
The Gamma Statechart Composition Framework
Design, Verification and Code Generation for Component-Based Reactive Systems

Vince Molnár
1,2
, Bence Graics

1
, András Vörös

1,2
, István Majzik

1
, Dániel Varró

1,2,3

1
Fault Tolerant Systems Research Group, Budapest University of Technology and Economics

2
MTA-BME Lendület Cyber-physical Systems Research Group

3
Department of Electrical & Computer Engineering, McGill University

{molnarv,vori,majzik,varro}@mit.bme.hu

ABSTRACT
The Gamma Statechart Composition Framework is an integrated

tool to support the design, verification and validation as well as

code generation for component-based reactive systems. The behav-

ior of each component is captured by a statechart, while assembling

the system from components is driven by a domain-specific com-

position language. Gamma automatically synthesizes executable

Java code extending the output of existing statechart-based code

generators with composition related parts, and it supports formal

verification by mapping composite statecharts to a back-end model

checker. Execution traces obtained as witnesses during verifica-

tion are back-annotated as test cases to replay an error trace or to

validate external code generators.

Tool demonstration video: https://youtu.be/ng7lKd1wlDo

CCS CONCEPTS
• Theory of computation → Verification by model check-
ing; • Software and its engineering→ System modeling lan-
guages; Formal software verification;

KEYWORDS
statecharts, composition, formal verification, code generation

1 INTRODUCTION
Statecharts are a popular [1, 2] language to capture the behavior

of reactive systems [3] that react to external stimuli depending on

their internal state. Statecharts provide an expressive formalism to

represent complex state-based behavior by introducing hierarchical

state refinement, memory (variables and history state) and complex

transitions (e.g., fork and join transitions). As statecharts have

become part of key industrial modeling standards like the Unified

Modeling Language (UML) or SysML, there are a large number of

design tools supporting (different variants of) the formalism such

as MagicDraw, BridgePoint, or Rhapsody. Moreover, there are also

specialized industrial tools with emphasis on customizable code

generation such as Yakindu Statechart Tools from Itemis
1
.

1
https://www.itemis.com/en/yakindu/state-machine/

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3183489

In this paper, we present the Gamma Statechart Composition

Framework which aims to fill the gap between enterprise-level

UML tools and specialized statechart tools by providing a layer

for composing individual statechart components while extending

the capabilities of automatic code generation and verification and

validation (V&V). Thus the intended target audience of the Gamma
framework includes all software engineers who are working with

industrial statechart modeling tools.

As major contributions, Gamma 1) provides a modeling language

and framework for the hierarchical composition of heterogeneous

off-the-shelf statechart components in an object-oriented manner

(see Section 2.1), 2) integrates a 3rd party statechart modeling tool

and model checker to support the formal verification of compos-

ite system models (Section 2.3) and 3) automatically generates an

implementation of the composition code on top of existing auto-

generated source code of individual components (Section 2.2) as

well as test cases for validation (Section 2.4). As a showcase, the

framework is currently integrated (as a front-end) with the Yakindu

Statechart Tools as an off-the-shelf statechart modeling and code

generation tool, and (as a back-end) with UPPAAL [4], a model

checker for timed automata to provide the verification capabilities.

While there are tools with similar goals (see Section 3), the

main added value of Gamma is to uniquely combine and integrate

the strength of off-the-shelf statechart and verification tools thus

providing an end-to-end solution for statechart based compositional

design, formal verification and validation as well as code generation.

Existing integrative approaches are either restricted to focus only

on the statechartmodel of a single component of the system (e.g., [5–

7]), or the composition semantics for building complex systems from

components cannot be efficiently mapped to a formal verification

and validation framework [8]. Finally, enterprise-level UML tools

often support compositional modeling, but formal verification and

validation is rarely available and often difficult to use.

2 FEATURES OF GAMMA
The features of Gamma (see Figure 1) will be presented on an exam-

ple of controlling traffic lights at a crossroad where one statechart

describes a single traffic light (light controller), and another cap-

tures the synchronization of the two directions (crossroad controller).
Gamma allows engineers to compose a system from components,

synthesize source code as implementation, verify if safety require-

ments are satisfied, and generate test cases for validation.

2.1 Modeling Hierarchical Statechart Networks
Gamma offers the Gamma Composition Language (GCL) to describe
components, interfaces and ports, and communication channels.

https://youtu.be/ng7lKd1wlDo
https://www.itemis.com/en/yakindu/state-machine/
https://doi.org/10.1145/3183440.3183489


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden V. Molnár et al.

Figure 1: Overview of the features of the Gamma Statechart Composition Framework.

Currently, there are two types of components in GCL. The basic

building block is a statechart component, which is a single statechart
model described in the Gamma Statechart Language (GSL). This
language serves as an intermediate modeling formalism that en-

ables the integration of external modeling tools. Yakindu Statechart

models are first compiled to GSL including all the mappings of

Yakindu interfaces to Gamma interfaces and ports. Then Composite
components are defined in GCL as the composition of other compo-

nents together with their respective ports, and realized interfaces.

Such composition includes 1) the instantiation of constituent com-

ponents, 2) the definition of port bindings, (i.e., a mapping of the

ports of the composite component to the ports of the constituent

components), and 3) the definition of communication channels.

In GCL, components communicate via ports where each port de-

fines a point of service where certain signals can be sent or received.

A signal is a piece of data passed between components potentially

with a parameter. Signals are declared on interfaces, which may

be realized by ports. A signal may be declared as input, output or
in/out, which means that it can be received, sent or both through the

realizing port in case of a provide interface (while these directions

are reversed in case of require interfaces). A broadcast interface is a
special type of interface on which every signal is output.

Communication is carried out through channels. Simple channels
can connect two ports if they implement the same interface but

in different modes, i.e., the signal directions will be exactly the

opposite on the two ports. Broadcast channels allow a single port

providing a broadcast interface to be connected to multiple ports

requiring the same broadcast interface. To avoid race conditions,

GCL disallows a single port to be connected to more than a single

channel, when multiple signals could arrive to the same port at the

same time, thus nondeterministically overwriting each other.

In the crossroad example (top of Figure 1), the light controllers

have three ports – one for the toggling the state of the traffic light,

one for the police to force the light into a blinking yellow state,

and one for the output signals for the traffic light hardware. The

most important signal (for toggling the state of the lights) is defined

on the Control interface, which is realized in required mode by

the ports of the light controllers, and in provided mode on the

crossroad controller which will generate the signals. These ports

are connected by simple channels, while the police interrupt signal



The Gamma Statechart Composition Framework ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

is broadcast to the light controllers. The composite crossroad system

has three ports, one for the police (mapped to the corresponding

port of the crossroad controller) and two for the outputs of the light-

controllers, mapped to the output port of one of the two instantiated

light controllers (priority and secondary).

The Gamma Composition Language has a formally defined exe-

cution semantics based on synchronous-reactive composition seman-

tics [8]. Components are scheduled by a periodic external trigger

to start an execution cycle. In each cycle, each component is ex-

ecuted exactly once while processing their inputs and producing

their outputs, while potentially changing their internal state. The

execution order is irrelevant since a signal sent in a cycle will only

arrive in the next cycle. The restriction on channels ensures that no

race condition will occur inside the system by sending more than

one signal to the same component within the same cycle.

2.2 Code Generation
Once the entire system is modeled as a hierarchical network of

communicating statechart components, Gamma can generate the

implementation of the composition code on top of existing auto-

generated source code of individual components. External code

generators for statechart components can be integrated by imple-

menting a plugin for the composition code generator, wrapping the

external generated code behind the interfaces generated by Gamma.

The framework also provides test cases to validate that the external

code generation conforms to the intermediate Gamma statechart

model (see Section 2.4).

Gamma currently supports the generation of Java source code.

The interfaces defined in GCL are translated into Java interfaces

and accompanying listeners which enables to integrate system

signals and actuators with the generated controller. The system as

a whole is enclosed in a separate class so that system-level ports

(implementing the interfaces) can be reached and an execution cycle

can be invoked. The external invocation of the execution provides

a way to fine-tune the behavior of the system. For example, the

crossroad system is invoked periodically, but it is also possible to

execute the system every time an input signal arrives.

2.3 Hidden Formal Methods
A key design goal of Gamma is to extend the formal verification of

single statechart (e.g., [5–7]) to the verification of complex systems

built up from these individual statecharts as components, which

is rarely supported in practice. Our strict formal compositional

semantics of synchronous reactive behavior allows efficient model

checking for verification since no interleaving of component exe-

cutions needs to be dealt with. Essentially, executions of Gamma

models are deterministic with respect to external input, but the

environment producing the input is modeled as non-deterministic.

To assist software engineers, Gamma hides the inherent complex-

ity of using formal methods by offering a high-level user interface

for verification, and by exploiting automatedmodel transformations

and back-annotation of verification results [9].

Model checking based formal verification necessitates to provide

a formal property to be checked. Most verification tools expect

to capture such properties as a temporal logic expression, which

requires significant expertise to write [10]. In Gamma, we have

followed [11] to define textual templates for the supported temporal

operators of the underlying model checker tool, UPPAAL. These

templates have placeholders to be filled by logical expressions over

system states constituted from the states of components and their

variables. Templates also come with a typical sample property that

is usually described with the specific temporal operator.

For example, a safety property of the crossroad system may be

captured by the “Must always” template: “The model must always
satisfy the following condition during every behavior” (for which

the sample is: “A critical error must never occur.” ). In our context,

the crossroad system should never get into a state where both traf-

fic lights are green (thus, the logical expression in the template is

“!(priority.Green&&secondary.Green)”). Unfortunately, the exam-

ple model does not satisfy this requirement.

2.4 Back-Annotation and Test Generation
Once the formal model and the property of interest are available,

Gamma can execute the back-end verification tool (UPPAAL) and

display the results, which is either the satisfaction of the property

or a counter-example provided by the model checker as a witness

that proves or refutes the satisfaction of the property. To help

engineers understand and fix the discovered problem, execution

traces retrieved by the model checker are back-annotated to the

high-level statechart models.

Gamma is capable of back-annotating witnesses as a sequence

of delays (to recover the timed behavior), external inputs, expected

states and expected outputs. This can be used to evaluate the be-

havior, but simulation in the Yakindu Statechart Simulator is not

yet supported, because Yakindu currently supports the simulation

of a single statechart model only. Fortunately, Gamma also gener-

ates a jUnit test suite that replays the sequence on the generated

implementation to check if the system reacts in the expected way.

In addition to visualizing a witness, the auto-generated jUnit test

cases can also be used to validate external code generators (e.g., that
of Yakindu Statecharts) wrt. a designated set of properties. As there

is no guarantee that the external code generator fully conforms to

the interpreted behavior of the translated Gamma statechart model,

we use the concepts of model-based testing [12] to enforce the

model checker to generate execution traces to achieve a designated

test coverage. Such a coverage criterion can be that each state of

every statechart should occur in at least one (system-level) state

in the generated traces. With this test suite, designers can gain a

certain level of confidence in the correctness of the framework, and

most importantly, detect potential problems before deploying the

generated code into a critical environment.

In our example, the controller and the traffic light may fall out

of sync if the police interrupts normal operation (see the trace in

Figure 1). Back-annotating the trace retrieved by the model checker

can reveal the actual scenario that violates the safety property.

3 RELATED TOOLS
We provide a detailed feature comparison (in Table 1) with pop-

ular tools which support statecharts, composition and/or verifi-

cation/validation: Ptolemy II, BIP, MATLAB/Simulink Stateflow

(SL/SF) and IBM Rational Software Architect Realtime Edition

(RSARTE).



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden V. Molnár et al.

N
a
ti
v
e
s
ta
te
c
h
a
r
ts

E
x
te
r
n
a
l
e
d
it
o
r
s

S
y
n
c
h
r
o
n
iz
a
ti
o
n
-
b
a
s
e
d

E
v
e
n
t-
b
a
s
e
d

C
o
d
e
g
e
n
e
r
a
ti
o
n

S
im
u
la
ti
o
n

F
o
r
m
a
l
v
e
r
ifi
c
a
ti
o
n

T
e
s
t
g
e
n
e
r
a
ti
o
n

E
x
te
n
s
ib
il
it
y

F
r
e
e
to
u
s
e

Gamma X X X X X X X X

Ptolemy II X X X – X X – X X

BIP X X X X X X X

SL/SF X X X X X

RSARTE X X X X X X

Table 1: Features of Gamma and its competitors.
X= fully supported; X –= experimental

Ptolemy II
2
[8] is an open-source modeling framework that sup-

ports the modeling and simulation of hierarchical composite sys-

tems with various component implementations and interaction se-

mantics. Components in Ptolemy II are based on actors, which are

custom programs. Their interaction semantics is defined by directors
which define a model of computation along different hierarchy lev-

els. The different directors (e.g., rendez-vous, synchronous-reactive

or discrete events) can be combined on different hierarchy levels,

and even more complex behavior can be achieved by the use of

modal models (where the activation of actors are controlled by a

state machine). Ptolemy II offers simulation capabilities for its rich

modeling languages, but its former code generator module has been

discontinued and it does not offer formal verification capabilities.

BIP
3
[13] (Behavior, Interaction, Priority) is a modeling frame-

work focusing on component interactions. BIP defines a powerful

language to define interactions, but contrary to Gamma, these inter-

actions are synchronization-based, coupled with the description of

data-flow. BIP offers a rich toolset, containing several transformers

for third-party models (e.g., MATLAB/Simulink, or AADL), code

generators to produce C/C++ or Java code, and supports the formal

verification of invariant properties and deadlock-freedom.

Stateflow
4
[14] is a commercial framework for the design of

reactive (embedded) systems. Stateflow supports the hierarchical

modeling of composite statechart systems using various scheduling

algorithms, and it can simulate and validate the models and gener-

ate source code. Stateflow is a very mature tool with professional

support and rich features, but it offers restricted support for 3rd

party extensions and commercial licenses are expensive.

RSARTE
5
is a commercial Eclipse-based modeling framework.

Components are called capsules and RSARTE defines the com-

munication among the capsules through ports. Composition and

hierarchy is provided by using composite structure diagrams, which

enables the hierarchical refinement of systems. RSARTE generates

code from the design models and uses model simulation and Eclipse

CDT to test and debug the model and its implementation.

2
http://ptolemy.eecs.berkeley.edu/

3
http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html?lang=en

4
https://www.mathworks.com/products/stateflow.html

5
https://www.ibm.com/support/knowledgecenter/SS5JSH/rsart_family_welcome.

html

4 APPLICATIONS
The key benefits of Gamma, i.e., an intuitive but precise composition

language, the integration of Yakindu Statechart Tools, the use of

hidden formal methods and the automated generation of tests, has

been demonstrated at various academic and industrial venues.

The authors have used Gamma as an educational tool in a the-

matic laboratory at Budapest University of Technology and Eco-

nomics, Hungary, and in an undergraduate course at McGill Uni-

versity, Canada. It was also used as part of the 8th Summer School

on Domain Specific Modelling Theory and Practice
6
(DSM-TP’17).

The embedded safety controller logic of the MoDeS project
7
has

been designed and verified using Gamma. The project won the

3rd prize at the international Eclipse IoT Developer Challenge in

2016. The Gamma framework was presented to a large industrial

audience at EclipseCon Europe in 2017. Gamma and a detailed

tutorial (including the example used in this paper) are available at

http://gamma.inf.mit.bme.hu.

ACKNOWLEDGMENTS

This paper was partially supported by the ÚNKP-17-2-I and

ÚNKP-17-3-I New National Excellence Programs of the Ministry

of Human Capacities. Special thanks to Tamás Tóth for his initial

contributions to the Gamma Statechart Language and István Ráth

and Ákos Hajdu for their valuable advice.

REFERENCES
[1] G. Reggio, M. Leotta, and F. Ricca, Who Knows/Uses What of the UML: A Personal

Opinion Survey. Cham: Springer, 2014, pp. 149–165.

[2] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, Assessing the State-of-
Practice of Model-Based Engineering in the Embedded Systems Domain. Springer,

2014, pp. 166–182.

[3] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of Com-
puter Programming, vol. 8, no. 3, pp. 231 – 274, 1987.

[4] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, Y. Wang, and C. Weise, “New

Generation of Uppaal,” inWS on Software Tools for Technology Transfer, 1998.
[5] D. Latella, I. Majzik, and M. Massink, “Automatic verification of a behavioural

subset of uml statechart diagrams using the spin model-checker,” Formal Aspects
of Computing, vol. 11, pp. 637 – 664, 1999 1999.

[6] Y. Jiang, Y. Yang, H. Liu, H. Kong, M. Gu, J. Sun, and L. Sha, “From stateflow

simulation to verified implementation: A verification approach and a real-time

train controller design,” in 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2016, pp. 1–11.

[7] Y. Meller, O. Grumberg, and K. Yorav, Verifying Behavioral UML Systems via
CEGAR. Springer International Publishing, 2014, pp. 139–154.

[8] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014.

[9] Á. Hegedüs, G. Bergmann, I. Ráth, and D. Varró, “Back-annotation of simulation

traces with change-driven model transformations,” in 8th IEEE Int. Conf. on
Software Engineering and Formal Methods, SEFM 2010, 2010, pp. 145–155.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifications

for finite-state verification,” in ICSE 1999, 1999, pp. 411–420.
[11] B. F. Adiego, D. Darvas, J. Tournier, E. B. Viñuela, and V. M. G. Suárez, “Bringing

automated model checking to PLC program development - a CERN case study,”

in 12th International Workshop on Discrete Event Systems, WODES 2014, Cachan,
France, May 14-16, 2014., 2014, pp. 394–399.

[12] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing

approaches,” Softw. Test., Verif. Reliab., vol. 22, no. 5, pp. 297–312, 2012.
[13] M. D. Bozga, V. Sfyrla, and J. Sifakis, “Modeling synchronous systems in BIP,” in

Proc. 7th ACM Int. Conf. on Embedded Software, ser. EMSOFT ’09, 2009, pp. 77–86.

[14] S. T. Karris, Introduction to Stateflow with Applications. Orchard Publ., 2007.

6
http://msdl.cs.mcgill.ca/conferences/dsm-tp-2017

7
https://inf.mit.bme.hu/research/projects/modes3

https://www.ibm.com/support/knowledgecenter/SS5JSH/rsart_family_welcome.html
https://www.ibm.com/support/knowledgecenter/SS5JSH/rsart_family_welcome.html
http://gamma.inf.mit.bme.hu
http://msdl.cs.mcgill.ca/conferences/dsm-tp-2017
https://inf.mit.bme.hu/research/projects/modes3

	Abstract
	1 Introduction
	2 Features of Gamma
	2.1 Modeling Hierarchical Statechart Networks
	2.2 Code Generation
	2.3 Hidden Formal Methods
	2.4 Back-Annotation and Test Generation

	3 Related Tools
	4 Applications
	Acknowledgments
	References

