2)d2 (y) +3D1(x,x,2) D2(y,,2)
+3D1(x,x,2) D2 (¥,2,2) +3D1(x,x,y) D2 (x,x,2) +3D1 (x,x,2) D2 (x,x,y)
+2D1(x,y,2)d2(x) +6D1(x,y,y) Da(x,y,2) +3D1(x,y,y) D2(x,2,2)
+6D1(x,y.2) Da(x,y,y) +12D1(x,y,2) D2 (x,y.2) + 6D1(x,y,2) D2 (x,2,2)
+3D1(x,2,2) D2(x,y,y) +6D1(x,2,2) D2(x,y,2).

Replacing y by —y in 2.10 and comparing with 2.10, we get
0=D1(»,y,2) D2(x,x,2) + D1(y,2,2) D2 (x,x,y) + D1 (x,x,y) D2(y,2,2)
+ D1 (x,x.2) D2(y,y,2) + D1(x,y,y) D2(x,2,2) +4D1(x,y.2) D2 (x,y,2)

+D1(x,2,2) D2(x,.y),
(2.11)
since R is 2, 3-torsion free.
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Replacing z by z+ w, w € I in 2.11 and using 2.11, we get

0=D1(y.y,2) D2(x,x,w)+ D1 (y,y.w) D2 (x,x,2) +2D1 (y.z,w) D2 (x.x,y)
+2D1 (x,x,y) D2(y,z,w) + D1 (x,x,w) D2 (y,y,2) + D1 (x,x,2) D2 (y,y,w)
+2D1(x.y.y) D2 (x.2,w) +4D1 (x,y.2) D2 (x,y,w) + 4Dy (x,y,w) D2 (x,y.2)

+2D; (x,z,w) D2 (x,y,y).
(2.12)

Replacing y,z by x in 2.12 and using 2.12, we have
0=d;(x) Dz (x,x,w)+ Dy (x,x,w)dz (x), (2.13)

since R is 2, 5-torsion free.
Replacing w by wt, t € I in 2.13, we have

0=d;(x) Dy (x,x,w)t +dy (x)wD3 (x,x,1)

+ Dy (x,x,w)tdy (x) +wD1 (x,x,t)d> (x). (2.14)

Using 2.13 in 2.14, we get
0=Dq(x,x,w)[t,da(x)]+ [d1 (x),w] D2 (x,x,1). (2.15)
Replacing w by d; (x) w in 2.15 and using 2.15, we get
D1 (x,x,di (x))w]|t,da(x)]=0forall x,w,t € [I.

This implies that D (x,x,d1 (x)) Rw[t,d> (x)] = {0} for all x,w,? € I. Primeness
of R yields that either D1 (x,x,d1 (x)) =0or w[t,d> (x)] =0 forall x,w,z € I. If
Dj(x,x,d1(x)) =0 for all x € I, then conclusion follows from Theorem 1. Now
consider the case when w [t,d> (x)] = 0 for all x,w,t € I. Primeness of R yields
that [¢,d> (x)] = 0 for all x,¢ € I. By linearizing we get [¢, D> (x,x,y)] = 0 for all
x,y,t € I. Replacing y by yz, we have D, (x,x,y)[t,z]+[t, y] D2 (x,x,z) = 0 for
all x,y,z,t € I. In particular, [z, y] D2 (x,x,y) = 0 for all x,y,t € I. This implies
that [z, y]wD3 (x,x,y) =0forall x,y,¢,w € I. Since R is not commutative, we also
have [I, I] # {0}. Hence primeness of R yields that D, (x,x,y) =0forall x,y € I.
From Lemma 3, we get D, = 0. U

Definition 1. Let R be aring and D : R X R x R — R be a triadditive map. A
triadditive map A : R x R x R — R is called generalized derivation of R associated
with D if for every x,y € R, the map z — A (x, y,z) is a generalized derivation of
R associated with D, for every y,z € R, the map x — A(x,y,z) is a generalized
derivation of R associated with D and for every x,z € R, the map y — A (x, y,z) is
a generalized derivation of R associated with D, i. e. forall x,y,z,w € R,

A(xw,y,z) = A(X,y,Z)w‘f‘XD (U),y,Z)
Ax,yw,z) =Ax,y,2)w+yD (x,w,z)
A(x,y,zw) = A(x,y,2)w+2zD (x,y,w).
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Example 1. Let R be aring. If D is any triderivation of Randa : Rx Rx R — R
is a triadditive map such that & (x, y,zw) = o (x,y,2) w, ¢ (x, yw,2) = (x,y,Z) w
and o (xw,y,z) =a(x,y,z)w forall x,y,z,w € R, then D + « is a generalized D
triderivation of R.

Lemma 4. Let R be a semiprime ring. Let D : RX RX R — Rand A: Rx R X
R — R be two triadditive maps. If A is a generalized triderivation associated with
D, then D is a triderivation.

Proof. We compute A ((xy)z,w,t) in two different ways. Then we have
A((xy)z,w,t) = A(xy,w,t)z+xyD (z,w,1)
=A(x,w,t)yz+xD(y,w,t)z+xyD(z,w,t)
and
Ax(yz),w,t)=A(x,w,t)yz+xD (yz,w,t)
for all x,y,z,w,t € R. Comparing relations we obtain
x(D(y,w,t)z+yD(z,w,t)— D (yz,w,t)) =0.

Since R is semiprime, we get D (yz,w,t) = D(y,w,t)z + yD (z,w,t) for all
v,Z,w,t € R. Similarly we obtain D (x,zw,t) = D (x,z,t)w +zD (x,w,t) and
D (x,z,wt) =D (x,z,w)t +wD (x,w,t) forall y,z,w,t € R. O

Theorem 3. Let R be a 2, 3-torsion free prime ring and I be a nonzero ideal of R.
If A is a permuting generalized triderivation associated with permuting triderivation
D of R with trace d such that A(d (x),x,x) = 0 for all x € I, then the following
hold:
i) D=0,
(i) R is commutative,
(iii) d is commuting on 1.
Proof. Let
A(d(x),x,x)=0,forall x € | (2.16)
Replacing x by x + y, y € I in 2.16 and using 2.16, we get
0=2A(d (x).x,y)+A(d (x),y.y) +A(d (y),x.x) +2A(d (y).x.y) (2.17)
+3A(D (x,x,y),x,x) +6A(D (x,x,y),x,y) +3A(D (x.x.y).y,y)
+34(D(x,y,9),%,x) +6A(D (x,y,y),X,y) +3A(D (x,9,¥),y.¥).
Replacing y by —y in 2.17 and comparing with 2.17, we have
0=A(d(x).y,y)+24(d (y).x,y)+6A(D (x,x,y).x,y) (2.13)
+3A(D(x,y,y),%,x) +3A(D (x,y,y).¥.¥).

since R is 2-torsion free.
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Replacing y by y + 2z, z € I in 2.18 and using 2.18, we get
0=2A(d (x),y,2)+2A(d (y),x.2)+2A(d (2),x,y)+6A(D (y.y,2).,x.y)
+6A(D(y,y,2),x,2)+6A(D (y,2,2),x,y) +6A(D (y,2,2),X,2)
+6A(D(x,x,y),x,2)+6A(D (x,x,2),x,y)+6A(D(x,y,2),x,x)
+6A(D (x,y.y).y.2) +3A(D(x.y.y).2,2) +6A(D (x.y.2).y.y)
+12A(D (x,9.2),9.2) +6A(D (x,9.2).2.2) + 3A(D (x,2.2) .7, )
+6A(D(x,2,2),y,2).
(2.19)
Replacing y by —y in 2.19 and comparing with 2.19, we obtain
0=2A(D(y.,y.2),x,2)+24A(D (y,.2,2),x,y) + A(D (x,y,y).2,2) (2.20)
+4A(D (x,y.2).y.2) + A(D(x.2.2).7.)).
since R is 3-torsion free.
Replacing z by y in 2.20, we get
0=2A(d (y),x.y) +2A(d (y).x.y) + AD (x,y.¥).7.¥)
+4A(D (x,.y).y. )+ A(D (x.y.y).y.y)
and so,
0=2A(d (y).x.y) +3A(D(x.y.y).y.y), (2.21)

since R is 2-torsion free.
Replacing x by xz, z € I in 2.21 and using 2.21, we obtain that

0=2xD(d(y),z,y)+3D(x,y,y)D(z,y,y) (2.22)
+3A(x,y,y)D(z,y,y) +3xD(D(2,y.5).5,¥).
Replacing x by ux, u € I in 2.22 and using 2.22, we get
0=D(,y,y)xD(z,y,y)+Au,y,y)xD (z,y,y) (2.23)
+uD(x,y,y)D(2.y,y)—ul(x,y.y) D(z.y.y)
since R is 3-torsion free.

Replacing u by x in 2.23, we have
0=D (x2.,y) D (z.y.9) +[A(x.5.).X] D (z..) (2.24)
Replacing z by zu in 2.24 and using 2.24, we get

(D (xz,y,y) +[A (x,y,y),x])zD(u,y,y) =0forall x,y,z,uel.

Since R is prime, we get either D (xz,y,y) +[A(x,y,y),x]=00r D (u,y,y) =
0. In the last case and Lemma 3, we have that either R is commutative or D = 0.

If D (xz,y,y) +[A(x,y,y),x] =0 for all x,y € I, then replacing y by y + z,
z € I, we obtain that

0=D (x%y,y)+2D (x%,y,2) + D (x*,2,2) +[A(x,y,y).x]
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—|—2[A(x,y,z),x] + [A (x,Z,Z),.X].

This implies that 0 = D (x2, V, z) +[A(x,y,2),x], since R is 2-torsion free. Repla-
cing z by zw, w € I, we get

0=A(x,y,2)[w,x]+[z,x] D (x,y,w).

In the last relation, substituting x for w, y, we get

[z,x]d (x) =0 (2.25)
Replacing z by rz, r € R in 2.25 and using 2.25, we obtain that
[r,x]zd (x) =0,forall x,z €I, r € R (2.26)
Replacing z by zx, we have
[r,x]zxd (x) =0, forall x,z€I,r € R 2.27)
Multiplying by x on the right side in 2.26, we get
[r,x]zd (x)x =0, forall x,z€ I, r € R (2.28)
Comparing 2.27 and 2.28, we obtain that
[r,x]z[d (x),x] =0, forall x,z€I,r € R (2.29)

Replacing r by d (x) in 2.29, we get [d (x),x]z[d (x),x] = 0 for all x,z € I.
This implies thal z [d (x),x] Rz [d (x),x] = {0} for all x,z € I. Since R is prime,
we get z[d (x),x] =0 forall x,z € I. And so, [d (x),x] € Ann (I). This implies
that [d (x),x] € I N Ann (1) = {0} for all x € I. Hence d is commutingon /. [
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