A generalized FKG-inequality for compositions

Dmitry Kerner and András Némethi

Abstract

We prove a Fortuin-Kasteleyn-Ginibre-type inequality for the lattice of compositions of the integer n with at most r parts. As an immediate application we get a wide generalization of the classical Alexandrov-Fenchel inequality for mixed volumes and of Teissier's inequality for mixed covolumes.

1. Introduction

1.1. Consider a finite partially ordered set (X, \preceq) and two non-decreasing (non-negative) functions, $f, g: X \rightarrow \mathbb{R}_{\geq 0}$. \mathcal{N} Namely, for any $x, y \in X$, if $x \preceq y$ then one has $f(x) \leq f(y)$ and $g(x) \leq g(y)$.) The product function $f \cdot g: X \rightarrow \mathbb{R}_{\geq 0}$ is also non-decreasing. Take the arithmetic average

$$
A v_{X}(f):=\left(\sum_{x \in X} f(x)\right) /|X| .
$$

natural question is whether $A v_{X}(f) \cdot A v_{X}(g)$ can be compared with $A v_{X}(f \cdot g)$.
Example 1.1. Suppose that X is totally ordered. Then the non-decreasing functions are just the non-decreasing sequences of real numbers, $0 \leq a_{1} \leq \cdots \leq a_{n}$ and $0 \leq b_{1} \leq \cdots \leq b_{n}$. In this case the comparison of the averages is Frealized by the classical Chebyshev sum inequality: $\left(\sum_{i} a_{i}\right)\left(\sum_{j} b_{j}\right) \leq n\left(\sum_{i} a_{i} b_{i}\right)$.

On the other hand, if the order on X is not "strong enough" then the inequality utterly fails. Hence, the more precise question is:

Which posets does $A v_{X}(f) \cdot A v_{X}(g) \leq A v_{X}(f \cdot g)$ hold for?
If (X, \preceq) admits an action of some group G, then one can consider the "equivariant" version of this question by taking G-invariant functions f and g.

The fundamental Fortuin-Kasteleyn-Ginibre (FKG) inequality settles the question for a large class of lattices:
Theorem 1.2. [FKG-1971], see also [Bollobás, pg. 147, Theorem 5].
Let X be a finite distributive lattice. Consider a "measure", $X \xrightarrow{\mu} \mathbb{R}_{\geq 0}$, which is log-supermodular, i.e. $\mu(x \wedge y) \mu(x \vee y) \geq$ $\nabla_{\mu}(x) \mu(y)$ for any $x, y \in X$. Then $\left(\sum_{x \in X} f(x) g(x) \mu(x)\right) \cdot \sum_{x \in X} \mu(x) \geq\left(\sum_{x \in X} f(x) \mu(x)\right)\left(\sum_{x \in X} g(x) \mu(x)\right)$.
(The inequality of equation (1) is obtained for the constant measure, $\mu(x)=1$, which is trivially supermodular.)
One of the interpretation of the FKG inequality is: "in many systems the increasing events are positively correlated" (while an increasing event and a decreasing event are negatively correlated). Hence, the applications of this inequality -go far beyond the combinatorics and include e.g. statistical mechanics and probability.
1.2. The condition " X is a distributive lattice" in the above theorem is rather restrictive. Many of the natural posets appearing in arithmetics/algebra/geometry are not of this type. In the current work we establish the inequality of equation (1) for a particular poset $\mathcal{K}_{n, r}$ of ordered compositions, cf. Theorem 3.1. This poset appears frequently in the context of the Young diagrams (representation theory), complete intersections (algebraic geometry), mixed (co)volumes/multiplicities (integral geometry and commutative algebra).

It is known that lattices for which the FKG inequality holds (for any log-supermodular measure) are necessarily distributive. Theorem 3.1 gives an example of non-distributive lattice for which FKG holds for a particular measure.

For related inequalities see also [Cu.Gr.Sk].

[^0]1.3. Sometimes one considers the geometric average, $A v_{X}^{G}(f):=\left(\prod_{x \in X} f(x)\right)^{\frac{1}{X \mid}}$ as well. Then it is natural to compare $\left(A v_{X}^{G}(f)\right)^{A v_{X}(g)}$ to $A v_{X}^{G}\left(f^{g}\right)$. For example, given the real numbers $1 \leq a_{1} \leq \cdots \leq a_{n}$ and $0 \leq b_{1} \leq \cdots \leq b_{n}$, one has: $\left(\sqrt[n]{\prod a_{i}}\right)^{\frac{\sum b_{i}}{n}} \leq \sqrt[n]{\prod a_{i}^{b_{i}}}$.

One passes between $A v_{X}$ and $A v_{X}^{G}$ by using $l n$ and \exp. Thus a simple reformulation of Theorem 3.1 provides automatically the comparison of the geometric averages as well, cf. Corollary 3.4.
1.4. As an immediate application in $\S 4.3$ we prove a highly non-trivial convexity property for the mixed volumes of convex bodies in \mathbb{R}^{N} and the parallel statement for the mixed volumes of Newton diagrams (i.e. co-volumes of the Newton polyhedra). These generalize the classical Alexandrov-Fenchel inequality and its Teissier's counterpart. In particular, it gives a partial answer to a question of [Gromov90].

Furthermore, in [Kerner-Némethi2014] we heavily use the inequality of averages to establish a bound on some topological invariants of singularities. In fact this was our initial motivation for the inequality of averages.

2. The poset $\mathcal{K}_{n, r}$

2.1. The set of compositions. Denote by $\mathcal{K}_{n, r}$ the set of the (ordered) compositions of the integer n into r summands,

$$
\begin{equation*}
\mathcal{K}_{n, r}:=\left\{\underline{k}=\left(k_{1}, \ldots, k_{r}\right): k_{i} \geq 0 \text { for all } i, \text { and } \sum_{i} k_{i}=n\right\} . \tag{2}
\end{equation*}
$$

This $\mathcal{K}_{n, r}$ can be thought of as the lattice points \underline{k} of the simplex $\left\{\sum_{i} x_{i}=n\right\} \cap \mathbb{R}_{\geq 0}^{r}$. Its cardinality is $\left|\mathcal{K}_{n, r}\right|=\binom{n+r-1}{n}$.
The permutation group of r elements, Ξ_{r}, acts on $\mathcal{K}_{n, r}$ by $\sigma(\underline{k})=\left(k_{\sigma(1)}, \ldots, k_{\sigma(r)}\right)$. The quotient $\mathcal{K}_{n, r} / \Xi_{r}$ is the set of partitions into r summands. (In other words, a partition is an unordered composition.) For the general introduction see [Stanley, Chapter 7].

For convenience we put $\mathcal{K}_{n, r}=\varnothing$ when $r \leq 0$ or $n<0$.
2.2. The 'dominance' order on $\mathcal{K}_{n, r}$ can be defined as follows.

- Suppose for $\underline{k}=\left(k_{1}, k_{2}, \ldots, k_{r}\right) \in \mathcal{K}_{n, r}$ one has $k_{1}-1 \geq k_{2}+1$. Then put $\underline{k} \succeq \underline{k}^{\prime}:=\left(k_{1}-1, k_{2}+1, k_{3}, \ldots, k_{r}\right)$.
- Extend this by transitivity, i.e. if $\underline{k} \succeq \underline{k}^{\prime}$ and $\underline{k}^{\prime} \succeq \underline{k}^{\prime \prime}$ then $\underline{k} \succeq \underline{k}^{\prime \prime}$.
- Extend this by the action $\Xi_{r} \circlearrowright \mathcal{K}_{n, r}$, i.e. if $\underline{k} \succeq \underline{k}^{\prime}$ then $\sigma(\underline{k}) \succeq \sigma\left(\underline{k}^{\prime}\right)$ for any $\sigma \in \Xi_{r}$.

In this way we get a partially ordered set with the maximal elements, $(n, 0, \ldots, 0)$ and its orbit under Ξ_{r}, and the minimal elements, $\left(\left\lfloor\frac{n}{r}\right\rfloor, \ldots,\left\lfloor\frac{n}{r}\right\rfloor,\left\lceil\frac{n}{r}\right\rceil, \ldots,\left\lceil\frac{n}{r}\right\rceil\right)$ and its orbit under Ξ_{r}. By construction, this partial order is Ξ_{r} invariant. In particular, any two different elements inside a Ξ_{r} orbit are incomparable. This order descends to the quotient $\mathcal{K}_{n, r} / \Xi_{r}$. (Indeed, for any two elements of $\mathcal{K}_{n, r} / \Xi_{r}$, suppose some of their representatives in $\mathcal{K}_{n, r}$ are comparable, $\underline{k} \preceq \underline{k}^{\prime}$. Then put $[\underline{k}] \preceq\left[\underline{k}^{\prime}\right]$. By the Ξ_{r}-invariance this assignment is consistent: if some other preimages are comparable then they satisfy the same inequality.) The quotient poset $\mathcal{K}_{n, r} / \Xi_{r}$ has a unique minimal and a unique maximal element.
Example 2.1. 1. For $\mathcal{K}_{n, 2}$ we get $(n, 0) \succeq(n-1,1) \succeq \cdots \succeq\left(\left\lceil\frac{n}{2}\right\rceil,\left\lfloor\frac{n}{2}\right\rfloor\right)$ and $\left(\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil\right) \preceq \cdots \preceq(0, n)$. For $\mathcal{K}_{n, 2} / \Xi_{2}$: $(n, 0) \succeq(n-1,1) \succeq \cdots \succeq\left(\left\lceil\frac{n}{2}\right\rceil,\left\lfloor\frac{n}{2}\right\rfloor\right)$. In particular, $\mathcal{K}_{n, 2} / \Xi_{2}$ is totally ordered.
2. As mentioned above, $\mathcal{K}_{n, r}$ is never totally ordered for $r>1$: the elements of any Ξ_{r}-orbit are incomparable. The quotient $\mathcal{K}_{n, r} / \Xi_{r}$ is not totally ordered for $r \geq 3$ and high enough n. For example, for $(n, r)=(6,3)$, the elements $(4,1,1)$ and $(3,3,0)$ are incomparable.
3. In the particular case $\mathcal{K}_{n, n} / \Xi_{n}$ coincides with the Young lattice of all the possible partitions of n, see e.g. [Brylawski], [Stanley, Chapter 7].
4. $\mathcal{K}_{n, r} / \Xi_{r}$ is always a lattice, but it is non-distributive for $n \geq 7$. It contains the non-distributive sublattice:

Here $*$ denotes the rest of the partition, some fixed tuple whose sum is $(n-7)$ and such that all the entries go in the non-increasing order. For this lattice one has:

$$
\begin{align*}
& (*, 3,3,1) \wedge((*, 4,1,1,1) \vee(*, 3,2,2))=(*, 3,3,1) \tag{4}\\
& \quad((*, 3,3,1) \wedge(*, 4,1,1,1)) \vee((*, 3,3,1) \wedge(*, 3,2,2))=(*, 3,2,2)
\end{align*}
$$

2.3. Suppose that a set of objects is indexed by this set of compositions, $\left\{A_{\underline{k}}\right\}_{\underline{k} \in \mathcal{K}_{n, r}}$. We often use the standard set-theoretical inclusion-exclusion formula:

$$
\begin{equation*}
\sum_{\underline{k} \in \mathcal{K}_{n, r}} A_{\underline{k}}-\sum_{i=1}^{r} \sum_{\substack{\underline{k} \in \mathcal{K}_{n, r} \\ k_{i}=0}} A_{\underline{k}}+\sum_{1 \leq i_{1}<i_{2} \leq r} \sum_{\substack{\underline{k} \in \mathcal{K}_{n, r} \\ k_{i_{1}}=k_{i_{2}}=0}} A_{\underline{k}}-\cdots=\sum_{\substack{\underline{k} \in \mathcal{K}_{n, r} \\ k_{1}, \ldots, k_{r}>0}} A_{\underline{k}} . \tag{5}
\end{equation*}
$$

3. The inequality for averages over $\mathcal{K}_{n, r}$

Theorem 3.1. Let $f, g: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ be non-negative functions. Suppose f is Ξ_{r}-invariant, i.e. $f(\sigma(x))=f(x)$ for any $\sigma \in \Xi_{r}$.
(a) If both functions are non-decreasing then $A v_{\mathcal{K}_{n r}}(f) \cdot A v_{\mathcal{K}_{n, r}}(g) \leq A v_{\mathcal{K}_{n, r}}(f g)$.
(b) If f is non-decreasing, while g is non-increasing then $A v_{\mathcal{K}_{n, r}}(f) \cdot A v_{\mathcal{K}_{n, r}}(g) \geq A v_{\mathcal{K}_{n, r}}(f g)$.
(c) In the statements above, the equality holds if and only if either f is constant, or the symmetrization of $g, \tilde{g}(x):=$ $A v_{\Xi_{r}(x)}(g)$ is constant on $\mathcal{K}_{n, r}$.
Example 3.2. 1. This inequality was proved in [Kerner-Némethi2013, §1.3] in the particular case of $f(\underline{k}):=\prod_{i=1}^{r} d_{i}^{k_{i}}$ and $g(\underline{k}):=\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}$, in which case it reads as

$$
\begin{equation*}
\left(\sum_{\underline{k} \in \mathcal{K}_{n, r}}\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}\right)\left(\sum_{\underline{k} \in \mathcal{K}_{n, r}}\left(\prod_{j=1}^{r} d_{j}^{k_{j}}\right)\right) \geq\left|\mathcal{K}_{n, r}\right| \sum_{\underline{k} \in \mathcal{K}_{n, r}}\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}\left(\prod_{j=1}^{r} d_{j}^{k_{j}}\right) . \tag{6}
\end{equation*}
$$

This was the essential ingredient in establishing a bound for some topological invariants in Singularity Theory.
2. If one does not assume that at least one of the functions is Ξ_{r}-invariant then the inequality does not hold. For example, consider $\mathcal{K}_{2,2}=\{(0,2) \succeq(1,1) \preceq(2,0)\}$. The inequality is obviously violated for

$$
f(x)=\left\{\begin{array}{l}
1, x=(0,2) \\
0, \text { otherwise }
\end{array}, \quad g(x)=\left\{\begin{array}{l}
1, x=(2,0) \\
0, \text { otherwise }
\end{array}\right.\right.
$$

3. The statement can be reformulated as averaging over $\mathcal{K}_{n, r} / \Xi_{r}$, with the weight function $\mu([\underline{k}])=\left|\Xi_{r}(\underline{k})\right|$.

Proof. Step 1. We start with some simplifying remarks.
We can (and will) assume that g is Ξ_{r}-invariant. Indeed, define $\tilde{g}: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ by the averaging over the orbit, $\tilde{g}(x):=A v_{\Xi_{r}(x)}(g)$. By construction \tilde{g} is non-negative, non-decreasing and Ξ_{r}-invariant. And $A v_{\mathcal{K}_{n, r}}(g)=A v_{\mathcal{K}_{n, r}}(\tilde{g})$, $A v_{\mathcal{K}_{n, r}}(f g)=A v_{\mathcal{K}_{n, r}}(f \tilde{g})$.

Note that the statement (b) follows from (a). (Indeed, if g is non-increasing then consider the number $\max _{\mathcal{K}_{n, r}}(g)$ and apply the first statement to the functions f and $\underset{\mathcal{K}_{n, r}}{\max }(g)-g$.) In particular, we can assume that both f and g are non-decreasing and Ξ_{r}-invariant functions.

Suppose $\left(f_{1}, g\right)$ and $\left(f_{2}, g\right)$ satisfy the statement of the theorem. Then the pair $\left(a_{1} f_{1}+a_{2} f_{2}, g\right)$ satisfies the theorem too for any $a_{1}, a_{2} \in \mathbb{R}_{\geq 0}$. (Note that $a_{1} f_{1}+a_{2} f_{2}$ is Ξ_{r}-invariant and non-decreasing as well.) Moreover, the equality holds iff it holds for each pair separately: $A v_{\mathcal{K}_{n, r}}\left(f_{i}\right) A v_{\mathcal{K}_{n, r}}(g)=A v_{\mathcal{K}_{n, r}}\left(f_{i} g\right)$. On the other hand, any Ξ_{r}-invariant, non-decreasing function on $\mathcal{K}_{n, r}$ is presentable as a positive linear combination of certain $\{0,1\}$ valued functions, which are Ξ_{r}-invariant and non-decreasing as well. Therefore, to prove (a), we can assume that both f and g are of this form.

Therefore, we assume that f and g are the characteristic functions of some subsets. E.g., $f=\mathbb{I}_{X}$, where $X \subseteq \mathcal{K}_{n, r}$ is Ξ_{r}-invariant and "upward closed". This later condition means the following: if $\underline{k} \in X$ and $\underline{k}^{\prime} \succeq \underline{k}$ then $\underline{k}^{\prime} \in X$. First and last, it is enough to prove the inequality for cardinalities of "upward closed" and Ξ_{r}-invariant subsets:

$$
\begin{equation*}
A v_{\mathcal{K}_{n, r}}(X) \cdot A v_{\mathcal{K}_{n, r}}(Y):=\frac{|X|}{\left|\mathcal{K}_{n, r}\right|} \cdot \frac{|Y|}{\left|\mathcal{K}_{n, r}\right|} \leq \frac{|X \cap Y|}{\left|\mathcal{K}_{n, r}\right|}=A v_{\mathcal{K}_{n, r}}(X \cap Y) \tag{7}
\end{equation*}
$$

Furthermore, we also verify that the equality holds iff either $X=\mathcal{K}_{n, r}$ or $X=\varnothing$.
Our proof generalizes and refines the proof of [Kerner-Némethi2013, §4].
Step 2. The proof below consists of some counting over the subsets of $\mathcal{K}_{n, r}$. First we define the stratification: $\mathcal{K}_{n, r}=\coprod_{s=0, \ldots, r-1} \mathcal{K}_{n, r}^{s}$, where $\mathcal{K}_{n, r}^{s}:=\left\{\underline{k} \in \mathcal{K}_{n, r}:\left|\left\{i: k_{i}=0\right\}\right|=s\right\}$. Note that $\mathcal{K}_{n, r}^{s}=\varnothing$ for $s<r-n$. We often use the expression for cardinality of these sets:

$$
\begin{equation*}
\left|\mathcal{K}_{n, r}^{s}\right|=\binom{r}{s}\binom{n-1}{r-s-1} \tag{8}
\end{equation*}
$$

If one thinks about $\mathcal{K}_{n, r}$ as a simplex (see $\S 2.1$) then $\mathcal{K}_{n, r}^{s}$ are collections of open cells/faces of codimension s.
Some strata of $\mathcal{K}_{n, r}$ are naturally isomorphic to (some strata of) $\mathcal{K}_{n^{\prime}, r^{\prime}}$ with lower n^{\prime}, r^{\prime}. For example: $\mathcal{K}_{n, r}^{0} \xrightarrow{\sim} \mathcal{K}_{n-r, r}$, by $\left(k_{1}, \ldots, k_{r}\right) \rightarrow\left(k_{1}-1, \ldots, k_{r}-1\right)$. Usually we identify $\mathcal{K}_{n-r, r}$ with its image $\mathcal{K}_{n, r}^{0} \subset \mathcal{K}_{n, r}$. For example, we write: $\left|X \cap \mathcal{K}_{n, r}^{0}\right|=\left|X \cap \mathcal{K}_{n-r, r}\right|$.

In the following we often split the sets into parts, e.g. $\mathcal{K}_{n, r}^{s}=\underset{\left(i_{1}, \ldots, i_{s}\right) \subset[1, \ldots, r]}{ } \mathcal{K}_{n, r}^{s}\left(k_{i_{1}}=\cdots=k_{i_{s}}=0\right)$. Here $\mathcal{K}_{n, r}^{s}\left(k_{i_{1}}=\right.$ $\left.\cdots=k_{i_{s}}=0\right)=\left\{\underline{k} \in \mathcal{K}_{n, r}^{s} \mid k_{j}=0\right.$ iff $\left.j \in\left\{i_{1}, \ldots, i_{r}\right\}\right\}$. As before, we get $\mathcal{K}_{n, r}^{s}\left(k_{i_{1}}=\cdots=k_{i_{s}}=0\right) \xrightarrow{\sim} \mathcal{K}_{n, r-s}^{0}$.

Sometimes we write this in the sloppy way $\mathcal{K}_{n, r}^{s}=\coprod_{\left(i_{1}, \ldots, i_{s}\right) \subset[1, \ldots, r]} \mathcal{K}_{n, r-s}^{0}$. These formulas give immediate implications for the cardinality of the sets: $\left|\mathcal{K}_{n, r}^{s}\right|=\binom{r}{s}\left|\mathcal{K}_{n, r-s}^{0}\right|=\binom{r}{s}\left|\mathcal{K}_{n-r+s, r-s}\right|$.

Note that starting from a subset $X \subseteq \mathcal{K}_{n, r}$ we get the set $X \cap \mathcal{K}_{n, r}^{s}$ and its subsets $X \cap \mathcal{K}_{n, r}^{s}=\underset{\left(i_{1}, \ldots, i_{s}\right) \subset[1, \ldots, r]}{\coprod} X \cap$ $\mathcal{K}_{n, r-s}^{0}=\underset{\left(i_{1}, \ldots, i_{s}\right) \subset[1, \ldots, r]}{\amalg} X \cap \mathcal{K}_{n-r+s, r-s}$. Moreover, if the initial X was Ξ_{r}-invariant and upward closed then so are all the above subsets of type $X \cap K_{n-r+s, r-s}$.

Step 3. Let a subset $X \subset \mathcal{K}_{n, r}$ be Ξ_{r}-invariant and upward closed, as above. Consider its averages over the strata, $\left\{A v_{\mathcal{K}_{n, r}^{s}} X:=\frac{\left|X \cap \mathcal{K}_{n, r}^{s}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|}\right\}_{s=0, \ldots, r-1}$. We prove:

$$
\begin{equation*}
A v_{\mathcal{K}_{n, r}^{0}} X \leq A v_{\mathcal{K}_{n, r}^{1}} X \leq \cdots \leq A v_{\mathcal{K}_{n, r}^{r-1}} X \tag{9}
\end{equation*}
$$

and the equality holds iff $X=\mathcal{K}_{n, r}$ or $X=\varnothing$.
The proof goes by double induction on (n, r). Recall that $\mathcal{K}_{n, r}^{s}=\varnothing$ if $n<0$ or $r \leq 0$. Note that if $r=1$ or $n=1$ then the statement is empty $\left(\mathcal{K}_{n, 1}^{s}=\varnothing\right.$ for $s>0$ and $\mathcal{K}_{1, r}^{s}=\varnothing$ for $\left.s<r-1\right)$. For $r=2$ the proof is trivial.

Fix some (n, r), suppose the statement holds for any $\left(n^{\prime}, r^{\prime}, X\right)$, with $n^{\prime}<n$ and $r^{\prime}<r$ and X an Ξ_{r}-invariant set which is upward closed. First we reduce all the inequalities to $A v_{\mathcal{K}_{n, r}^{0}} X \leq A v_{\mathcal{K}_{n, r}^{1}} X$. Indeed:

$$
\begin{equation*}
A v_{\mathcal{K}_{n, r}^{s}} X=\frac{\left|X \cap \mathcal{K}_{n, r}^{s}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|}=\sum_{\left(i_{1}, \ldots, i_{s}\right) \subset[1, \ldots, r]} \frac{\left|X \cap \mathcal{K}_{n, r}^{s}\left(k_{i_{1}}=\cdots=k_{i_{s}}=0\right)\right|}{\left|\mathcal{K}_{n, r}^{s}\right|} \xlongequal{\Xi_{r} \circlearrowright X}\binom{r}{s} \frac{\left|X \cap \mathcal{K}_{n, r-s}^{0}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|} \tag{10}
\end{equation*}
$$

(Here in the last equality we used the Ξ_{r}-invariance of X.)
In addition:

$$
\begin{equation*}
\left|X \cap \mathcal{K}_{n, r+1-s}^{1}\right|=\sum_{j=1}^{r+1-s}\left|X \cap \mathcal{K}_{n, r+1-s}^{1}\left(k_{j}=0\right)\right| \xlongequal{\Xi_{r} \circlearrowright X}(r+1-s)\left|X \cap \mathcal{K}_{n, r-s}^{0}\right| \tag{11}
\end{equation*}
$$

Thus $A v_{\mathcal{K}_{n, r}^{s}} X=\frac{\binom{r}{s}}{r+1-s} \frac{\left|X \cap \mathcal{K}_{n, r+1-s}^{1}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|}$, while $A v_{\mathcal{K}_{n, r}^{s-1}} X=\binom{r}{s-1} \frac{\left|X \cap \mathcal{K}_{n, r+1-s}^{0}\right|}{\left|\mathcal{K}_{n, r}^{s-1}\right|}$. Altogether:

$$
\begin{equation*}
A v_{\mathcal{K}_{n, r}^{s}} X-A v_{\mathcal{K}_{n, r}^{s-1}} X=\frac{\binom{r}{s}}{r+1-s} \frac{\left|\mathcal{K}_{n, r+1-s}^{1}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|}\left(A v_{\mathcal{K}_{n, r+1-s}^{1}} X-A v_{\mathcal{K}_{n, r+1-s}^{0}} X\right) \tag{12}
\end{equation*}
$$

(Here we used the equality of the coefficients: $\frac{\binom{r}{s}}{r+1-s} \frac{\left|\mathcal{K}_{n, r+1-s}^{1}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|}=\binom{r}{s-1} \frac{\left|\mathcal{K}_{n, r+1-s}^{0}\right|}{\left|\mathcal{K}_{n, r}^{s-1}\right|}$.)
If $s>1$ then $A v_{\mathcal{K}_{n, r+1-s}^{1}} X \geq A v_{\mathcal{K}_{n, r+1-s}^{0}} X$ by the inductive assumption. Thus it remains to prove that $A v_{\mathcal{K}_{n, r}^{1}} X \geq$ $A v_{\mathcal{K}_{n, r}^{0}} X$. Now we use the reduction:

$$
\begin{align*}
&\left|X \cap \mathcal{K}_{n, r}^{1}\right|=\sum_{j=1}^{r}\left|X \cap \mathcal{K}_{n, r}^{1}\left(k_{j}=0\right)\right|=\sum_{j=1}^{r}\left|X \cap \mathcal{K}_{n, r-1}^{0}\right|=\sum_{j=1}^{r}\left|X \cap \mathcal{K}_{n-r+1, r-1}\right|= \tag{13}\\
&=\sum_{s=0}^{r-2} \sum_{j=1}^{r}\left|X \cap \mathcal{K}_{n-r+1, r-1}^{s}\right|=\sum_{s=0}^{r-2}(s+1)\left|X \cap \mathcal{K}_{n-r+1, r}^{s+1}\right|=\sum_{s=0}^{r-1} s\left|X \cap \mathcal{K}_{n-r+1, r}^{s}\right| .
\end{align*}
$$

Similarly:

$$
\begin{equation*}
\left|X \cap \mathcal{K}_{n, r}^{0}\right|=\frac{1}{r} \sum_{j=1}^{r}\left|X \cap \mathcal{K}_{n-r+1, r}\left(k_{j}>0\right)\right|=\frac{1}{r} \sum_{j=1}^{r} \sum_{s=0}^{r-1}\left|X \cap \mathcal{K}_{n-r+1, r}^{s}\left(k_{j}>0\right)\right|=\frac{1}{r} \sum_{s=0}^{r-1}(r-s)\left|X \cap \mathcal{K}_{n-r+1, r}^{s}\right| \tag{14}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
A v_{\mathcal{K}_{n, r}^{1}} X-A v_{\mathcal{K}_{n, r}^{0}} X=\frac{\sum_{s=0}^{r-1} s\left|X \cap \mathcal{K}_{n-r+1, r}^{s}\right|}{\left|\mathcal{K}_{n, r}^{1}\right|}-\frac{\frac{1}{r} \sum_{s=0}^{r-1}(r-s)\left|X \cap \mathcal{K}_{n-r+1, r}^{s}\right|}{\left|\mathcal{K}_{n, r}^{0}\right|}=\sum_{s=0}^{r-1} \underbrace{\left(\frac{s}{\left|\mathcal{K}_{n, r}^{1}\right|}-\frac{\frac{r-s}{r}}{\left|\mathcal{K}_{n, r}^{0}\right|}\right)\left|\mathcal{K}_{n-r+1, r}^{s}\right|}_{\alpha_{s}} \underbrace{A v_{\mathcal{K}_{n-r+1, r}^{s}} X}_{\beta_{s}} \tag{15}
\end{equation*}
$$

Here by the inductive assumption: $\beta_{r-1} \geq \beta_{r-2} \geq \cdots \geq \beta_{0} \geq 0$. By direct check:

$$
\begin{equation*}
\alpha_{s}=\frac{1}{\binom{n-2}{r-2}(n-1)}\binom{n-r}{r-s-1}\left(n\binom{r-1}{s-1}-(r-1)\binom{r}{s}\right) . \tag{16}
\end{equation*}
$$

(We use the convention: $\binom{m}{n}=0$ if $n<0$ or $m<n$.)

We claim that $\sum_{s=k}^{r-1} \alpha_{s}=\frac{1}{\binom{n-2}{r-2}(n-1)}\binom{n-r}{r-k}\binom{r-1}{k} k$, for $0 \leq k \leq r-1$. (In particular, this sum is positive for $k>0$ and zero for $k=0$.)

The case $k=0$ follows from $n \sum_{s=0}^{r-1}\binom{n-r}{r-s-1}\binom{r-1}{s-1}=(r-1) \sum_{s=0}^{r-1}\binom{n-r}{r-s-1}\binom{r}{s}$, which in turn follows from the classical $\sum_{i=0}^{p}\binom{p}{i}\binom{q}{k-i}=\binom{p+q}{k}$.

Suppose the stated equality holds for some k, we prove it for $k+1$:

$$
\begin{align*}
&\left.\sum_{s=k+1}^{r-1} \alpha_{s}=\sum_{s=k}^{r-1} \alpha_{s}-\alpha_{k}=\frac{\binom{n-r}{r-k}\binom{r-1}{k}}{}\right) k-\binom{n-r}{r-k-1}\left(n \left(\begin{array}{c}
\left.\binom{-1}{k-1}-(r-1)\binom{r}{k}\right) \\
\binom{n-2}{r-2}(n-1)
\end{array}\right.\right. \tag{17}\\
&=\frac{\frac{\left(\begin{array}{c}
(n-r)!
\end{array}\right.}{(r-k)!(n-2 r+k+1)!}\left(\begin{array}{c}
\binom{-1}{k}\left(k^{2}+k-2 k r+r^{2}-r\right) \\
\binom{n-2}{r-2}(n-1)
\end{array}=\frac{\binom{n-r}{r-k-1}\binom{r-1}{k+1}(k+1)}{\binom{n-2}{r-2}(n-1)},\right.}{},
\end{align*}
$$

precisely as stated.
Therefore:

$$
\begin{align*}
& A v_{\mathcal{K}_{n, r}^{1}} X-A v_{\mathcal{K}_{n, r}^{0}} X=\sum_{s=0}^{r-1} \alpha_{s} \beta_{s}=\underbrace{\alpha_{r-1}\left(\beta_{r-1}-\beta_{r-2}\right)}_{\geq 0}+\underbrace{\left(\alpha_{r-1}+\alpha_{r-2}\right)\left(\beta_{r-2}-\beta_{r-3}\right)}_{\geq 0}+ \tag{18}\\
&+\cdots+\underbrace{\left(\sum_{i=1}^{r-1} \alpha_{i}\right)\left(\beta_{1}-\beta_{0}\right)}_{\geq 0}+\underbrace{\left(\sum_{i=0}^{r-1} \alpha_{i}\right) \beta_{0}}_{=0} .
\end{align*}
$$

As each term is non-negative we get: $A v_{\mathcal{K}_{n, r}^{1}} X \geq A v_{\mathcal{K}_{n, r}^{0}} X$. Furthermore, the equality holds iff $\left\{\beta_{i+1}=\beta_{i}\right\}_{i}$, i.e. either $\left\{X \cap \mathcal{K}_{n, r}^{i}=\mathcal{K}_{n, r}^{i}\right\}_{i}$ or $X=\varnothing$.

Step 4. Finally, using $A v_{\mathcal{K}_{n, r}^{0}} X \leq A v_{\mathcal{K}_{n, r}^{1}} X \leq \cdots \leq A v_{\mathcal{K}_{n, r}^{r-1}} X$, we prove $\left(A v_{\mathcal{K}_{n, r}} X\right)\left(A v_{\mathcal{K}_{n, r}} Y\right) \leq A v_{\mathcal{K}_{n, r}}(X \cap Y)$. As above, this is done by the double induction on (n, r). Note that the statement holds trivially for $r=1$ or $n=1$. Suppose it holds for any (n^{\prime}, r^{\prime}) with $n^{\prime}<n$ and $r^{\prime}<r$.

First observe:

$$
\begin{equation*}
\left|\mathcal{K}_{n, r}\right| \cdot A v_{\mathcal{K}_{n, r}}(X \cap Y)=\left|X \cap Y \cap \mathcal{K}_{n, r}\right|=\sum_{s=0}^{r-1} \sum_{\left(i_{1}, \ldots, i_{s}\right) \subset[1, \ldots, r]}\left|X \cap Y \cap \mathcal{K}_{n, r-s}^{0}\left(k_{i_{1}}=0=\cdots=k_{i_{s}}\right)\right| . \tag{19}
\end{equation*}
$$

Further:

$$
\begin{align*}
\mid X \cap Y \cap \mathcal{K}_{n, r-s}^{0}\left(k_{i_{1}}=0=\cdots\right. & \left.=k_{i_{s}}\right)\left|=\left|X \cap Y \cap \mathcal{K}_{n-r+s, r-s}\left(k_{i_{1}}=0=\cdots=k_{i_{s}}\right)\right| \geq\right. \tag{20}\\
& \geq \frac{\left|X \cap \mathcal{K}_{n-r+s, r-s}\left(k_{i_{1}}=0=\cdots=k_{i_{s}}\right)\right| \cdot\left|Y \cap \mathcal{K}_{n-r+s, r-s}\left(k_{i_{1}}=0=\cdots=k_{i_{s}}\right)\right|}{\left|\mathcal{K}_{n-r+s, r-s}\right|} .
\end{align*}
$$

The last inequality here is the induction assumption.
As was mentioned above, the cardinalities of the sets are related by: $\left|\mathcal{K}_{n-r+s, r-s}\right|=\left|\mathcal{K}_{n, r-s}^{0}\right|=\frac{\left|\mathcal{K}_{n, r}^{s}\right|}{\left(l_{s}^{s}\right)}$. Similarly (as X, Y are Ξ_{r}-invariant): $\left|X \cap \mathcal{K}_{n-r+s, r-s}\right|=\left|X \cap \mathcal{K}_{n, r-s}^{0}\right|=\frac{\left|X \cap \mathcal{K}_{n, r}^{s}\right|}{\binom{s}{s}}$. Therefore:

Here we have $\alpha_{0} \leq \alpha_{1} \leq \cdots \leq \alpha_{r-1}$ and $\beta_{0} \leq \beta_{1} \leq \cdots \leq \beta_{r-1}$, by Step 3, and $\gamma_{s}>0$.
Thus we can use the following generalization of Chebyshev's sum inequality

$$
\begin{equation*}
\left(\sum_{s} \gamma_{s} \alpha_{s}\right)\left(\sum_{s^{\prime}} \gamma_{s^{\prime}} \beta_{s^{\prime}}\right) \leq\left(\sum_{s^{\prime}} \gamma_{s^{\prime}}\right)\left(\sum_{s} \alpha_{s} \beta_{s} \gamma_{s}\right), \tag{22}
\end{equation*}
$$

which basically is the summation $\sum_{s, s^{\prime}} \gamma_{s} \gamma_{s^{\prime}}\left(\alpha_{s}-\alpha_{s^{\prime}}\right)\left(\beta_{s}-\beta_{s^{\prime}}\right) \geq 0$, see [Hardy-Littlewood-Pólya, p. 43].

Hence:

$$
\begin{align*}
&\left|\mathcal{K}_{n, r}\right|^{2} \cdot A v_{\mathcal{K}_{n, r}}(X \cap Y) \geq\left(\sum_{s^{\prime}=0}^{r-1} \mathcal{K}_{n, r}^{s^{\prime}}\right) \sum_{s=0}^{r-1} \underbrace{\frac{\left|X \cap \mathcal{K}_{n, r}^{s}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|}}_{\alpha_{s}} \cdot \underbrace{\frac{\left|Y \cap \mathcal{K}_{n, r}^{s}\right|}{\left|\mathcal{K}_{n, r}^{s}\right|}}_{\beta_{s}} \cdot \underbrace{\left|\mathcal{K}_{n, r}^{s}\right|}_{\gamma_{s}} \geq \tag{23}\\
& \geq\left(\sum_{s=0}^{r-1}\left|X \cap \mathcal{K}_{n, r}^{s}\right|\right)\left(\sum_{s^{\prime}=0}^{r-1}\left|Y \cap \mathcal{K}_{n, r}^{s^{\prime}}\right|\right)=\left|X \cap \mathcal{K}_{n, r}\right| \cdot\left|Y \cap \mathcal{K}_{n, r}\right| .
\end{align*}
$$

This finishes the proof.
This theorem can be extended to the functions whose "pushforwards" are monotonic on $\mathcal{K}_{n, r} / \Xi_{r}$. Given $f: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ define $[f]: \mathcal{K}_{n, r} / \Xi_{r} \rightarrow \mathbb{R}_{\geq 0}$ by: $[f]([x])=A v_{\Xi_{r}(x)} f$. (Note that this expression does not depend on the choice of the representative of $[x]$.)

Corollary 3.3. Given functions $f, g: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$. Suppose f is Ξ_{r} invariant and $[f],[g]: \mathcal{K}_{n, r} / \Xi_{r} \rightarrow \mathbb{R}_{\geq 0}$ are monotonic. Then $A v_{\mathcal{K}_{n, r}}(f) \cdot A v_{\mathcal{K}_{n, r}}(g) \leq A v_{\mathcal{K}_{n, r}}(f g)$, with equality iff one of $[f],[g]$ is constant.

To prove this, define $\tilde{g}: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ by $\tilde{g}(x)=A v_{\Xi_{r}(x)}(g)$. Then $A v_{\mathcal{K}_{n, r}}(g)=A v_{\mathcal{K}_{n, r}}(\tilde{g})$ and $A v_{\mathcal{K}_{n, r}}(f g)=$ $A v_{\mathcal{K}_{n, r}}(f \tilde{g})$. And by construction f, \tilde{g} are monotonic on $\mathcal{K}_{n, r}$. Now, apply the theorem.

We can reformulate theorem 3.1 to compare the geometric averages.
Corollary 3.4. Given two non-decreasing functions, $f: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 1}$ and $g: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$. Suppose at least one of them is Ξ_{r}-invariant. Then

$$
\left(A v_{\mathcal{K}_{n, r}}^{G}(f)\right)^{A v_{\mathcal{K}_{n, r}}(g)} \geq A v_{\mathcal{K}_{n, r}}^{G}\left(f^{g}\right)
$$

To prove this take the logarithm of both sides. Note that $\ln \left(A v_{\mathcal{K}_{n, r}}^{G}(f)\right)=A v_{\mathcal{K}_{n, r}}(\ln (f))$ where $\ln (f): \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ is still a non-decreasing function. Similarly $\ln \left(A v_{\mathcal{K}_{n, r}}^{G}\left(f^{g}\right)\right)=A v_{\mathcal{K}_{n, r}}(g \cdot \ln (f))$. Now, apply the theorem.

4. An application to mixed (Co-)volumes

4.1. Newton polyhedra. Let $f\left(x_{1}, \ldots, x_{N}\right)=\sum_{I} a_{I} \underline{x}^{I}$ be a power series over some field \mathbb{k}. Consider the support of its monomials, $\operatorname{Supp}(f):=\left\{I \in \mathbb{Z}_{\geq 0}^{N} \mid a_{I} \neq 0\right\}$. The Newton polyhedron is defined as the convex hull,

$$
\begin{equation*}
\Gamma^{+}=\Gamma_{f}^{+}:=\operatorname{Conv}\left(\operatorname{Supp}(f)+\mathbb{R}_{\geq 0}^{N}\right) \tag{24}
\end{equation*}
$$

It has compact faces and unbounded faces. The Newton polyhedron is called convenient if Γ^{+}intersects all the coordinate axes (i.e. f contains monomials of type $x_{1}^{m_{1}}, \ldots, x_{N}^{m_{N}}$). We always assume Γ^{+}to be convenient. (Though in the present note we do not study the analytic properties of the power series related with their Newton diagrams, by the above definition we wish to emphasize the main motivation supported by algebraic geometry and complex analysis.)
4.2. Mixed (co)volumes. Given several convex bodies A_{1}, \ldots, A_{r} in \mathbb{R}^{N}, consider their scaled Minkowski sum, $\lambda_{1} A_{1}+$ $\cdots+\lambda_{r} A_{r}$. The mixed volumes are defined as the coefficients in the expansion:

$$
\begin{equation*}
\operatorname{Vol}_{N}\left(\lambda_{1} A_{1}+\cdots+\lambda_{r} A_{r}\right)=\sum_{\underline{k} \in \mathcal{K}_{N, r}}\binom{N}{k_{1}, \ldots, k_{r}} \operatorname{Vol}\left(\left(A_{1}\right)^{k_{1}}, \ldots,\left(A_{r}\right)^{k_{r}}\right)\left(\prod_{i=1}^{r} \lambda_{i}^{k_{i}}\right) \tag{25}
\end{equation*}
$$

Dually, given a convenient Newton polyhedron, $\Gamma^{+} \subset \mathbb{R}_{\geq 0}^{N}$, consider its covolume, i.e. the volume of the complement: $\operatorname{coVol}\left(\Gamma^{+}\right):=\operatorname{Vol}_{N}\left(\mathbb{R}_{\geq 0}^{N} \backslash \Gamma^{+}\right)$. Given a collection of Newton polyhedra, $\left\{\Gamma_{i}^{+}\right\}_{i=1}^{r}$, consider their scaled Minkowski sum, $\lambda_{1} \Gamma_{1}^{+}+\cdots+\lambda_{r} \Gamma_{r}^{+}$. The covolume of this sum is a polynomial in $\left\{\lambda_{i}\right\}$, see e.g. [Kaveh-Khovanskii-2013-2, Theorem 10.4]:

$$
\begin{equation*}
\operatorname{coVol}\left(\lambda_{1} \Gamma_{1}^{+}+\cdots+\lambda_{r} \Gamma_{r}^{+}\right)=\sum_{\underline{k} \in \mathcal{K}_{N, r}}\binom{N}{k_{1}, \ldots, k_{r}} \operatorname{coVol}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right)\left(\prod_{i=1}^{r} \lambda_{i}^{k_{i}}\right) \tag{26}
\end{equation*}
$$

The mixed covolumes are the (positive) coefficients $\operatorname{coVol}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right)$.
Here $\operatorname{coVol}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right)$ is a shorthand for $\operatorname{coVol}(\underbrace{\Gamma_{1}^{+}, \ldots, \Gamma_{1}^{+}}_{k_{1}}, \ldots, \underbrace{\Gamma_{r}^{+}, \ldots, \Gamma_{r}^{+}}_{k_{r}})$, for $k_{1}+\cdots+k_{r}=N$, similarly to $\operatorname{Vol}\left(\left(A_{1}\right)^{k_{1}}, \ldots,\left(A_{r}\right)^{k_{r}}\right)$.

We list some of the basic properties of the mixed (co)volumes, see e.g. [Kaveh-Khovanskii-2013-1, §2]:
\bullet They are symmetric and multilinear, e.g. $\operatorname{coVol}\left(\Gamma_{11}^{+}+\Gamma_{12}^{+}, \Gamma_{2}^{+}, \ldots, \Gamma_{N}^{+}\right)=\operatorname{coVol}\left(\Gamma_{11}^{+}, \Gamma_{2}^{+}, \ldots, \Gamma_{N}^{+}\right)+\operatorname{coVol}\left(\Gamma_{12}^{+}, \Gamma_{2}^{+}, \ldots, \Gamma_{N}^{+}\right)$.

- If $\Gamma_{i}^{+}=d_{i} \Gamma^{+}$for any $i=1, \ldots, r$ then
(27)

$$
\operatorname{coVol}_{N}\left(\sum_{i} \lambda_{i} \Gamma_{i}^{+}\right)=\operatorname{coVol}_{N}\left(\sum_{i} \lambda_{i} d_{i} \Gamma^{+}\right)=\left(\sum_{i} \lambda_{i} d_{i}\right)^{N} \operatorname{coVol}_{N}\left(\Gamma^{+}\right)=\sum_{\underline{k} \in \mathcal{K}_{n, r}}\binom{N}{k_{1}, \ldots, k_{r}}\left(\prod_{i=1}^{r}\left(\lambda_{i} d_{i}\right)^{k_{i}}\right) \operatorname{coVol}_{N}\left(\Gamma^{+}\right) .
$$

A similar statement holds for the convex bodies: $\operatorname{Vol}_{N}\left(\sum_{i} \lambda_{i} A_{i}\right)=\operatorname{Vol}_{N}\left(\sum_{i} \lambda_{i} d_{i} A\right)=\left(\sum_{i} d_{i} \lambda_{i}\right)^{N} V o l_{N}(A)$.

- The mixed volumes of the convex bodies in \mathbb{R}^{N} satisfy the Alexandrov-Fenchel inequality, [Alexandrov-1937], [Alexandrov-1938], [Fenchel-1936]:

$$
\begin{equation*}
\operatorname{Vol}\left(A_{1}, \ldots, A_{N}\right)^{2} \geq \operatorname{Vol}\left(A_{1}, A_{1}, A_{3} \ldots, A_{N}\right) \operatorname{Vol}\left(A_{2}, A_{2}, A_{3} \ldots, A_{N}\right) \tag{28}
\end{equation*}
$$

The dual property of the mixed covolumes of Newton polyhedra was proved in [Teissier1978], [Rees-Sharp-1978], [Katz1988], [Teissier2004, Appendix], [Kaveh-Khovanskii-2013-2, Theorem 10.5]:

$$
\begin{equation*}
\operatorname{coVol}\left(\Gamma_{1}^{+}, \Gamma_{2}^{+}, \cdots, \Gamma_{N}^{+}\right)^{2} \leq \operatorname{coVol}\left(\Gamma_{1}^{+}, \Gamma_{1}^{+}, \Gamma_{3}^{+}, \cdots, \Gamma_{N}^{+}\right) \operatorname{coVol}\left(\Gamma_{2}^{+}, \Gamma_{2}^{+}, \Gamma_{3}^{+}, \cdots, \Gamma_{N}^{+}\right) \tag{29}
\end{equation*}
$$

4.3. A generalization of the Alexandrov-Fenchel-Teissier inequalities. The inequalities of equations (28) and (29) correspond to the triples of points on a segment in $\mathcal{K}_{n, r}:\left\{k_{1}+2, k_{2}, k_{3}, \ldots,\right\},\left\{k_{1}+1, k_{2}+1, k_{3}, \ldots\right\},\left\{k_{1}, k_{2}+\right.$ $\left.2, k_{3}, \ldots\right\}$. One would ask for the general property, the Jensen-type inequality:

Suppose a collection of lattice points $\underline{k}^{(1)}, \underline{k}^{(2)}, \ldots, \underline{k}^{(s)} \in \mathcal{K}_{N, r}$, satisfy: $\underline{k}:=\frac{\underline{k^{(1)}+\cdots+\underline{k}^{(s)}}}{s} \in \mathcal{K}_{N, r}$ (i.e. \underline{k} defined in this way is a lattice point too). Then $\operatorname{coVol}\left(\left(\Gamma^{+}\right)^{\underline{k}}\right)^{s} \leq \prod_{i=1}^{s} \operatorname{coVol}\left(\left(\Gamma^{+}\right)^{\underline{k}^{(i)}}\right)$ and $\operatorname{Vol}\left(\underline{A}^{\underline{k}}\right)^{s} \geq \prod_{i=1}^{s} \operatorname{Vol}\left(\underline{A}^{\underline{k}^{(i)}}\right)$.

In particular, Gromov in [Gromov90] asked whether this holds at least for points $\underline{k}^{(1)}, \underline{k}^{(2)}, \ldots, \underline{k}^{(s)}$ sitting inside a low dimensional linear subspace of $\mathcal{K}_{n, r}$. As it was shown by Burda in [Burda-2012] such a property in general fails, e.g. he provided an example with

$$
\begin{equation*}
\operatorname{Vol}_{3}\left(A_{1}, A_{2}, A_{3}\right)^{3}<\operatorname{Vol}_{3}\left(A_{1}, A_{1}, A_{2}\right) \operatorname{Vol}_{3}\left(A_{2}, A_{2}, A_{3}\right) \operatorname{Vol}_{3}\left(A_{3}, A_{3}, A_{1}\right) \tag{30}
\end{equation*}
$$

Yet, Theorem 3.1 and Corollary 3.4 allow us to establish the 'corrected version' of the above question (see Corollary 4.1).
Given a pair $\left(n^{\prime}, r^{\prime}\right)$ fix some $1 \leq r \leq r^{\prime}$ and denote $n:=n^{\prime}+r-r^{\prime}$. Fix some Newton polyhedra, $\Gamma_{1}^{+}, \ldots, \Gamma_{r}^{+}, \Gamma_{r+1}^{+}, \ldots, \Gamma_{r^{\prime}}^{+} \subset$ $\mathbb{R}^{n^{\prime}}$. Define the function Mix.coVol: $\mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ by $\underline{k} \rightarrow \operatorname{coVol}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}, \Gamma_{r+1}^{+}, \ldots, \Gamma_{r^{\prime}}^{+}\right)$. Fix some convex bodies $A_{1}, \ldots, A_{r}, A_{r+1}, \ldots, A_{r^{\prime}} \subset \mathbb{R}^{n^{\prime}}$ and define the function

$$
\begin{equation*}
\text { Mix.Vol: } \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}, \quad \underline{k} \rightarrow \operatorname{Vol}\left(A_{1}^{k_{1}}, \ldots, A_{r}^{k_{r}}, A_{r+1}, \ldots, A_{r^{\prime}}\right) \tag{31}
\end{equation*}
$$

These functions correspond to the particular embedding $\mathcal{K}_{n, r} \hookrightarrow \mathcal{K}_{n^{\prime}, r^{\prime}}$ by $\left(k_{1}, \ldots, k_{r}\right) \rightarrow\left(k_{1}, \ldots, k_{r}, 1, \ldots, 1\right)$.
Corollary 4.1. Let $C: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ be a non-decreasing Ξ_{r}-invariant function.

1. $A v_{\mathcal{K}_{n, r}}(C) \cdot A v_{\mathcal{K}_{n, r}}($ Mix.coVol $) \leq A v_{\mathcal{K}_{n, r}}(C \cdot M i x . c o V o l)$.
2. Suppose all the values of Mix.coVol and Mix.Vol are ≥ 1. Then $\left(A v_{\mathcal{K}_{n, r}}^{G}(M i x . c o V o l)\right)^{A v_{\mathcal{K}_{n, r}}(C)} \leq A v_{\mathcal{K}_{n, r}}^{G}(M i x . c o V o l ~ C)$ and $\left(A v_{\mathcal{K}_{n, r}}^{G}(\text { Mix.Vol })\right)^{A v_{\mathcal{K}_{n, r}}(C)} \geq A v_{\mathcal{K}_{n, r}}^{G}\left(\right.$ Mix.Vol $\left.{ }^{C}\right)$.

Proof. Part 1.

Step 1. First, using the inequality $\sqrt{a b} \leq \frac{a+b}{2}$ one gets from equation (29) the weaker convexity property:

$$
\begin{equation*}
\operatorname{coVol}\left(\Gamma_{1}^{+}, \Gamma_{2}^{+}, \cdots, \Gamma_{N}^{+}\right) \leq \frac{\operatorname{coVol}\left(\Gamma_{1}^{+}, \Gamma_{1}^{+}, \Gamma_{3}^{+}, \cdots, \Gamma_{N}^{+}\right)+\operatorname{coVol}\left(\Gamma_{2}^{+}, \Gamma_{2}^{+}, \Gamma_{3}^{+}, \cdots, \Gamma_{N}^{+}\right)}{2} \tag{32}
\end{equation*}
$$

The function Mic.coVol is not Ξ_{r}-invariant, for Ξ_{r} acting on the first r indices. Consider its symmetrization:

$$
\begin{equation*}
[\text { Mix.coVol }]: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}, \quad \underline{k} \rightarrow A v_{\Xi_{r}(\underline{k})}(M i x . c o V o l)=\frac{\sum_{\sigma \in \Xi_{r}} \operatorname{coVol}\left(\left(\Gamma_{\sigma(1)}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{\sigma(r)}^{+}\right)^{k_{r}}, \Gamma_{r+1}^{+}, \ldots, \Gamma_{r^{\prime}}^{+}\right)}{\left|\Xi_{r}(\underline{k})\right|} \tag{33}
\end{equation*}
$$

We prove that this symmetrization is a non-decreasing function, i.e. if $\underline{k} \succeq \underline{k}^{\prime} \in \mathcal{K}_{n, r}$ then $[M i x . c o V o l](\underline{k}) \geq[M i x . c o V o l]\left(\underline{k}^{\prime}\right)$.
It is enough to check the inequality for elementary steps: if $k_{1}+1 \leq k_{2}-1$ then $[\operatorname{Mix} . \operatorname{coVol}]\left(\left[k_{1}, k_{2}, k_{3}, \ldots\right]\right) \geq$ $[M i x . c o V o l]\left(\left[k_{1}+1, k_{2}-1, k_{3}, \ldots\right]\right)$.

Suppose $k_{1}+k_{2}=2 l \in 2 \mathbb{Z}$. Then the convexity property of the mixed volumes reads:
$[\operatorname{Mix.coVol}]\left(l, l, k_{3}, \ldots\right)=\sum_{\sigma \in \Xi_{r}} \frac{\operatorname{coVol}\left(\left(\Gamma_{\sigma(1)}^{+}\right)^{l},\left(\Gamma_{\sigma(2)}^{+}\right)^{l},\left(\Gamma_{\sigma(3)}^{+}\right)^{k_{3}} \ldots,\left(\Gamma_{\sigma(r)}^{+}\right)^{k_{r}}, \ldots\right)}{r!}{ }^{\text {eq.(32) }} \leq$

$$
\begin{gather*}
\leq \sum_{\sigma \in \Xi_{r}} \frac{\operatorname{coVol}\left(\left(\Gamma_{\sigma(1)}^{+}\right)^{l-1},\left(\Gamma_{\sigma(2)}^{+}\right)^{l+1},\left(\Gamma_{\sigma(3)}^{+}\right)^{k_{3}} \ldots,\left(\Gamma_{\sigma(r)}^{+}\right)^{k_{r}}, \ldots\right)+\operatorname{coVol}\left(\left(\Gamma_{\sigma(1)}^{+}\right)^{l+1},\left(\Gamma_{\sigma(2)}^{+}\right)^{l-1},\left(\Gamma_{\sigma(3)}^{+}\right)^{k_{3}} \ldots,\left(\Gamma_{\sigma(r)}^{+}\right)^{k_{r}}, \ldots\right)}{2 r!}= \tag{34}\\
=\sum_{\sigma \in \Xi_{r}} \frac{\operatorname{coVol}\left(\left(\Gamma_{\sigma(1)}^{+}\right)^{l-1},\left(\Gamma_{\sigma(2)}^{+}\right)^{l+1},\left(\Gamma_{\sigma(3)}^{+}\right)^{k_{3}} \ldots,\left(\Gamma_{\sigma(r)}^{+}\right)^{k_{r}}, \ldots\right)}{r!}=\left[\operatorname{Mix.coVol](l-1,l+1,k_{3},\ldots)}\right.
\end{gather*}
$$

Similarly, $[M i x . c o V o l]\left(l-1, l+1, k_{3}, \ldots\right) \leq \frac{[M i x . c o V o l]\left(l, l, k_{3}, \ldots\right)+[M i x . c o V o l]\left(l-2, l+2, k_{3}, \ldots\right)}{2}$. Combining with the previous one it gives $[M i x . c o V o l]\left(l-2, l+2, k_{3}, \ldots\right) \geq[M i x . c o V o l]\left(l-1, l^{2}+1, k_{3}, \ldots\right)$. One continues in the same way.

The case $k_{1}+k_{2}=2 l+1 \in 2 \mathbb{Z}+1$ is treated similarly.
Step 2. Now we have two Ξ_{r}-invariant, non-decreasing functions, then theorem 3.1 gives:

$$
\begin{equation*}
A v_{\mathcal{K}_{n, r}}(C) A v_{\mathcal{K}_{n, r}}([M i x . c o V o l]) \leq A v_{\mathcal{K}_{n, r}}(C \cdot[M i x . c o V o l]) \tag{35}
\end{equation*}
$$

It remains to add that $A v_{\mathcal{K}_{n, r}}([\mathrm{Mix.coVol}])=A v_{\mathcal{K}_{n, r}}(\mathrm{Mix} . \operatorname{coVol})$ and $A v_{\mathcal{K}_{n, r}}(C \cdot[\mathrm{Mix} . \operatorname{coVol}])=A v_{\mathcal{K}_{n, r}}(C \cdot M i x . c o V o l)$.
Part 2. Define the function $f: \mathcal{K}_{n, r} \rightarrow \mathbb{R}_{\geq 0}$ by $f(\underline{k})=\ln \left(\operatorname{coVol}\left(A_{1}^{k_{1}}, \ldots, A_{r}^{k_{r}}, A_{r+1}, \ldots, A_{r^{\prime}}\right)\right)$. Equation (29) implies: $f\left(k_{1}, k_{2}, k_{3}, \ldots\right) \leq \frac{f\left(k_{1}, k_{1}, k_{3}, \ldots\right)+f\left(k_{2}, k_{2}, k_{3}, \ldots\right)}{2}$. Then, repeat Part 1 for the functions f, C to get:

$$
\begin{equation*}
A v_{\mathcal{K}_{n, r}}\left(\ln \left(\operatorname{coVol}(\ldots)^{A v_{\mathcal{K}_{n, r}}(C)}\right)\right)=A v_{\mathcal{K}_{n, r}}(C) A v_{\mathcal{K}_{n, r}}(f) \leq A v_{\mathcal{K}_{n, r}}(C \cdot f)=A v_{\mathcal{K}_{n, r}}\left(\ln \left(\operatorname{coVol}(\ldots)^{C(\ldots)}\right)\right) \tag{36}
\end{equation*}
$$

Now take the exponent.
The proof of the inequality for mixed volumes is the same, it is based now on equation (28).

Example 4.2. - The case $r=1$ is 'empty' as $\mathcal{K}_{n, 1}=\{n\}$.

- As the simplest case, suppose $r=2 \leq r^{\prime}, n=2 \leq n^{\prime}$. Then part 2 of the corollary states just the ordinary AlexandrovFenchel/Teissier inequalities.
- An extremal case is $r=r^{\prime}$, then $n=n^{\prime}$. For $n=r=3$ fix the numbers $C_{(3,0,0)}=a \geq C_{(2,1,0)}=b \geq C_{(1,1,1)}=c \geq 0$. Extend this to the function $C: \mathcal{K}_{3,3} \rightarrow \mathbb{R}_{\geq 0}$ by Ξ_{3}-action. We get a Ξ_{3}-invariant non-decreasing function. Then Part 2 of the proposition gives:

$$
\begin{equation*}
\operatorname{Vol}\left(A_{1}, A_{2}, A_{3}\right)^{3 a+6 b-9 c} \geq\left(\prod_{i=1}^{3} \operatorname{Vol}\left(A_{i}, A_{i}, A_{i}\right)\right)^{7 a-6 b-c}\left(\prod_{j \neq i} \operatorname{Vol}\left(A_{i}, A_{i}, A_{j}\right)\right)^{4 b-3 a-c} \tag{37}
\end{equation*}
$$

(This formula becomes equality in the simplest case $\left\{A_{i}=\lambda_{i} A\right\}$. Then $\operatorname{Vol}_{3}\left(A_{i}, A_{i}, A_{i}\right)=d_{i}^{3} V o l_{3}(A), \operatorname{Vol}_{3}\left(A_{i}, A_{i}, A_{j}\right)=$ $\left.d_{i}^{2} d_{j} \operatorname{Vol}_{3}(A), \operatorname{Vol}_{3}\left(A_{1}, A_{2}, A_{3}\right)=d_{1} d_{2} d_{3} V o l_{3}(A).\right)$
Example 4.3. One can get a bigger class of inequalities by multiplying the inequalities of part 2 of the corollary for different embeddings $\mathcal{K}_{n, r} \hookrightarrow \mathcal{K}_{n^{\prime}, r^{\prime}}$. (We do not know whether they contain/generate all the possible inequalities on mixed volumes.) For example, fix $r=2=n<r^{\prime}=3=n^{\prime}$. Consider the embeddings $\left(k_{1}, k_{2}\right) \rightarrow\left(k_{1}, k_{2}, 1\right)$, $\left(k_{1}, k_{2}\right) \rightarrow\left(1, k_{1}, k_{2}\right),\left(k_{1}, k_{2}\right) \rightarrow\left(k_{1}, 1, k_{2}\right)$. Each of them gives the ordinary Aleandrov-Fenchel inequality. The product of these inequalities is:

$$
\begin{align*}
& \operatorname{Vol}_{3}\left(A_{1}, A_{2}, A_{3}\right)^{6} \geq \tag{38}\\
& \quad \operatorname{Vol}_{3}\left(A_{1}, A_{1}, A_{2}\right) \operatorname{Vol}_{3}\left(A_{1}, A_{2}, A_{2}\right) \operatorname{Vol}_{3}\left(A_{2}, A_{2}, A_{3}\right) \operatorname{Vol}_{3}\left(A_{2}, A_{3}, A_{3}\right) \operatorname{Vol}_{3}\left(A_{3}, A_{3}, A_{1}\right) V o l_{3}\left(A_{3}, A_{1}, A_{1}\right) .
\end{align*}
$$

This can be considered as a 'corrected' version of equation (30).
Example 4.4. In [Kerner-Némethi2014] we use this corollary in the particular case of $C(\underline{k})=\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}:=$ $\frac{(n+r)!}{\left(k_{1}+1\right)!\cdots\left(k_{r}+1\right)!}$. (Note that this expression is Ξ_{r}-invariant and non-decreasing on $\mathcal{K}_{n, r}$.) We claim that:

$$
\begin{align*}
\left(\sum_{\underline{k} \in \mathcal{K}_{n, r}}\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}\right) & \sum_{\substack{\frac{k}{k} \in \mathcal{K}_{n+r, r} \\
k_{1}, \ldots, k_{r} \geq 1}} \operatorname{coVol}_{n+r}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right) \geq \tag{39}\\
& \geq\binom{ n+r-1}{n} \sum_{\substack{k \in \mathcal{K}_{n+r, r} \\
k_{1}, \ldots, k_{r} \geq 1}}\binom{n+r}{k_{1}+1, \ldots, k_{r}+1} \operatorname{coVol}_{n+r}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right)
\end{align*}
$$

and equality occurs iff $\Gamma_{1}^{+}=\cdots=\Gamma_{r}^{+}$.
Note that $\mathcal{K}_{n+r, r} \cap\left\{k_{1}, \ldots, k_{r} \geq 1\right\}=\mathcal{K}_{n+r, r}^{0} \xrightarrow{\sim} \mathcal{K}_{n, r}$ in the notations of the proof of theorem 3.1. Therefore the inequality is the comparison of averages of the numbers $\left\{\operatorname{coVol}_{n+r}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}+1}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}+1}\right)\right\}_{\underline{k} \in \mathcal{K}_{n, r}}$ and $\left\{\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}\right\}_{\underline{k} \in \mathcal{K}_{n, r}}$.

Note that $\left\{\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}\right.$ is symmetric under permutations of \underline{k} and gives a non-increasing function on $\mathcal{K}_{n, r} / \Xi_{r}$.
Thus, corollary 4.1 gives:

$$
\begin{align*}
A v_{\mathcal{K}_{n, r}}\left\{\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}\right\} A v_{\mathcal{K}_{n, r}}\left\{\operatorname{coVol}_{n+r}\right. & \left.\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right)\right\} \geq \tag{40}\\
& \geq A v_{\mathcal{K}_{n, r}}\left\{\binom{n+r}{k_{1}+1, \ldots, k_{r}+1} \operatorname{coVol}_{n+r}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right)\right\}
\end{align*}
$$

which is precisely the inequality (39).
Moreover, as $\binom{n+r}{k_{1}+1, \ldots, k_{r}+1}$ is not constant on $\mathcal{K}_{n, r} / \Xi_{r}$, the equality occurs iff the symmetrization of the function coVol $l_{n+r}\left(\left(\Gamma_{1}^{+}\right)^{k_{1}}, \ldots,\left(\Gamma_{r}^{+}\right)^{k_{r}}\right)$ is constant on $\mathcal{K}_{n, r}$; which means $\Gamma_{1}^{+}=\cdots=\Gamma_{r}^{+}$.

References

[Alexandrov-1937] A.D. Alexandrov, Zur Theorie der Gemischten Volumina von konvexen Körpern II; neue ungleichungen zwischen den gemischten Volumina und ihren Anwendungen. Math. Sbomik, NS, 2:1205-1238, 1937.
[Alexandrov-1938] A.D. Alexandrov, Zur Theorie der Gemischten Volumina von konvexen Körpern IV; die gemischten Diskriminanten und die gemischten Volumina., Math. Sbomik, NS, 3:227-251, 1938.
[Bollobás] B. Bollobás, Combinatorics. Set systems, hypergraphs, families of vectors and combinatorial probability. Cambridge University Press, Cambridge, 1986. xii +177 pp. ISBN: 0-521-33059-9; 0-521-33703-8
[Brylawski] T. Brylawski, The lattice of integer partitions, Discrete Math. 6 (1973), 201-219.
[Burda-2012] Y. Burda, On a problem of Gromov about generalizing the Alexandrov-Fenchel inequality. C. R. Math. Acad. Sci. Soc. R. Can. 34 (2012), no. 4, 101-104.
[Cu.Gr.Sk] A. Cuttler, C. Greene, M. Skandera, Inequalities for symmetric means, European J. Combin. 32 (2011), no. 6, $745-761$
[Fenchel-1936] W. Fenchel, Généralisations du théorème de Brunn et Minkowski concernant les corps convexes. C. R. Acad. Sci. Paris, 203:764-766, 1936.
[FKG-1971] C.M. Fortuin, P.W. Kasteleyn, J. Ginibre, Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 (1971), 89-103
[Gromov90] M. Gromov. Convex sets and Kähler manifolds. Advances in Differential Geometry and Topology, ed. F. Tricerri, World Scientific, Singapore, pages 1-38, 1990.
[Hardy-Littlewood-Pólya] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities. Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988.
[Jordan1965] Ch. Jordan, Calculus of finite differences. Third Edition. Introduction by Harry C. Carver Chelsea Publishing Co., New York 1965 xxi +655 pp
[Katz1988] D. Katz, Note on multiplicity. Proc. Amer. Math. Soc. 104 (1988), no. 4, 1021-1026
[Kaveh-Khovanskii-2013-1] K. Kaveh, A.G. Khovanskii, Convex bodies and multiplicities of ideals, arXiv:1302.2676.
[Kaveh-Khovanskii-2013-2] K. Kaveh, A.G. Khovanskii, On mixed multiplicities of ideals, arXiv:1310.7979.
[Kerner-Némethi2013] D. Kerner, A. Némethi, The 'corrected Durfee's inequality' for homogeneous complete intersections, Mathematische Zeitschrift, Math. Z. 274 (2013), no. 3-4, pp.1385-1400
[Kerner-Némethi2014] D. Kerner, A. Némethi, Durfee-type bound for some non-degenerate complete intersection singularities, arXiv:1405.7494
[Rees-Sharp-1978] D. Rees, R.Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings. J. London Math. Soc. (2) 18 (1978), no. 3, 449-463
[Stanley] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999.
[Teissier1978] B. Teissier, On a Minkowski-type inequality for multiplicities. II. C. P. Ramanujam - a tribute, pp. 347-361, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin-New York, 1978.
[Teissier2004] B. Teissier, Monomial ideals, binomial ideals, polynomial ideals. Trends in commutative algebra, 211-246, Math. Sci. Res. Inst. Publ., 51, Cambridge Univ. Press, Cambridge, 2004.

Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel, dmitry.kerner@gmail.com, Rényi Institute of Mathematics, Budapest, Reáltanoda u. 13-15, 1053, Hungary, nemethi@renyi.hu.

[^0]: Date: May 23, 2017.
 Key words and phrases. Fortuin-Kasteleyn-Ginibre inequality, Ahlswede-Daykin inequality, Muirhead inequality, statistical mechanics, probabilistic combinatorics, Young diagrams, Alexandrov-Fenchel inequality, convex polytopes, Newton polytopes.
 D.K. was supported by the grant FP7-People-MCA-CIG, 334347. A.N. was supported by OTKA Grant 100796.

 We thank Anders Björner, Efim Dinitz, Pálvölgyi Dömötör, László Lovász, Ron Peled, Siddhartha Sahi, Michael Saks, Gjergji Zaimi for valuable advices.

