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Abstract

In this paper, we prove a stability result on t mod p multisets
of points in PG(2, q), q = ph. The particular case t = 0 is used to
describe small weight codewords of the code generated by the lines
of PG(2, q), as linear combination of few lines. Our result is sharp
when 27 < q square and h ≥ 4. When q is a prime, De Boeck and
Vandendriessche (see [2]) constructed a codeword of weight 3p − 3
that is not the linear combination of three lines. We characterise their
example.

1 Introduction

In a previous paper ([11]), we proved a stability result on point sets of even
type in PG(2, q). A set of even type S is a point set intersecting each line
in an even number of points. It is easy to see that sets of even type can
only exist when q is even. A stability theorem says that when a structure is
“close” to being extremal, then it can be obtained from an extremal one by
changing it a little bit. More precisely, we proved that if the number of odd
secants, δ, of a point set is less than (⌊√q⌋+ 1)(q + 1− ⌊√q⌋), then we can
add and delete, altogether ⌈ δ

q+1
⌉ points, so that we obtain a point set of even

type. As a consequence, we described small weight codewords of C1(2, 2
h).

∗In the earlier phase of this research, both authors were partially supported by OTKA
Grant K 81310. In the final phase, the first author was partially supported by the
Slovenian-Hungarian OTKA Grant NN 114614.
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C1(2, 2
h) is the binary code generated by the characteristic vectors of lines

in PG(2, 2h). As the complement of an (almost) even set is an (almost) odd
set, the same results hold for odd sets.

The aim of this paper is to generalise the above results to odd q. A
possible generalisation of sets of even type are sets intersecting every line in
t mod p points, briefly t mod p sets. We expect the union of a t1 mod p
and a t2 mod p set be a t1 + t2 mod p set. This is only true if we consider
multisets, that is the points of the set have weights. We call a multiset a
t mod p multiset if it intersects every line in t mod p points counted with
weights (multiplicities). Hence our aim is to generalise the stability results of
sets of even type to t mod p multisets where q = ph, p prime. More precisely,
the following theorems will be proved.

Theorem 1.1 Let M be a multiset in PG(2, q), 17 < q, q = ph, where p
is prime. Assume that the number of lines intersecting M in not k mod p
points is δ, where δ <

√

q

2
(q + 1). Then there exists a set S of points with

size ⌈ δ
q+1

⌉, which blocks all the not k mod p lines.

Theorem 1.2 Let M be a multiset in PG(2, q), 27 < q, q = ph, where p is
prime and h > 1 (that is q not a prime). Assume that the number of lines
intersecting M in not k mod p points is δ, where

(1) δ < (⌊√q⌋+ 1)(q + 1− ⌊√q⌋), when 2 < h.

(2) δ < (p−1)(p−4)(p2+1)
2p−1

, when h = 2.

Then there exists a multiset M′ with the property that it intersects every line
in k mod p points and the number of different points in (M∪M′)\(M∩M′)
is exactly ⌈ δ

q+1
⌉.

Remark 1.3 Observe that the conclusion in Theorem 1.2 is much stronger
than in Theorem 1.1, but Theorem 1.2 does not say anything when h = 1

or h = 2 and δ ≥ (p−1)(p−4)(p2+1)
2p−1

. Nevertheless, the conclusion in Theorem
1.2 does not apply in case h = 1 as Example 4.6 and Example 4.7 show it in
Section 3.

Remark 1.4 Note that a complete arc of size q −√
q + 1 has (

√
q + 1)(q +

1 − √
q) odd-secants, which shows that Theorem 1.2 is sharp, when q is an

even square. (Since the smallest sets of even type are hyperovals.) For the
existence of such arcs, see [3], [5], [7] and [9], [12].
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Let C1(2, q) be the p-ary linear code generated by the characteristic vec-
tors of the lines of PG(2, q) q = ph, p prime. Hence a codeword c is a linear
combination of lines, that is c =

∑

i λili. The vectors li corresponds to a
point in the dual plane of PG(2, q). If we consider the point corresponding
to li with weight λi, then c corresponds to a multiset in the dual plane of
PG(2, q). A codeword c with weight w(c) (the number of non-zero coordi-
nates) corresponds to a multiset intersecting all but w(c) lines in 0 mod p
points. The coordinates of c that are zero correspond to lines intersecting
the multiset in the dual plane in 0 mod p points. Hence we can translate
our stability results on multisets (Theorem 1.1 and 1.2) to results on small
weight codewords, see Theorem 4.2, 4.3 and 4.4. The prime case is a bit more
difficult, because of some examples of weight 3p constructed by De Boeck and
Vandendriessche, see [2] and Example 4.6. A slight generalisation that gives
also codewords of weight 3p + 1 is given in Example 4.7. In this case, we
prove the following results.

Theorem 4.8 Let c be a codeword of C(2, p), p > 17 prime. If 2p + 1 <
w(c) ≤ 3p+1, then c is either the linear combination of three lines or Example
4.7.

Corollary 4.9 For any integer 0 < k+1 <
√

q

2
, there is no codeword whose

weight lies in the interval (kq + 1, ((k + 1)q − 3
2
k2 − 5

2
k − 1).

Note that, when k = 3, the above results give that codewords of weight
less than 4p− 22 can be obtained via Example 4.7 or it is the linear combi-
nation of three lines.

2 The algebraic background

Result 2.1 ([12], [11]) Suppose that the nonzero polynomials u(X, Y ) =
∑n

i=0 ui(Y )Xn−i and v(X, Y ) =
∑n−m

i=0 vi(Y )Xn−m−i, m > 0, satisfy degui(Y ) ≤
i and degvi(Y ) ≤ i and u0 6= 0.

Furthermore, assume that there exists a value y, so that the degree of the
greatest common divisor of u(X, y) and v(X, y) is n − s. Denote by nh, the
number of values y′ for which deg(gcd(u(X, y′), v(X, y′))) = n−(s−h). Then

s
∑

h=1

hnh ≤ s(s−m).
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Remark 2.2 In our earlier paper [11], unfortunately the index h in Result
2.1 ran until s− 1 only, but the proof used s. However, the original Lemma
3.4 in [12] contains the right bound. Note that h = s corresponds to v = 0.

Let ℓ∞ be the line at infinity intersecting the multiset M in k mod p
points. Furthermore, let M \ ℓ∞ = {(av, bv)}v and M ∩ ℓ∞ = {(yi)}i,
(yi) 6= (∞). Consider the following polynomial:

g(X, Y ) =

|M\ℓ∞|
∑

v=1

(X+avY−bv)
q−1+

∑

yi∈M∩ℓ∞

(Y−yi)
q−1−|M|+k =

q−1
∑

i=0

ri(Y )Xq−1−i,

(1)
Note that degri ≤ i.

Lemma 2.3 Through a point (y) there pass s non-k mod p affine secants of
M if and only if the degree of the greatest common divisor of g(X, y) and
Xq −X is q − s.

Proof. To prove this lemma, we only have to show that x is a root of
g(X, y) if and only if the line Y = yX + x intersects M in k mod p points.

Since aq−1 = 1, if a 6= 0 and 0q−1 = 0, for the pair (x, y) the number
of zero terms in the first sum is exactly the number of affine points of M
on the line Y = yX + x, the rest of the terms are 1. So assume that the
ideal point (y) of the line ℓ : Y = yX + x is in M with multiplicity s
(0 ≤ s ≤ p − 1). Hence the first sum is |M| − k − (|ℓ ∩ M| − s) (note
that |M ∩ l∞| = k). The second sum is k − s. Hence in total we get
|M|− k− (|ℓ∩M|− s)+ (k− s)− |M|+ k = k− |ℓ∩M| and so the lemma
follows.

Remark 2.4 Assume that the line at infinity intersectsM in k mod p points
and suppose also that there is an ideal point, different from (∞), with s non-k
mod p secants through it. Let nh denote the number of ideal points different
from (∞), through which there pass s−h non-k mod p secants of the multiset
M. Then Lemma 2.3 and Result 2.1 imply that

∑s

h=1 hnh ≤ s(s− 1).

Lemma 2.5 Let M be a multiset in PG(2, q), 17 < q, so that the number
of lines intersecting it in non-k mod p points is δ, where δ < (⌊√q⌋+ 1)(q+
1− ⌊√q⌋). Then the number of non-k mod p secants through any point is at
most min( δ

q+1
+ 2, ⌊√q⌋+ 1) or at least max(q + 1− ( δ

q+1
+ 2), q − ⌊√q⌋).
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Proof. Pick a point P with s non-k mod p secants through it and let ℓ∞
be a k mod p secant of M through P . (If there was no such secant, then the
lemma follows immediately.) By Remark 2.4, counting the number of non-k
mod p secants through the points of ℓ∞ \ (∞), we get:

qs− s(s− 1) ≤ δ.

Solving the inequality we estimate the discriminant by 1 − x
2
− x2

4
≤√

1− x, which is certainly true when x < 4
5
. In our case x = 4δ

(q+1)2
, giving

the condition q > 17. Hence s < δ
q+1

+ 2δ2

(q+1)3
(< δ

q+1
+2) or s > q+1− ( δ

q+1
+

2δ2

(q+1)3
)(> q− 1− δ

q+1
). On the other hand, as the discriminant is larger than

q + 1− 2(⌊√q⌋ + 2) (since δ < (⌊√q⌋ + 1)(q + 1− ⌊√q⌋)), s < ⌊√q⌋ + 2 or
s > q + 1− (⌊√q⌋+ 2); whence the lemma follows.

The next proposition is a generalisation of Lemma 2.5 and follows imme-
diately.

Proposition 2.6 Let M be a multiset in PG(2, q), 17 < q, so that the
number of lines intersecting it in non-k mod p points is δ, where δ < 3

16
(q +

1)2. Then the number of non-k mod p secants through any point is at most
δ

q+1
+ 2δ2

(q+1)3
or at least q + 1− ( δ

q+1
+ 2δ2

(q+1)3
).

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1: First we show that every line intersecting M in
non-k mod p points contains a point through that there are at least q + 1−
( δ
q+1

+ 2δ2

(q+1)3
) lines intersecting M in non-k mod p points. On the contrary,

assume that ℓ is a line intersecting M in non-k mod p points but containing
no such point. Then by Proposition 2.6, through each point of ℓ there pass
at most δ

q+1
+ 2δ2

(q+1)3
non-k mod p secants. Hence δ is at most (q + 1)( δ

q+1
+

2δ2

(q+1)3
− 1) + 1. But this is less than δ as δ <

√

q

2
(q + 1); a contradiction.

It is obvoiuos that to cover every line intersecting M in non-k mod p
points we need at least ⌈ δ

q+1
⌉ points. We only need to show that there are

less than δ
q+1

+ 1 such points. Through every such point there are at least
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q+1− ( δ
q+1

+ 2δ2

(q+1)3
) non-k mod p secants, hence if there were at least δ

q+1
+1

of them, then

δ ≥ (
δ

q + 1
+ 1)(q + 1− (

δ

q + 1
+

2δ2

(q + 1)3
))−

(

δ
q+1

+ 1

2

)

.

This is a contradiction since δ <
√

q

2
(q + 1).

Remark 3.1 It follows from the beginning of the above proof that through
each point of S in Theorem 1.1, there pass at least q+1− ( δ

q+1
+ 2δ2

(q+1)3
) lines

intersecting M in non-k mod p points.

Proposition 3.2 Let M be a multiset in PG(2, q), 17 < q, having less than
(⌊√q⌋+1)(q+1−⌊√q⌋) non-k mod p secants. Assume that through each point
there pass less than (q−⌊√q⌋) non-k mod p secants. Then the total number δ
of lines intersecting M in non-k mod p points is at most ⌊√q⌋q−q+2⌊√q⌋+1.

Proof. Assume to the contrary that δ > ⌊√q⌋q − q + 2⌊√q⌋ + 1. Pick a
point P and let ℓ∞ be a k mod p secant of M through P . Assume that there
are s non-k mod p secants through P . If there is a point Q on ℓ∞ through
which there pass at least s non-k mod p secants, then choose the coordinate
system so that Q is (∞). Then, by Remark 2.4, counting the number of
non-k mod p secants through ℓ, we get a lower bound on δ:

(q + 1)s− s(s− 1) ≤ δ.

Since δ < (⌊√q⌋+1)(q+1−⌊√q⌋), from the above inequality we get that
s < ⌊√q⌋+ 1 (hence s ≤ ⌊√q⌋) or s > q + 1− ⌊√q⌋, but by the assumption
of the proposition the latter case cannot occur.

Now we show that through each point there are at most ⌊√q⌋ non-k
mod p secants. The argument above and Lemma 2.5 show that on each k
mod p secant there is at most one point through which there pass ⌊√q⌋+ 1
non-k mod p secants and through the rest of the points there are at most
⌊√q⌋ of them. Assume that there is a point R with ⌊√q⌋ + 1 non-k mod
p secants. Since δ > ⌊√q⌋ + 1, we can find a non-k mod p secant ℓ not
through R. From above, the number of non-k mod p secants through the
intersection point of a k mod p secant on R and ℓ is at most ⌊√q⌋. So
counting the non-k mod p secants through the points of ℓ, we get at most
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(q − ⌊√q⌋)(⌊√q⌋ − 1) + (⌊√q⌋ + 1)⌊√q⌋ + 1, which is a contradiction. So
there was no point with ⌊√q⌋+ 1 non-k mod p secants through it.

This means that the non-k mod p secants form a dual ⌊√q⌋-arc, hence
δ ≤ (⌊√q⌋ − 1)(q + 1) + 1, which is a contradiction again; whence the proof
follows.

Property 3.3 Let M be a multiset in PG(2, q), q = ph, where p is prime.
Assume that there are δ lines that intersect M in non-k mod p points. If
through a point there are more than q/2 lines intersecting M in non-k mod
p points, then there exists a value r such that the intersection multiplicity of
more than 2 δ

q+1
+ 5 of these lines is r.

In Section 3, we are going to show that there are cases when the above
property holds automatically.

Theorem 3.4 Let M be a multiset in PG(2, q), 17 < q, q = ph, where p
is prime. Assume that the number of lines intersecting M in not k mod p
points is δ, where δ < (⌊√q⌋ + 1)(q + 1− ⌊√q⌋). Assume furthermore, that
Property 3.3 holds. Then there exists a multiset M′ with the property that it
intersects every line in k mod p points and the number of different points in
(M∪M′) \ (M∩M′) is exactly ⌈ δ

q+1
⌉.

Note that Theorem 3.4 is also valid for h = 1 and h = 2 (not like Theorem
1.2). Hence, for example, in case h = 1 or h = 2, if for a given set we
know that Property 3.3 holds, then Theorem 3.4 yields a stronger result
than Theorem 1.2.

Proof. By Lemma 2.5, through each point there pass either at most δ
q+1

+2

or at least q−1− δ
q+1

lines intersecting the multisetM in non-k mod p points.
Let P be the set containing the points Pi through which there pass at least
q − 1− δ

q+1
non-k mod p points. By Property 3.3, to each point Pi, there is

a value ki, so that more than δ
q+1

+2 lines through Pi intersect M in ki mod
p points. Add the point P1 ∈ P to the multiset M with multiplicity p − k1
and denote this new multiset by M(1). As there were only less than δ

q+1
+ 2

lines through P1 which intersect M in k mod p points and now by Property
3.3, we “repaired” more than δ

q+1
+ 2 lines, the total number of non-k mod

p secants of M(1) is less than δ. Hence again by Lemma 2.5, through each
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point there pass either at most δ
q+1

+2 or at least q−1− δ
q+1

lines intersecting

the multiset M(1) in non-k mod p points. So, it follows that there are at most
δ

q+1
+ 2 non-k mod p secants of M(1) through P1. It is also easy to see that

the number of non-k mod p secants of M(1) is at least q+1− 2( δ
q+1

+2) less
than that of M. Note also that from the argument above and from Lemma
2.5, it also follows immediately that the set containing the points through
which there pass at least q− 1− δ

q+1
non-k mod p secants of M(1) is exactly

P\P1. We add the points of P one by one to M as above. At the rth step we
want to add the point Pr ∈ P to M(r−1). By Property 3.3 and because of our
algorithm, there are at least 2 δ

q+1
+ 5− (r− 1) lines through Pr intersecting

M(r−1) in kr mod p points. If 2 δ
q+1

+ 5 − (r − 1) > δ
q+1

+ 2, then we can

repeat the argument above and obtain the multiset M(r). Note that at each
step we “repair” at least q+1− 2( δ

q+1
+2) lines, hence there can be at most

δ

q+1−2( δ
q+1

+2)
steps in our algorithm, so our argument is valid at each step.

Let M′ be the set which we obtain when P is empty and let δ′ be the
number of lines intersecting it in non-k mod p points. Proposition 3.2 applies
and so δ′ ≤ ⌊√q⌋q − q + 2⌊√q⌋ + 1. Our first aim is to show that M′ is a
multiset intersecting each line in k mod p points.

Let P be an arbitrary point with s secants intersecting M′ in not k mod
p points, and let ℓ∞ be a k mod p secant through P . Assume that there is a
point on ℓ∞ with at least s secants intersecting M′ in non-k mod p points.
Then as in Proposition 3.2, counting the number of non-k mod p secants
through ℓ, we get a lower bound on δ′:

(q + 1)s− s(s− 1) ≤ δ′.

This is a quadratic inequality for s, where the discriminant is larger than
(q + 2− 2 δ′+q

q+1
). Hence s < δ′+q

q+1
or s > q + 2− δ′+q

q+1
, but by the construction

of M′, the latter case cannot occur.
Now we show that there is no point through which there pass at least

δ′+q

q+1
non-k mod p secants. On the contrary, assume that T is a point with

δ′+q

q+1
≤ s non-k mod p secants. We choose our coordinate system so that

the ideal line is a k mod p secant through T and T 6= (∞). Then from the
argument above, through each ideal point, there pass less than s(≥ δ′+q

q+1
)

non-k mod p secants. First we show that there exists an ideal point through
which there pass exactly (s−1) non-k mod p secants. Otherwise, by Remark
2.4, 2(q − 1) ≤ s(s − 1); but this is a contradiction since s ≤ ⌊√q⌋ + 1 by
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Lemma 2.5. Let (∞) be a point with (s − 1) non-k mod p secants. Then
as before, we can give a lower bound on the total number of non-k mod p
secants of M′:

(s− 1) + qs− s(s− 1) ≤ δ′

Bounding the discriminant (from below) by (q + 2 − 2 δ′+q

q+1
), it follows that

s < δ′+q

q+1
or s > q + 2 − δ′+q

q+1
. This is a contradiction, since by assumption,

the latter case cannot occur and the first case contradicts our choice for T .
Hence through each point there pass less than δ′+q

q+1
non-k mod p secants.

Assume that ℓ is a secant intersecting M′ in non-k mod p points. Then
summing up the non-k mod p secants through the points of ℓ we get that
δ′ < (q+1) δ

′−1
q+1

+1, which is a contradiction. So M′ is a multiset intersecting
each line in k mod p points.

To finish our proof we only have to show that the number of different
points in (M ∪ M′) \ (M ∩ M′) is ⌈ δ

q+1
⌉. As we saw in the beginning of

this proof, the number ε of modified points is smaller than 2⌊√q⌋. On the
one hand, if we construct M from the set M′ of k mod p type, then we see
that δ ≥ ε(q + 1 − (ε − 1)). Solving the quadratic inequality we get that
ε < ⌊√q⌋+1 or ε > q+1−⌊√q⌋, but from the argument above this latter case
cannot happen. On the other hand, δ ≤ ε(q+1). From this and the previous

inequality (and from ε ≤ ⌊√q⌋), we get that δ
q+1

≤ ε ≤ δ
q+1

+
⌊√q⌋(⌊√q⌋−1)

q+1
.

Hence the theorem follows.

Proof of Theorem 1.2 The previous proposition shows that to prove The-
orem 1.2, we only have to show that Property 3.3 holds. By the pigeonhole
principle, there is a value r, so that the intersection multiplicity of at least
(q − 1 − δ

q+1
)/(p − 1) of the (non-k mod p) lines with M is r. When h > 2

and q > 27, then this is clearly greater than 2 δ
q+1

+ 5; hence Property 3.3

holds. In case h = 2, assumption (2) in the theorem ensures exactly that
(p2 − 1− δ

p2+1
)/(p− 1) > 2 δ

p2+1
+ 5 holds, so again the property holds.
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4 Codewords of PG(2, q)

Definition 4.1 Let C1(2, q) be the p-ary linear code generated by the inci-
dence vectors of the lines of PG(2, q) q = ph, p prime. The weight w(c) of
a codeword c ∈ C1(2, q) is the number of non-zero coordinates. The set of
coordinates, where c is non-zero is denoted by supp(c).

The next theorem is a straightforward corollary of the dual of Theorem
1.1.

Theorem 4.2 Let c be a codeword of C1(2, q), with 17 < q, q = ph, p prime.

If w(c) <
√

q

2
(q+1), then the points of supp(c) can be covered by ⌈w(c)

q+1
⌉ lines.

Proof. By definition, c is the linear combination of lines li of PG(2, q), that
is c =

∑

i λili. For each point P , add the multiplicities λi of the lines li which
pass through P . By definition of the weight, there are exactly w(c) points in
PG(2, q) through which this sum is not 0 mod p. Hence the theorem follows
from the dual of Theorem 1.1.

Similary, from the dual of Theorem 1.2, we get the following theorem.

Theorem 4.3 Let c be a codeword of C1(2, q), with 27 < q, q = ph, p prime.
If

• w(c) < (⌊√q⌋+ 1)(q + 1− ⌊√q⌋), 2 < h, or

• w(c) < (p−1)(p−4)(p2+1)
2p−1

, when h = 2,

then c is a linear combination of exactly ⌈w(c)
q+1

⌉ different lines.

Proof. By definition, c is a linear combination of lines li of PG(2, q), that is
c =

∑

i λili. Let C be the multiset of lines where each line li has multiplicity

λi. The dual of Theorem 1.2 yields that there are exactly ⌈w(c)
q+1

⌉ lines mj

with some multiplicity µj, such that if we add the lines mj with multiplicity
µj to C then through any point of PG(2, q), we see 0 mod p lines (counted
with multiplicity).

In other words, we get that c +
∑⌈w(c)

q+1
⌉

j=1 µjmj is the 0 codeword. Hence

c =
∑⌈w(c)

q+1
⌉

j=1 (p− µj)mj.
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Note that if we investigate proper point sets as codewords, then Prop-
erty 3.3 holds automatically. More precisely, let B be a proper point set
(each point has multiplicity 1), which is a codeword of C1(2, q). Hence B
corresponds to a codeword c =

∑

i λili, where li are lines of PG(2, q). Again
consider the dual of the multiset of lines where each line li has multiplicity
λi. Then, clearly, there are w(c) lines intersecting this dual set in not 0 mod
p point. Furthermore each of these lines has intersection multiplicity 1 mod
p (as B is a proper point set) and so Property 3.3 holds; hence we can apply
Theorem 3.4.

Theorem 4.4 Let B be a proper point set in PG(2, q), 17 < q. Suppose that
B is a codeword of the lines of PG(2, q). Assume also that |B| < (⌊√q⌋ +
1)(q + 1 − ⌊√q⌋). Then B is the linear combination of at most ⌈ |B|

q+1
⌉ lines.

The following result summarises what was known about small weight
codewords.

Result 4.5 Let c be a non-zero codeword of C1(2, q), q = ph, p prime. Then

(1) (Assmus, Key [1]) w(c) ≥ q + 1. The weight of a codeword is (q + 1)
if and only if the points corresponding to non-zero coordinates are the
q + 1 points of a line.

(2) (Chouinard [4]) There are no codewords with weight in the closed in-
terval [q + 2, 2q − 1], for h = 1.

(3) (Fack, Fancsali, Storme, Van de Voorde, Winne [6]) For h = 1, the only
codewords with weight at most 2p+(p−1)/2, are the linear combinations
of at most two lines; so they have weight p + 1, 2p or 2p + 1. When
h > 1, the authors exclude some values in the interval [q+2, 2q−1]. In
particular, they exclude all weights in the interval [3q/2, 2q − 1], when
h ≥ 4.
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Example 4.6 (Maarten De Boeck, Peter Vandendriessche [2], Example 10.3.4)
Let c be a vector of the vector space GF (p)p

2+p+1, p 6= 2 a prime, whose po-
sitions correspond to the points of PG(2, p), such that

cP =















a if P = (0, 1, a),
b if P = (1, 0, b),
c if P = (1, 1, c),
0 otherwise,

where cP is the value of c at the position corresponding to the point P . Note
that the points corresponding to positions with non-zero coordinates belong to
the line m : X0 = 0, the line m′ : X1 = 0 or the line m′′ : X0 = X1. These
three lines are concurrent at the point (0, 0, 1). Observe w(c) = 3p− 3.

Next we generalise the example above. Note that, a collineation of the un-
derlying plane PG(2, q) induces a permutation on the coordinates of C1(2, p),
which maps codewords to codewords.

Example 4.7 Let c be the codeword in Example 4.6. Let vm be the incidence
vector of the line m, vm′ the incidence vector of the line m′ and vm′′ of the
line m′′ in Example 4.6. Let d := γc + λvm + λ′v′m + λ′′v′′m. Note that
w(d) ≤ 3p + 1 as the points corresponding to non-zero coordinates are on
the three lines m, m′, m′′. Finally, let π be a permutation on the coordinates
induced by a projective transformation of the underlying plane PG(2, p). Our
general example for codewords with weight at most 3p+ 1 are the codewords
d with a permutation π applied on its coordinate positions.

Theorem 4.8 Let c be a codeword of C1(2, p), p > 17 prime. If 2p + 1 <
w(c) ≤ 3p+ 1, then c is either the linear combination of three lines or given
by Example 4.7.

Proof. By Theorem 4.2 (and since two lines can contain at most 2p + 1
points), supp(c) can be covered by three lines l1, l2, l3.

Assume that c is in C⊥ and the lis pass through the common point P .
Note that as c is in C⊥, P is not in supp(c). First we show that either
each multiplicity of the points in supp(c) are different on each li, or the
multiplicities of points of supp(c) on a line li are the same. Let S be the set
of the points of l1 that have multiplicity m. Choose a point Q from l2 \ {P},
with multiplicity mQ. As c is in C⊥, the multiplicities of the intersection
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points of any line with the lis should add up to 0; hence the projection of S
from Q onto l3 is a set S ′ of points with multiplicity −(mQ +m). Note that
every point of l3 outside S

′ must have multiplicity different from −(mQ+m).
Otherwise, projecting such a point back to l1 from Q, the projection would
have multiplicity m (as c is in the dual code); so it would be in S. Now pick
a point R of l3 \ {P} with multiplicity n and choose a point QR, so that QR

projects to R in S. From above, we see that there are exactly |S| points on
l3 with multiplicity n (which is the projection of S from QR onto l3 ). This
implies that l3\{P} is partitioned in sets of size |S|. As the number of points
of l3 \ {P} is a prime, we get that |S| = 1 or p. If the multiplicities of points
of supp(c) on a line li are the same, then clearly c is a linear combination of
the lines li.

We show that it is Example 4.7, when each multiplicity of the points
in supp(c) are different on each li. As each point on li has different multi-
plicity, let us choose our coordinate system, so that P is the point (0, 0, 1).
The point of l1 with multiplicity 0 is the point (0, 1, 0), the point of l3 with
multiplicity 0 is the point (1, 0, 0) and the point of l2 with multiplicity −1
is the point (1, 1, 1). Now we use the fact again that c is in the dual code.
Hence from the line [1, 0, 0] we get that the point (0, 1, 1) has multiplicity
1. Examining line [0, 1, 0] we get that the point (1, 0, 1) has multiplicity 1.
Similarly if the point (a, a, 1) has multiplicity −m, we see that the points
(0, a, 1) and (a, 0, 1) have the same multiplicity, namely m. Considering the
line < (0, 1, 1), (1, 0, 1) > we see that (1/2, 1/2, 1) has multiplicity −2. So
from above, the multiplicity of (1/2, 0, 1) and (0, 1/2, 1) are 2. Now consider-
ing the line < (0, 1/2, 1), (1, 0, 1) > we see that (1/3, 1/3, 1) has multiplicity
−3 and so (1/3, 0, 1) and (0, 1/3, 1) have multiplicity 3. Similarly, consid-
ering the line < (0, 1/n, 1), (1, 0, 1) > we see that (1/(n + 1), 1/(n + 1), 1)
has multiplicity −(n + 1) and so (1/(n + 1), 0, 1) and (0, 1/(n + 1), 1) have
multiplicity (n+ 1); which shows that in this case c is of Example 4.7.

Now assume that c is in C⊥, but the lines li are not concurrent. Assume
that the intersection point Q of l1 ∩ l2 has multiplicity m. Considering the
lines through Q, we see that at least (p − 1) point on l3 have multiplicity
−m. Similarly, we see at least (p − 1) points on l2 and (p − 1) points on l3
that have the same multiplicity. Hence taking the linear combination of lis
with the right multiplicity, we get a codeword that only differs from c in at
most 3 positions (at the three intersection points of the lines li). There are
no codewords with weight larger than 0 but at most 3, which means that c
must be the linear combination of the lis.
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Now assume that c is not in the dual code. As the dimension of the code
is one larger than the dimension of the dual code (see [8] and [10]), and l1 is
not in the dual code, there exists a multiplicity λ, so that c+λl1 is in the dual
code. It is clear that the weight of c+ λl1 is ≤ 3p, and clearly supp(c+ λl1)
can be covered by the three lines l1, l2, l3. Now the result follows from the
argument above when the weight of c + λl1 is greater than 2p, and from
Result 4.5 otherwise.

Corollary 4.9 For any integer 0 < k+1 <
√

q

2
, there is no codeword whose

weight lies in the interval (kq + 1, ((k + 1)q − 3
2
k2 − 5

2
k − 1), for q > 17.

Proof. Suppose to the contrary that c is a codeword whose weight lies in
the interval (kq+1, ((k+1)q− 3

2
k2− 5

2
k−1). Then by Theorem 4.2, supp(c)

can be covered by the set k+1 lines li. It follows from Remark 3.1, that the
number of points of supp(c) on a line li is at least q − k − 1. Hence w(c) is
at least (k + 1)(q − k − 1)−

(

k+1
2

)

.

Corollary 4.10 Let c be a codeword of C(2, p), p > 17 prime. If w(c) ≤
4p − 22, then c is either the linear combination of at most three lines or
Example 4.7.

Proof. It follows from Corollary 4.9, Theorem 4.8 and Result 4.5.
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