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The purpose of this study is to provide data for the primitive model of the planar
electrical double layer, where ions are modeled as charged hard spheres, the sol-
vent as an implicit dielectric background (with dielectric constant ε = 78.5), and the
electrode as a smooth, uniformly charged, hard wall. We use canonical and grand
canonical Monte Carlo simulations to compute the concentration profiles, from which
the electric field and electrostatic potential profiles are obtained by solving Poisson’s
equation. We report data for an extended range of parameters including 1:1, 2:1, and
3:1 electrolytes at concentrations c = 0.0001 � 1 M near electrodes carrying surface
charges up to σ = ±0.5 Cm�2. The anions are monovalent with a fixed diameter
d
�

= 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3
and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data
in the supplementary material. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5022036

INTRODUCTION

Electrical double layers (DLs) formed by ions near a charged surface are everywhere, from every-
day technologies (e.g., near electrodes in batteries) to biological cells (e.g., near cell membranes and
around proteins and DNA) to lab devices and materials (e.g., inside porous Nafion and nanofluidic
devices), to name just a few. And while DLs have been studied for more than a century starting
with the classical theory of Gouy-Chapman-Stern,1–3 DLs have become more important than ever
because of new technological applications that exploit the physics and energetics of DLs. For exam-
ple, the capacitive energy stored in DLs forms the basis of supercapacitors (a.k.a. electrochemical
capacitors)4 and similarly capacitively holding ions near a charged surface is used for desalination.5

Temporary protection of inner metal surfaces of industrial equipments from corrosion (e.g., in oil
refinery operations) is highly affected by the properties of DLs. In these applications, the ideal ions
are those that provide a high capacitance (i.e., a lot of charge stored with little applied voltage). Other
potential applications like optimizing sensors that read the binding and unbinding of charged aqueous
ligands6 utilize ions that provide low capacitance.7 DLs can also be used to efficiently convert pres-
sure into voltage in nanofluidic devices8 when their dimensions become comparable to the Debye
length.9–11

This growth in the potential technological applications of DLs has also spurred a growth in
theories and computational techniques to describe them.12–49 The need for new theories comes from
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the fact that the GCS theory treats ions as dilute point charges that interact through a mean elec-
trostatic potential, an assumption that breaks down when ion size and non-mean field electrostatics
produce correlations between ions.28,50,51 These correlations can manifest themselves as oscillations
in the density profile of ions near electrode and in charge inversion where a layer of co-ions forms
behind the first layer of counterions and can change the sign of the electrostatic potential near the
electrode. Such phenomena have been unraveled through computer simulations.18,19,28,29,36,45,50,52–57

As our new technologies progress, they are encountering these correlations and have started to exploit
them.58

Most of the computational works for the DL are based on the primitive model (a misleading
term; this model is simple, but far from being “primitive”) in which the ions are modeled as charged
hard spheres, the solvent as an implicit dielectric background, and the electrode as a smooth, uni-
formly charged, hard wall. This model includes all the ionic correlations on the microscopic level.
A statistical mechanical method is needed, however, with which these correlations can be revealed
on the macroscopic level by properly including them in the statistical sampling. Particle simulations,
either Monte Carlo (MC) or molecular dynamics, are accepted as the standard techniques that are
able to perform a proper sampling and to provide gold-standard data that are accurate apart from
system-size errors and statistical uncertainties.

Theories, on the other hand, always include approximations. Examples are modified versions
of the Poisson-Boltzmann theory,16,17 integral equation theories,13–15,18–20 density functional the-
ory,21–30,33,37,38,40–49 and others.31,32,39 The accuracy of these theories, therefore, is generally assessed
by comparing their results to computer simulation data. One problem, however, has been that there
is no systematic data available against which to test new theories, something that is important as
some well-established theories of DLs are qualitatively incorrect.59 Here, our goal is to address
this gap by providing high quality MC simulation data for the primitive model of ions over a
wide range of ion sizes, valences, and concentrations. The ion and electrostatic potential profiles
we provide for download in supplementary material can be used directly to better understand ion
correlations and capacitance in general as well as in special laboratory and industrial procedures
like electrophoresis.60 This data can also be used to check the range of validity of new theories of
DLs so that creators and users of these theories can have confidence in when they are and are not
correct.

Moreover, this data explicitly provides the capacitance of the DL in the primitive model for the
cases we study since we provide the entire (discretized) electrostatic potential profile; the voltage
holding the charge per unit area in the DL (whose total is negative of the surface charge because all
simulations have well-established baths in the middle of the simulation cell) is the potential at the
wall.

The primitive model is the simplest model of ions to include size by modeling them as charged
hard spheres in a background dielectric that approximates the solvent. While all-atom simulations
with explicit waters using molecular dynamics would be the ideal (see the review of Spohr61 and
references therein), computing power and quality of the force fields have not reached the point where
one can do a systematic study like the one here. That being said, the primitive model has been used
for more than 40 years,62 and it has provided significant insight into DLs and reproduced many
experimental results, including those with ion correlations like charge inversion.63–65

Since the seminal papers of Torrie and Valleau50,52–55 who developed the grand canonical Monte
Carlo (GCMC) technique for the DL geometry, MC simulations of the primitive model DL have been
the gold standard because of the relatively few assumptions and approximations they use. While the
ion density profiles have statistical fluctuations due to finite sampling, we have tried to minimize this
by running long simulations. Our intent is to provide a comprehensive, high-quality database for as
many cases as can realistically be dealt with GCMC or canonical simulations.

The classic DL model studied here is restricted in many ways. We use room temperature, while
temperature dependence of the capacitance was shown to reveal interesting phenomena.35,66–68 We
use a non-polarizable electrode, while imaging is known to produce qualitatively and quantitatively
different properties for the DL.69–72 We use an aqueous solution at 1M maximal concentration, while
the DL properties of other solvents,73 molten salts,66,74 and ionic liquids75,76 have enormous practical
importance too.

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802
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MODEL AND METHOD

The electrolyte is modeled as a mixture of charged hard spheres immersed in a solvent represented
as a dielectric continuum of dielectric constant ε = 78.5. The pair potential describing the interaction
between two ions is then

uij(r)=



∞ for r < Ri + Rj

e2

4πε0ε

zizj

r
for r ≥ Ri + Rj

(1)

where zi and Ri are the valence and radius of ionic species i, e is the elementary charge, ε0 is
the permittivity of vacuum, and r is the distance between two ions. Ion diameters are denoted by
di = 2Ri.

We used the GCMC method53 to simulate this primitive electrolyte model confined between two
charged hard walls at �H and H along the z-dimension. The interaction potential between such a
charged hard wall and an ion is

3ik(|z |)=



∞ for |z | < Ri

−
zieσk |z |

2ε0ε
for |z | ≥ Ri

(2)

where |z| is the distance of the ion from the kth surface. The surface charges,σk , are equal in magnitude
and opposite in sign on the left and right walls. In our simulations, the left wall is always the negative
one.

The cross section of our finite simulation cell in the x, y dimensions is a L × L square. Periodic
boundary conditions are applied in these dimensions. The effect of the periodic images of the ions
in the central cell are taken into account with a modified version77 of the charged sheet method of
Torrie and Valleau.53

The GCMC method includes random insertion/deletion of neutral ion clusters (ν+ cation and
ν
�

anions, where ν+ and ν
�

are the stoichiometric coefficients). For this, we need to know the mean
chemical potential of the salt, µ± = (ν+ µ+ + ν

�

µ
�

)/(ν+ + ν
�

). This was determined with the Adaptive
GCMC method of Malasics et al.78,79 for a prescribed salt concentration denoted by c. In our study, we
deal with 1:1, 2:1, and 3:1 electrolytes, so the salt concentration is equal to the cation concentration.
The temperature was 298.15 K throughout this study.

The raw data obtained from the simulations are the density profiles, ci(z), computed from the
average number of ions in layers of width dz divided by the volume of the layer (L2dz). For con-
venience, we report our results for the density profiles in unit of M (mol/dm3), so we call them
concentration profiles.

The electric field and the potential were computed from solving Poisson’s equation.80 The elec-
tric field was obtained by integrating the charge profile, q(z) = e

∑
izici(z). The integration constant

was obtained from assuming that the electric field is zero outside the solution domain. The electro-
static potential was obtained by integrating once more. The integration constant was chosen so that
Φ(�H) = 0. Then, we spatially averaged the potential over the central part of the simulation cell (around
z = 0) and shifted the Φ(z) profile with this value. The result is the potential with respect to its value
in the bulk. In the simulations, we took care that a bulk region formed in the middle of the simulation
cell, where ci(z) and Φ(z) are close to constant (this is not always easy, at low concentrations, for
example).

The width of the bin was dz = 0.25 Å in every simulation. This value fit an integer number
times into the ionic radii used in this work, which makes the integration of the charge profiles
more straightforward. This small value, however, results in extremely noisy ci(z) profiles for low
concentrations (see Fig. 1A). These profiles could be smoothed (by averaging into larger bins, for
example, as shown in Fig. 1A), but we report the raw data because they contain all the information
provided by the simulations. We trust the user to smooth the profiles. Despite this noise due to the
fine grid, the electric field and potential profiles are smooth (see inset of Fig. 1A).

The simulations are long enough (200 millions sampled configurations, namely, attempted inser-
tion/deletions or ion displacements) so potential profiles do not change considerably after running
longer simulations.
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FIG. 1. (A) Concentration profiles for a low concentration and high surface charge to demonstrate large noise and division
between a high-density (near the electrode) and a low-density (far from the electrode) region. According to this sharp division,
the electrostatic potential drops abruptly near the electrode (see the inset). Smoothed profiles are also shown with yellow
and cyan. (B) Concentration profiles for a high concentration and 3:1 electrolyte to demonstrate the noise associated with
problematic sampling (low acceptance ratio). Concentration profiles are normalized to 1 with the bulk value. Strong layering
due to asymmetries both in ion charge and size can be observed that results in charge inversion as also seen from the electrostatic
potential profile (see the inset).

When GCMC neutral particle group insertion/deletions fail to establish a bulk concentration (their
acceptance ratio can be far below 0.1% in the most difficult cases), we used canonical simulations.
Their advantage is that we just displace the ions individually within the simulation box, and the
acceptance ratio of that kind of MC step is much higher. The disadvantage is that we need to iteratively
recalculate the dimensions of the simulation cell to achieve the desired bulk concentration. The
GCMC process is more convenient (if works), while the canonical iterative process is cumbersome,
but sometimes it is the only way (e.g., 3:1 electrolyte with c = 1 M).

RESULTS

We performed simulations for an extended range of state variables. The valence and diameter of
the anion were fixed at the values z

�

= �1 and d
�

= 3 Å, respectively. We changed the cation attributes
by varying its valence (z+ = 1, 2, and 3) and diameter (d+ = 1.5, 3, 6, and 9 Å).

We varied the bulk concentration in steps by orders of magnitude (c = 0.0001, 0.001, 0.01,
0.1, and 1 M) so we cover a wide range, from extremely dilute to quite concentrated. The surface
charge is varied in finer steps up to |σ| = 0.1 C/m2 (0, 0.02, 0.04, 0.06, 0.08 and 0.1 C/m2). This
makes it possible to compute capacitance at zero electrode charge (data not provided). We also tested
quite high surface charges up to |σ| = 0.5 C/m2 (0.175, 0.25, 0.375, and 0.5 C/m2), where it was
possible.

Simulations were straightforward mostly, but in several cases it was difficult to establish a bulk
region in the middle of the simulation cell. Therefore, we do not report results for the following
cases:

• c = 0.0001 M and c = 0.001 M for the 3:1 case
• c = 0.0001 M for the 2:1 case
• c = 0.0001 M for the 1:1 case at high surface charges

These cases were difficult for the following reasons:

• Low concentrations with their large Debye lengths are complicated because the simulation
cell must be long enough (H ≈ 2000 Å) in order to fit the wide DL into it. Large cross
sections, L, must also be used in order to include enough ions into the cross section so we
can sample ion correlations not only in the z, but also in the x, y dimensions. Sampling of
possible ion configurations in this huge space is difficult when we have an otherwise dilute
system.
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• It is especially difficult in the case of 2:1 and 3:1 electrolytes, where we insert/delete 3 or 4
ions instead of just 2. The acceptance ratio of the insertions/deletions, therefore, is very small
especially at high concentrations. In most cases, however, we were able to collect enough sample
from insertions/deletions except for 3:1 electrolytes at c = 1 M using large cations (d+ = 6 and
9 Å). In these cases, we used canonical simulations.
• The other especially difficult case is when the surface charge is large because the system is

divided into a very high density (for the ions) region near the electrode and a low density region
in the bulk.

Fig. 1A illustrates the problematic case associated with low c and high σ.
The other problematic case is large concentration (c = 1 M) with multivalent cations (especially

z+ = 3). In this case, the fine noise associated with low density is replaced by a coarser noise associated
with high density and low acceptance ratios of particle moves (Fig. 1B). In these cases, a few percent
of error in the reproduced bulk densities can occur. These errors have little effect on the potential
profiles.

Also, a long range ordering can be observed (oscillations in profiles that extend far from the
wall) that is sometimes difficult to distinguish from noise (Fig. 1B). The structure of the DL near the
electrode is, however, well established; the potential profiles, therefore, can be calculated accurately.
We can state that, in general, the potential is dominated by the region near the electrode, while the
tail of the diffuse layer reaching into the bulk has a smaller effect.

The potential at the electrode is shown in Fig. 2 as it is a quantity of basic interest. The potential
at the cation radius (Fig. 3) is closely related to the otherwise poorly-defined zeta potential that is
supposed to be the potential at the slip plane that separates immobile ions attached to the electrode
from those that are mobile in the diffuse layer. This value, therefore, has practical importance. A few
conclusions on the basis of these figures follows:

FIG. 2. Electrostatic potentials at the electrode as functions of the electrode charge. The three rows of the figure refer to
various cation valences (1:1, 2:1, and 3:1 electrolytes), while the four columns refer to various cation diameters (d+ = 1.5, 3,
6, and 9 Å). The lines in a given panel refer to different concentrations: c = 0.0001 (magenta), 0.001 (blue), 0.01 (green), 0.1
(red), and 1 M (black).
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FIG. 3. Electrostatic potentials at the contact position of the cation (z = d+ /2) as functions of the electrode charge. The three
rows of the figure refer to various cation valences (1:1, 2:1, and 3:1 electrolytes), while the four columns refer to various cation
diameters (d+ = 1.5, 3, 6, and 9 Å). The lines in a given panel refer to different concentrations: c = 0.0001 (magenta), 0.001
(blue), 0.01 (green), 0.1 (red), and 1 M (black).

• Very significant (down to � 40kT /e) electrode potentials can be reached using large monovalent
cations. This has relevance when we want to design nanofluidic devices turning hydrostatic
energy into electrical power11 or when sensing surface charge changes.7

• For the 3:1 systems, the electrode potential is independent of concentrations for negative surface
charges because the trivalent cations adsorbed closely to the electrode dominate the DL. The
diffuse layer has very small effect.
• In the 3:1 case, we see negative differential capacitance for d+ = 1.5 Å (Fig. 2).
• An interesting maximum appears in Fig. 3 for d+ = 9 Å, which is the result of the balance between

opposing effects of large ionic charge (increasing field at the ion’s surface) and large ionic size
(decreasing field at the ion’s surface). Fig. 1B shows the effect of these competing asymmetries
in the concentration and potential profiles.

Our database makes it possible to compute the integral capacitance

Cint(σ)=
σ

Φ(0,σ) − Φ(0, 0)
, (3)

where Φ(0, σ) is the electrode potential at σ and Φ(0, 0) is the electrode potential at σ = 0 (point
of zero charge). This definition81 avoids the problem of singularity present in the usual definition,
σ/Φ(0, σ), and equals integral and differential capacitances at σ = 0 as a limit. Figure 4 shows the
results as obtained from the data of Fig. 2. This figure shows that

• The capacitance at σ = 0 depends strongly on concentrations, while it depends poorly on cation
charge and diameter.
• Capacitance increases with increasing concentration.
• At negative surface charges small cation diameter and large cation charge increases capacitance

because those ions can be adsorbed to the electrode more efficiently.

Calculation of the differential capacitance, Ddiff = (dΦ/dσ)�1, requires fitting across neighboring
data points. Preliminary calculations (data are not shown) allow conclusions similar to those drawn
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FIG. 4. Integral capacitances as calculated from the data of Fig. 2 using Eq. (3) as functions of the electrode charge.
The three rows of the figure refer to various cation valences (1:1, 2:1, and 3:1 electrolytes), while the four columns refer
to various cation diameters (d+ = 1.5, 3, 6, and 9 Å). The lines in a given panel refer to different concentrations: c = 0.0001
(magenta), 0.001 (blue), 0.01 (green), 0.1 (red), and 1 M (black).

from integral capacitance data above. We refer a detailed study of the differential capacitance to a
subsequent paper.

CONCLUSIONS

We have produced systematic simulation results for the classic model of the DL over a wide
range of parameters. Some of these parameters (small concentration, large electrode charge, large
ionic charge, large ionic size) have historically posed a challenge for reasons we discussed. Now,
however, there is sufficient computing power and patience to overcome many of these challenges.
There is also a compelling scientific need. By making this data freely available, research groups can
use it directly in their work or to test new theories.

SUPPLEMENTARY MATERIAL

See supplementary material for all the profiles and simulation results are accesible through
https://doi.org/10.6084/m9.figshare.c.3887707.v1

S1 File. Supplementary pdf. Tabulates basic parameters and the potential values shown in Figs. 2
and 3. Explains nomenclature for directory and file names in the compressed subdirectory system in
S3 File. It is also available from https://doi.org/10.6084/m9.figshare.5436238.v1

S2 File. Supplementary sheets. Tabulates the same basic parameters and the potential values
shown in S1 File in sheets. Available from https://doi.org/10.6084/m9.figshare.5436241.v1

S3 File. Supplementary database. A compressed file that is a zipped subdirectory sys-
tem organized into a tree structure. This subdirectory system contains all the concentration,
electric field, and electrostatic potential profiles along with basic simulation parameters for
each run. Nomenclature for directory and file names is given in the S1 File. Available from
https://doi.org/10.6084/m9.figshare.5436244.v1.

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802
https://doi.org/10.6084/m9.figshare.c.3887707.v1
https://doi.org/10.6084/m9.figshare.5436238.v1
https://doi.org/10.6084/m9.figshare.5436241.v1
https://doi.org/10.6084/m9.figshare.5436244.v1
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