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Phase diagram of hard squares in 
slit confinement
Gustavo Bautista-Carbajal1, Péter Gurin2, Szabolcs Varga2 & Gerardo Odriozola  3

This work shows a complete phase diagram of hard squares of side length σ in slit confinement for 
H < 4.5, H being the wall to wall distance measured in σ units, including the maximal packing fraction 
limit. The phase diagram exhibits a transition between a single-row parallel 1- and a zigzag 2-◇̂ 
structures for Hc(2) = (2 2 − 1) < H < 2, and also another one involving the 1- and 2- structures (two 
parallel rows) for 2 < H < Hc(3) (Hc(n) = n − 1 +  n2 1− /n is the critical wall-to-wall distance for a 
(n − 1)- to n-◇ transition and where n-◇ represents a structure formed by tilted rectangles, each one 
clustering n stacked squares), and a triple point for Ht  2.005. In this triple point there coexists the 1-, 
2-, and 2-◇̂ structures. For regions Hc(3) < H < Hc(4) and Hc(4) < H < Hc(5), very similar pictures arise. 
There is a (n − 1)- to a n-◇ strong transition for Hc(n) < H < n, followed by a softer (n − 1)- to n- 
transition for n < H < Hc(n + 1). Again, at H  n there appears a triple point, involving the (n − 1)-, n-, 
and n-◇ structures. The similarities found for n = 2, 3 and 4 lead us to propose a tentative phase 
diagram for Hc(n) < H < Hc(n + 1) (n ∈ , n > 2), where structures (n − 1)-, n-, and n-◇ fill the phase 
diagram. Simulation and Onsager theory results are qualitatively consistent.

Athermal systems, despite their apparent simplicity, often show rich behaviour. Playing with particle’s shape and 
confinement leads to a huge variety of self-assembling structures1–9. Arrangement usually happens at nano and 
mesoscale levels, driven by thermal fluctuations, but also at macroscopic scales, where container twists10 or tap-
ping movements11 are applied to play the role of thermal fluctuations. On the one hand, particles’ shape induce 
directional entropic forces which may drive self assembling into anisotropic phases5,12. On the other hand, con-
finement introduces frustration which may force the system to arrange into complex structures3,9,10,13–16, and to 
follow unusual phase transitions17–20. Hence, it comes as no surprise that their combination results in colourful 
phase diagrams, and even in the appearance of anomalous behaviours6,21–25. The thermodynamic equilibrium of 
such systems is, often, non-trivial. In addition, predicting the equilibrium phase for confined systems is impor-
tant not only from theoretical but also from practical purposes, given the actual exquisite experimental control 
of shape and size of nano and micro sized colloids5,26,27, and the existence of lithographic, layer by layer, and 
template-directed growth6,28,29, which makes possible the bottom-up approach for new materials design.

Decreasing the dimensionality of the system does not always lead to a simpler behaviour. For instance, the 
freezing of hard discs in a two dimensional plane is by far more complicated than the freezing of their three 
dimensional analogue (hard spheres). Indeed, the fluid-hexatic, hexatic-solid complex transition has been exten-
sively debated15,30–33. In principle, going down to one dimensional systems makes things easier, since there appear 
a relatively large number of model systems which are analytically solvable. In addition, the van Hove’s theorem34,35 
rules out the existence of genuine thermodynamic transitions (the free energy and all its derivatives are continu-
ous at the thermodynamic limit) for short range potentials. Nonetheless, there exists some systems which exhibit 
peculiar behaviours at high pressures36. In our recent works24,25, we have found that quasi-one dimensional con-
fined hard squares of side length σ show a strong structural transition involving the structures given at the top line 
of Fig. 1 in the range − = < <H H(2 2 1) (2) 2c , H being the wall-to-wall distance measured in units of σ. We 
have also found that the packing fraction, η, versus pressure along the channel, Px, shows a step function like 
behaviour resembling a true discontinuity. Moreover, the transition strengthens with decreasing H, becoming 
critical in the limit H → Hc(2) and Px → ∞, with critical exponents belonging to the universality class of the 
one-dimensional Ising model25. Although there is no critical point at any finite pressure, there is a real critical 
behaviour (which can be experimentally observable) in the vicinity of the critical point. As a result, simulations 
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(or any real experiment composed by a very large but finite number of particles) are not capable of distinguishing 
this extremely sharp structural transition from a genuine thermodynamic one.

In this work, by mainly focusing on simulations, we extend previous results to build the phase diagram for a 
larger H region, expanding up to n = 4 layers of particles through the channel. For this purpose we first extend the 
maximal packing fraction curve, as a function of H, by assuming that only the parallel and tilted structures lead 
to the maximal packing fractions (examples of these structures are depicted in Fig. 1). We give details of this pro-
posal in the next section. Next, we present the simulation methods and their results in the following two sections, 
respectively. In this last section we focus on the building of the phase diagram. We first summarise the previous 
results for Hc(2) < H < 2, where the 1- to 2-◇̂ structural transition appears, and extend the study to the region 
2 < H < Hc(3), where a soft transition is found involving the 1- and 2- structures. Curiously, the 2-◇̂ structure 
persists only for H values above but very close to 2, and a triple point emerges at  .H 2 005t  where the three 
structures coexists. This picture seems to be replicated to the Hc(3) < H < Hc(4) and Hc(4) < H < Hc(5) regions, 
being the only difference that the zigzag structure, 2-◇̂, is replaced by a tilted one having n = 3, 4 layers. Also, the 
strength of the (n − 1)- to the n-◇ transition increases with n, and the triple point shifts slightly to higher H. 
The strong similarities encourages us to propose an approximate phase diagram for a general region 
Hc(n − 1) < H < Hc(n).

Maximal Packing Fraction
As mentioned in the introduction, the 1- and 2-◇̂ structures are those leading to the highest possible close 
packing for H < 2. The close packing fraction of the first one is simply

η = −H H( ) , (1)cp
1

where we recall that H is given in units of the side length of the square, σ. In general, for n- structures we have

η = .−n H nH( , ) (2)cp
1

On the other hand, the close packing fraction of the 2-◇̂ zigzag structure is

η = −
−◇̂ H H H( ) [ (2 2 )] , (3)cp

1

which is increasing in the range < <H2 2. These two close packing fractions intersect at = −H (2) 2 2 1c , 
which coincides with the location of the critical point for the 1- to the 2-◇̂ structural transition25.

For larger H values, we find that the n-◇ structure competes with the (n − 1)- structure and that yields the 
densest packing for Hc(n) < H < n (examples of these structures are depicted in Fig. 1). As already mentioned, this 
former structure is composed by tilted rectangles of n stacked squares. Its close packing fraction is given by

Figure 1. Competing closed packed structures for different confinement distances, H, as labelled. The x and y 
directions are defined along to and perpendicular to the channel, respectively.
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η θ
=◇ n H n

H
( , ) sin , (4)cp

θ being the angle between the large side of the rectangle and the direction along the channel (see Fig. 1). The 
value of θ can be determined from the equation θ θ+ =n Hsin cos . In the investigated region, n − 1 ≤ H < n has 
a unique solution in the θ ∈ [0, π/2] interval, which is given by

θ =
− + −

+
.

Hn n H
n

sin 1
1 (5)

2 2

2

Note that η ◇
cp (n, H) is, as η ◇̂

cp (H), an increasing function of H in its corresponding H range. Again, the point at 
which η η− = ◇n H( 1, )cp cp  (n, H) defines Hc(n), coinciding with the presumably critical point for the (n − 1)- to 
the n-◇ transition. In turn, Hc(n) is given by

= − + −H n n n n( ) 1 2 1 / , (6)c

which is always in the n − 1 < Hc(n) < n range, and tends to be n − 1 for large n. Hence, for increasing n, the range 
at which the n-◇ structure produces the maximal packing fraction widens (see Fig. 2).

Note that for wide pores one may expect to find hybrid structures having a mixture of m rows parallel to the 
walls, and tilted rectangles composed by n − m squares (an example with n = 4 and m = 1 is depicted at the right 
hand side and bottom of Fig. 1). In this case we would have

◇η η θ= + − − −n m m H H m n m H m H( , ) / ( ) ( , ( ))/ (7)cp
mix

cp

whenever the m rows are wetting one  or both of the confining planes, but not dispersed at bulk which would lead 
to a less efficient packing. It can be shown that this packing fraction is a decreasing function of m, and is always 
below η −n( 1)cp  for n − 1 < H < Hc(n) and below ◇ηcp (n) for Hc(n) < H < n. Note that angle θ decreases with 
decreasing H, which yields a less efficient packing. Nonetheless, the difference η η−◇ n n m( ) ( , )cp cp

mix  tends to zero 
for n → ∞ and finite m.

Simulation Method
As in previous work24, we are employing the replica exchange Monte Carlo technique to sample from equilibrium, 
whenever possible. This technique enhances the natural trend of the Monte Carlo method to reach equilibrium 
when the free energy landscape is wrinkled or simply split by hills (our case). The technique rests on the definition 
of an extended ensemble, = ∏Q Qext i i, where Qi represents the partition function of three macroscopic thermo-
dynamic variables, being them functions of i37–40. Its most popular implementation involves the temperature 
expansion of the canonical ensemble, = ∏Q Q N V T( , , )ext i i , frequently referred to as parallel tempering37. Of 
course, in our case this implementation has no benefit at all, due to the hard character of our inter-particle poten-
tial. Instead, we are employing = ∏Q Q N P T( , , )ext i x i, , that is, a pressure expansion of the isobaric ensemble 

Figure 2. Maximal packing fraction ηmax as a function of the separation distance, H. Hatched areas are 
inaccessible to the system.
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(employing the pressure component along the channel)41. This form has been successfully employed to determine 
the phase diagram of several hard systems42–44, even when dealing with phase transitions between very dense 
phases such as solids42.

As mentioned, our system consists of a collection of N identical squares placed in a plane (a two dimensional 
system), and confined by two parallel walls (lines). Walls are separated by a distance H the one from the other 
(measured in units of σ, the side length of our squares), and placed parallel to our x direction. A second y axis is 
defined perpendicular to the x axis and inside the system plane. Periodic boundary conditions are set only for the 
x axis. Verlet lists are implemented to gain efficiency. Note that the gain is huge for small H values, where lists are 
rarely refreshed. Indeed, for H < 2 each particle has only two fixed neighbors. The sampling of each Q(N, Px,i, T) 
subensemble is done by implementing a standard isobaric sampling. This sampling involves particle displace-
ments, particle rotations, and changes of the length of the x side of the channel (area changes with a fixed H). We 
are setting 32 system replicas (unless otherwise indicated), each one located at a corresponding Px,i. After some 
NPxT cycles, we stop the MC threads and proceed to trial some replica interchanges. These trials attempt to swap 
a couple of randomly selected replicas, located at different but adjacent pressures. The acceptance probability for 
swap trials reads β − −P P A Amin {1, exp[ ( ) ( )]}x i x j i j, , , where Ai/j and Px,i/j are the area and longitudinal pressure 
of replica i/j. Immediately after, the standard MC threads are restarted defining an external cycle. This overall 
cycle is repeated a very large number of times, as much as necessary.

To test our implementation we proceed to turn off the confinement walls, turn on the y periodic boundary 
condition, turn on angle and size changes of the simulation cells (important to gain degrees of freedom and avoid 
artefacts due to geometric frustration), and sample a bulk of N = 196 squares with 64 replicas (corresponding to 
the 64 points of Fig. 3). The outcome is presented in Fig. 3, where we have included data points from references45 
and22 for the equation of state. We are also adding the isothermal compressibility χT = N(〈ρ2〉 − 〈ρ〉2)/〈ρ〉2, 
ρ = N/A being the number density, and order parameters. These lasts read θΦ = |∑ |= iexp (4 )

N j
N

j4
1

1  and 
θΨ = |∑ ∑ |= = niexp ( )n N j

N
n j k

n
jk

1
1

1
1

j , Φ4 being the 4-fold order parameter and Ψn the n-fold bond order parameter. 

In these expressions θj is the angle formed by any of the sides of the square j and an arbitrary reference direction, 
nj is the number of bonding particles to square j, and θkj are the angles between the line connecting the centres of 
squares k and j and another arbitrary direction (for simplicity, the same reference is taken). The very good agree-
ment found among the independent simulations points out the correctness of our unconfined code, where the 
isotropic fluid to the solid phase transition is confirmed smooth, and where the tetratic phase appears in-between 
them45. This result is also consistent with Anderson et al. recent long scale simulations, where a 
Kosterlitz-Thouless-Halperin-Nelson-Young30,31 smooth two-step transition is found for the melting of squares46. 
Note that the bell-shaped probability density functions widen and become lower at the transition keeping their 

Figure 3. Simulation results for unconfined squares. (a) Probability density functions. (b) Pressure as a 
function of the packing fraction. Open circles correspond to reference45, and triangle-ups and triangle-
down symbols to reference22 for compression and expansion, respectively. (c) Dimensionless isothermal 
compressibility. (d) 4-fold orientation order parameter Φ4, and 4 and 6-fold bond order parameters, Ψ4 and 
Ψ6, respectively. The light (cyan) vertical line highlights the approximate position of the isotropic fluid-solid 
two step soft transition. The tetratic phase appears in a small density window close to this point. The insets are 
snapshots corresponding to the regions pointed out by the arrows.
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Gaussian profile, never distorting into bimodals. At high pressures, we observe a small decrease of Ψ4 accompa-
nied with a small increase of Ψ6, suggesting the existence of few replicas exhibiting well defined rows, ones shifted 
with respect to the others (see the snapshot inset in Fig. 3). This feature has been, to our knowledge, not previ-
ously reported. The code accounting for confinement also produces results consistent with the exact results of the 
transfer matrix method24,25.

We should also add here that perfect squares with sharp edges are difficult to obtain in the lab, and in general, 
sharp edges do not frequently occur in nature. In particular, Zhao et al. have built, by lithography, 2D systems of 
Brownian hard squares with tiny roundness at their corners6. They have osmotically controlled the area fraction to 
study the phase behaviour of a monolayer. Strikingly, they have found no tetratic nor square crystals at all. Instead, 
they have found a transition from an isotropic fluid to a rhombic crystal, passing trough a hexagonal rotator phase, 
neither of them showing the expected four-fold symmetry of the constituting particles. They capture the general 
behaviour by employing a simple Onsager description and conjectured that the tiny roundness around the corners 
of their squares were the source of the dramatic change of phase behaviour of the system. This was then corrobo-
rated by Avendaño and Escobedo, who explore with MC the phase behaviour of squares with different degrees of 
roundness22. In addition, they even reported for a certain degree of roundness a polycrystalline phase with domains 
of square order in coexistence with clusters showing weak hexagonal order. This nice story constitutes an iconic 
example of the key role of shape in the thermodynamics of hard systems, but it is not the only one46.

Back to our confined system of perfect squares, we start the simulations from loose random configurations 
and run the code until a steady state is observed (unless otherwise indicated). Unfortunately, this steady state does 
not always correspond to equilibrium. This is particularly true when dealing with the (n − 1)- to n-◇ transition. 
In the simulation we observe a coexistence of these structures even in the case of n = 2, where such a thing is ruled 
out by theory. For this kind of coexistence we start simulations with N ≈ 100 from cells filled with both competing 
structures, each having the same number of particles, and a couple of boundaries. For a replica set with a small Px 
value, the (n − 1)- structure grows at the expenses of the n-◇ one. Conversely, the n-◇ structure tends to grow 
(with difficulty) for Px above the transition (coexistence) value. This way, when reaching a steady state, we can find 
an approximate value of the transition pressure. Once this pressure is obtained, we simply run the code by starting 
from cells having pure (n − 1)- or n-◇ structures, located below and above the transition pressure, respectively. 
From these last simulations we get the transition densities depicted as red bullets in the phase diagrams for the 
(n − 1)- to n-◇ transition. The (n − 1)- to n- smooth transition is signalled by a single red bullet which cor-
responds to the maximum of the isothermal compressibility.

Results
We first focus on the Hc(2) < H < Hc(3) region of the phase diagram (see Fig. 4), for which we take advantage of the 
data previously published for Hc(2) < H < 224. The region where structures 1- and 2-◇̂ (the zigzag structure) 
compete has been solved employing both, simulations and theoretical calculations24,25. There we have observed that 

Figure 4. Phase diagram for the Hc(2) < H < Hc(3) region. Red bullets are data from simulations. The inset 
zooms in the H ≈ 2 region. Dashed lines are guides to the eye. Lightly hatched areas are inaccessible. The heavy 
hatched area points out a transition region in which Px practically does not depend on η. The small snapshots 
are sections of the simulation cells, which are located according to their η and H values. The long snapshots 
pointed by an arrow correspond to cells appearing at the triple point. This point is highlighted by a circle. In the 
snapshots, parallel and 45-tilted squares are coloured red and blue, respectively. Intermediate angles are painted 
with a mixture of both colours.
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structure ◇̂ is preferred at high pressures and high packing fractions, and the 1- structure is obtained at lower 
pressures. Note that the particles of the 1- structure have more room for fluctuations in the transversal direction 
than those of the 2-◇̂ structure. Therefore the particles stay in 1- structure at low densities even if the 2-◇̂ one 
can be more packed. This explains our findings. In addition, we have found that at the vicinity of H 2, the struc-
tural transition is smooth. However, the transition strength dramatically grows for decreasing H, which can be seen 
in sharper and higher peaks in the isothermal compressibility (see refs24,25). By observing the simulation results 
only, we could not discard a genuine first order transition for .H 1 9 . That is, the gap between the phases (let us 
call them phases) turns really obvious, a kind of one dimensional bubbles grow large, the dimensionless isothermal 
compressibility yield high and narrow peaks which increases with system size, and structural order parameters 
abruptly change, being all these features hallmarks of true first order transitions. Indeed, we have found that a dis-
cretized version of this system25, which can be solved analytically, has a critical point at (Hc(2), Px → ∞), and exhib-
its a critical behaviour at its neighbourhood, corresponding to the universality class of the one-dimensional Ising 
model. We have also shown that this simplified (orientational and y-positional restricted) version captures the key 
features of the unrestricted system and so, we also expect the freely rotating squares to show the same critical 
behaviour at the vicinity of (Hc(2), Px → ∞). Hence, although we know from theoretical considerations that the 
transition is not genuine, we are pointing out in Fig. 4 a transition region in which the pressure, Px, is practically 
independent of the packing fraction, η. From the point of view of simulations only, this region is indistinguishable 
from a coexistence region. We are also, from time to time, naming the competing structures as phases.

To build up the H > 2 region of Fig. 4, we firstly conduct N = 500 (considering 32 replicas) simulations cover-
ing the range 2.05 ≤ H ≤ 2.40 by intervals of 0.05. These simulations are started from loose random cells. Results 
are given in Fig. 5 where a smooth and wide layering transition is observed, involving the 1- and 2- structures. 
Note that as H increases, the 1- structure becomes more fluid-like making the single row to fade. Hence, what 
we called the 1- structure can be strongly different for low and high H values. It is worth mentioning that the 
finding of a 2- structure for H > 2 is consistent with our proposal of having the 2- structure as that producing 
the maximal packing fraction in this H region. From Fig. 5, we are taking the compressibility maximum as the 
point at which the transition takes place. The obtained transition points are then depicted as red bullets in Fig. 4. 
The transition never exhibits signatures of a first order one and its strength decreases for increasing H. In fact, we 
cannot detect a clear compressibility peak for H > 2.40, though a smooth structural change remains observable. 
From Fig. 5 it is clear that the position of the compressibility peaks shifts to larger η values for decreasing H. The 
shifting, in turn, strengthens when approaching H = 2, in such a way that the observed trend yields relatively high 
pressure and density values for H → 2 (see Fig. 5). At this point, the emerging phase diagram would consist of 
exclusively having the 1- and 2- structures in the interval 2 < H < Hc(3), since we never detect the appearance 
of the 2-◇̂, even for H = 2.05. This made us thought, for some moment, that the 2-◇̂ would suddenly disappear 
at H = 2, which would be a somewhat peculiar behaviour. It turned out that the complete real picture is probably 
even more peculiar, involving a triple point.

Figure 5. Equations of state (top) and dimensionless isothermal compressibility (bottom) for different wall-to-
wall separation distances, H. H increases as shown by the inserted arrows. The covered range is 2.05 ≤ H ≤ 2.4, 
with increments of 0.05.
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Before entering into the details of the tiny region around H = 2, we performed simulations on the 
Hc(4) < H < Hc(5) domain. Results are given in Fig. 6. There we have found a very similar behaviour than for the 
Hc(2) < H < Hc(3) case, being the main difference that the 2-◇̂ structure (the zigzag structure) is replaced by the 
4-◇ structure, composed by parallel rectangles made up of, in this case, 4 stacked squares. Similarities are 
remarkable. On the one hand, for Hc(4) < H < 4, there is a 3- 4-◇ transition region close to Hc(4). The strength 
of this transition increases for H approaching Hc(4), and the pressure seems to diverge at this point. The transition 
region, as for the Hc(2) < H < Hc(3) case, seems to abruptly end at Hc, making the (Hc, Px → ∞) point to strongly 
resemble a critical point. Let us call it that way, despite we have not characterised its likely critical behaviour. This 
task may yield critical exponents different than those obtained for the Hc(2) < H < Hc(3) case, given the gain of 
fluctuations in the y-axis direction. On the other hand, for 4 < H < Hc(5) we have found a very similar layering 
transition than the one found for the 1- 2- structures, but now involving the 3- 4- structures. In this case, 
we clearly detect peaks of χT up to H = 4.5, then the transition turns too soft and peaks vanish. As before, the 
transition shifts to larger η and βPx values and strengthens for decreasing H, but keeping always a soft behaviour. 
We note that a similar layering transition has been also observed in a system of hard rectangles confined between 
parallel lines or in rectangular cavities47–49. Again, note that as H increases, the 3- structure turns fluid-like 
where well defined rows tend to disappear.

The layering phenomenon between the n- and (n + 1)- structures (fluids with n and n + 1 layers) can be 
understood on the basis of Onsager second virial theory, too50. Considering the system of parallel hard squares 
between two hard walls, i.e. the effect of orientational freedom is discarded, the free energy density can be written 
as a sum of an ideal gas contribution, plus an excess and external field terms as follows,

∫ ∫ ∫ ∫
β ρ ρ ρ ρ ρ β= − + +

F
L

dy y y dy y dy y d y dy y V y( ) ( ( ) 1) 1
2

( ) ( ) ( ) ( ) ( )
(8)x

1 1 2 2 exc 12 ext

where Lx is the length of the system along the x axis, ρ(y) = η(y)/σ2 is the local density, dexc(y12) = 2σθ(σ − |y12|) is 
the excluded distance between two squares at positions y1 and y2, respectively, y12 = y1 − y2, and Vext(y) is the exter-
nal potential acting on a particle at position y. Certainly, the local density can be higher than zero only inside the 
pore, because Vext = 0 for y ≤ |H − σ|/2 and Vext = ∞ for y > |H − σ|/2. The first term of the free energy (propor-
tional to translational entropy) favours the homogeneous local density, the second one (packing entropy) wants 
to maximise the available room for the particles, and the last one constrains the particles to be inside the pore. To 
find the equilibrium density profile at a given packing fraction and H, the free energy must be minimised with 
respect to the local density with the condition of ∫η σ ρ= −H dy y( )2 1 . The details of such calculations can be 
found elsewhere50. At very low packing the ideal gas term wins with almost constant density profile because the 
contribution of dexc is negligible. The situation changes dramatically with increasing η, since the packing is the 
best for particles aligning in the same row and the contribution of dexc becomes dominant. As a result of the 

Figure 6. Phase diagram for the Hc(4) < H < Hc(5) region. Red bullets are data from simulations. The inset 
zooms in the H ≈ 4 region. Dashed lines are guides to the eye. Lightly hatched areas are inaccessible. The heavy 
hatched area points out a transition region, in which Px practically does not depend on η. The small snapshots 
are sections of the simulation cells, which are located according to their η and H values. The long snapshots 
pointed by an arrow correspond to cells appearing at the triple point. This point is highlighted by a circle. In the 
snapshots, parallel and 45-tilted squares are coloured red and blue, respectively. Intermediate angles are painted 
with a mixture of both colours.
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competition of translational and packing entropy terms of Eq. (8), layered structures emerge at high densities 
where the ideal free energy term is lower for n − 1 layers than for n ones, while the opposite is true for the 
excluded distance term. The results of the Onsager theory are shown in Fig. 7. It can be seen that, at the level of the 
Onsager theory, a first order transition takes place between fluids with 2 and 3 layers for 3 < H < 3.5, while only a 
smooth structural change occurs for 3.5 < H < 4. The region corresponding to a first order transition between 
fluids with 3 and 4 layers extends up to H = 4.9, while the structural change shrinks to 4.9 < H < 5. In other words, 
the layering transition becomes stronger with increasing H. Regarding the case 2 < H < 3, the theory results in a 
smoothly developing two-layer structure with increasing η, without showing any sign of a phase transition. The 
theory clearly fails in the sense that the packing fraction is not constrained within the close packing limit, i.e. η 
can be higher than ηcp (the packing fraction at close packing). Therefore it gives unphysical packing fractions 
which cannot be compared directly with simulation results. However, the trends of the layering transitions com-
ing from the theory and simulations are qualitatively the same.

Figure 7. Layering transition diagram as obtained from the Onsager second virial theory and by considering 
a restricted system of squares with a couple of sides parallel to the walls. The top and bottom panels depict the 
3 < H < 4 and the 4 < H < 5 regions, respectively. The insets show the density profiles as obtained at the (H,η) 
points signalled by the arrows. The drawings schematise the corresponding system configuration. The hatched 
areas point out a transition region in which Px does not depend on η.
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Returning the attention to the simulation results of the previously studied cases, a couple of relatively minor 
differences between them are the following. We found that the overall strength of the 3- 4-◇ transition is larger 
than the one found for the 1- 2-◇̂ structures. This is observed far from Hc, where the transition vanishes for 1- 
2-◇̂ but persists for 3- 4-◇, even for H = 4. We may attribute this behaviour to the gain of degrees of freedom 
on the y-axis direction, turning the transition with a more 2d character. As discussed in the previous paragraph, 
the same behaviour appears for the (n − 1)- to n- layering transition. The other one lies on the obtained trends 
for the right hand side of the phase diagrams. We observe that the (n − 1)- n- transition decays faster for the 
n = 2 case. Note that the trend for n = 4 gets nearly parallel to its corresponding maximal packing line after a fast 
decay, whereas the n = 2 transition curve always decays faster than its corresponding maximal packing line. 
Overall, we can safely state that similarities far exceed differences.

To solve the puzzling behaviour for H values close to but larger than integer numbers, and in particular around 
H = 4, we performed simulations for H = 4.01, 4.02, 4.03 and 4.04. For H = 4.04 we simply obtain the 3- to 4- 
transition, with larger η and βPx values, following the previously found trend. However, things change for lower H 
values. For H = 4.02, and by starting simulations from loose random cells of small systems, we obtain the results 
given in Fig. 8. There we show the probability density functions (PDFs) and the pressure, βPx, as a function of the 
packing fraction, η. It is observed how the previously found smooth transition, being all PDFs bell shaped and 
continuously overlapped like the ones given in Fig. 3, splits into three regions, being them clearly separated the one 
from the other by large gaps. These sets of PDFs lead to the βPx(η) function given at the bottom panel of the same 
figure, which exhibits the three corresponding branches. The left and right ones correspond to the 3- and 4- 
phases, respectively. This is confirmed by inspecting several of the replicas appearing at low and high pressure. An 
inspection of the cells appearing at the middle region yields the elusive (for H > 4) 4-◇ structure. We also observed 
several cells having a mixture of structures, suggesting that equilibrium is not reached. This goes in line with the 
distorted PDFs obtained mostly for the 4-◇ region, and with the fact that we have, indeed, never observed a true 
steady state for the whole set of replicas. The changes are produced very slowly in real time, though, and this is why 
we, at some point, stopped the simulation. Despite this fact, we are confident the three structures appear, and that 
the 4-◇ competes with the 3- and 4- structures at low and high pressure, respectively. Hence, we designed two 
independent runs, one at high pressures with cells filled with 4-◇ and 4- structures with equal number of parti-
cles, and other, at low pressures, with cells having the 4-◇ and 3- structures. This was done with the aim of 
determining the transition pressure (as explained in the previous section). Once this is done, we run a short simu-
lation by imposing the expected phases at each pressure range to obtain the transition densities. From them we 
locate the red bullets of Fig. 6. Nonetheless, much more calculations would be required to do this properly. In 
particular, the 4-◇ to 4- transition occurs at high pressures making simulations difficult to carry out.

We would also like to point out here that the mixed structure mentioned in Sec. does frequently appear during 
the equilibration of the system of replicas for 4 < H < 4.03. A snapshot example is given as an input in Fig. 8, which 
corresponds to the location of the point laying in-between the 4-◇ and 4- branches, persisting during the equi-
libration processes until we stop it. This suggests the mixed structure exhibits a strong metastable behaviour, at least 

Figure 8. Probability density functions (top) and pressure along the channel (bottom) for H = 4.02 and 
N = 120, as obtained by starting from loose and random initial conditions. The approximate locations (replicas 
continuously swap locations) of the several inserted snapshots are pointed out by the arrows.
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for 4 < H < 4.03. Taking into account that η ◇
cp η−n n m( ) ( , )cp

mix  tends to zero for a fixed m and n → ∞, one can 
expect it to frequently appear for large n values. Indeed, for n = 100, H = n, and m = 1 and 2, ◇ηcp η−n n m( ) ( , )cp

mix  
is 2 × 10−6 and 4 × 10−6, respectively. Besides, one should note that there is a natural tendency for the closest to the 
wall layer to become parallel, freeing space and letting the rest of the system gain accessible volume and entropy. 
Hence, although we expect the large n phase diagram to behave similarly to those given in Figs 4 and 6, we also 
expect the appearance of several competing structures showing very strong metastabilities.

We should now move to a point in-between H = 4.02 and H = 4.04, namely H = 4.03, to see what happens. It 
is quite remarkable the sharp change of behaviour occurring in this small H range. Figure 9 is built for this inter-
mediate H value. At this point, and as it is shown by the snapshots inserted in the figure, we found several 
microphases. Again, equilibrium, or at least a good equilibrium sampling, is elusive at this point, as can be guessed 
from the shape of the quite irregular PDFs appearing in between the 3- and 4- phases at each extreme of the 
chart. But more importantly, it seems to be a gradual transition from 3- to 4-, passing through several cells 
containing not only these phases but also the 4-◇ one. There is a triple coexistence. Indeed, some single cells have 
the three coexisting phases. There are, of course, others showing just two phases and some few showing a com-
plete 4-◇ structure. There appear several interphases of all possible kinds. That is, there are 3- 4-, 3- 4-◇, 
and 4-◇ 4- interphases. Depending on the η location of the replica, it contains more or less of the 3- and 4- 
phases, while the 4-◇ phase distributes on the entire transition region. We like to conclude this corresponds to a 
genuine triple point, and place a highlighted red bullet in Fig. 6 at H = 4.03.

We repeat the whole procedure followed for the Hc(4) < H < Hc(5) range, to obtain the phase diagram corre-
sponding to Hc(3) < H < Hc(4), including a detailed exploration for the pore width of the triple point. The out-
come is given in Fig. 10. The resemblance with Fig. 6 is remarkable. We are not listing their similarities; they are 
too obvious. We should only stress here that we have find a triple point coexistence at H = 3.02, i. e. a little bit 
closer to H = 3 than found for n = 4. We would also like adding that the strength of the 2- 3-◇ coexistence lies 
in-between the n = 2 and n = 4 cases. In this case the coexistence seems to end at H ≈ 2.975.

Finally, we have also performed simulations in the tiny region close to 2, to elucidate the possible existence of 
a triple point, based on our previous experience with H around 3 and 4. We have placed this triple point close to 
H = 2.005.

The obtained similarities of Figs 4, 6 and 10, make us wondered if the observed transitions can be unified in a 
single master phase diagram for all n values. By so doing we have found that defining

=





− − − < ≤
− + − + ≥ >

⁎H
H n n H n n H n
H n H n n n H n

( )/( ( )), for 1
( )/( ( 1) ) for 1 (9)

c

c

and η η η= =⁎ n H n/ ( , )cp  the desired behaviour approximately arises. The idea of employing the point 
( η =H n n H n( ), ( , )c cp ) as a reference value comes from the observation that it approximately corresponds to the 

Figure 9. Probability density functions (top) and pressure along the channel (bottom) for H = 4.03 and 
N = 120, as obtained by starting from loose and random initial conditions. The approximate location (replicas 
continuously swap locations) of the several inserted snapshots are pointed out by the arrows.
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end of the (n − 1)- to n-◇ transition region. The outcome is given in the main panel of Fig. 11, where not all 
data are shown. On the one hand, we are excluding those with H* < 0 exhibiting no coexistence. On the other 
hand, we are also excluding those for n = 2 and H* > 0, simply because they do not collapse with the others. This 
is a consequence of the fast drop of η(H) for 2 < H < Hc(3), as was already mentioned. We expect data from larger 

Figure 10. Phase diagram for the Hc(3) < H < Hc(4) region. Red bullets are data from simulations. The inset 
zooms in the H ≈ 3 region. Dashed lines are guides to the eye. Lightly hatched areas are inaccessible. The heavy 
hatched area points out a transition region in which Px practically does not depend on η. The small snapshots 
are sections of the simulation cells, which are located according to their η and H values. The long snapshots 
pointed by an arrow correspond to cells appearing at the triple point. This point is highlighted by a circle. In the 
snapshots, parallel and 45-tilted squares are coloured red and blue, respectively. Intermediate angles are painted 
with a mixture of both colours.

Figure 11. Master phase diagram for a general Hc(n − 1) < H < Hc(n) range. It is possible to rescale the η and H 
axes to yield an approximate collapse of the data for n = 2 (black circles), 3 (red squares) and 4 (blue triangles). 
See the text for the definitions of η* and H*. The inset shows the approximate collapse of the pressure along the 
channel by following a similar procedure.



www.nature.com/scientificreports/

1 2Scientific REPORTS |  (2018) 8:8886  | DOI:10.1038/s41598-018-26922-3

n values to behave more likely to the n = 3 and n = 4 cases. Finally, we are also including, as an inset of Fig. 11, the 
reduced pressure ⁎ = =P P P H n/ ( )x x x . In this case the data collapse is less striking. It is worth mentioning that this 
master phase diagram shows clear similarities with the one obtained for slit-like confined 3d-cubes23, where our 
(n − 1)- and (n)- structures would correspond to the reported fluid-like and solid-like phases, respectively.

We do not expect Fig. 11 to be precise, and so it should be taken as a guide only. In addition, we may expect 
differences with the actual phase diagram to enlarge for increasing n. We have already mentioned that 
Hc(n) → n − 1 for n → ∞. Hence, at some point, the phase diagram may dramatically change when the n-◇ struc-
ture start competing with the (n + 1)-◇ structure. We expect this to happen for n ≈ 100. Consequently, we spec-
ulate that the phase diagram shape given in Fig. 11 could hold for n < 100.

Conclusions
We have built the phase diagram of strongly confined hard squares, for wall-to-wall distances H < 4.5, measured 
in square side length units. The proposed phase diagram includes the maximal packing curve limiting the acces-
sible region for the system. We have observed strong similarities for ranges Hc(2) < H < Hc(3), Hc(3) < H < Hc(4), 
and Hc(4) < H < Hc(5), where competing structures exhibit clear patterns. This lead us to propose a general phase 
diagram for Hc(n) < H < Hc(n + 1), where Hc(n) refers to a critical point, which coincides with the place at which 
the maximal packing fraction is achieved by two different structures ((n − 1)- and n-◇). Three competing 
phases fill this master phase diagram, namely (n − 1)-, n-, and n-◇, which refers to structures formed by n − 1 
layers of parallel to the walls squares, n layers of parallel squares, and n layers of tilted rectangles, each one consti-
tuted by n stacked squares. In the case of n = 2, the n-◇ structure is replaced with a zigzag structure, 2-◇̂. We 
have also found the presence of triple points, each one corresponding to a different n, involving the three men-
tioned phases. This point is located at H n.

One may expect the phase diagram found for slit-like confined 2d-squares to be closely related to that cor-
responding to slit-like confined cubes. Although work on this direction has been recently carried out23, the 
study fails at high densities as the close packing structures of hard cubes must be similar to that of hard squares. 
Therefore, there are missing phases in this study.

We can imagine that the close packing structure of our system may be obtained by means of rotational vibra-
tion granular experiments, where the production of sharp shapes is much easier than for mesoscale systems. 
As experimentally found by Zhao et al. and corroborated by Avendaño and Escobedo, tiny roundness at square 
corners can dramatically change the phase diagram of hard squares6,22. In our confined system, roundness would 
work against the parallel structures due to the increasing contribution of the rotational entropy. At certain degree 
of roundness, we expect the rotor crystalline phases to become more stable than the layered ones. In addition, we 
also expect the angle of tilted arrangements to increase with increasing roundness. Under this context, our study 
can be viewed as the limit of small roundness for rounded squares. Finally, certain degree of smoothness of parti-
cles and walls can also lead to strong deviations of the hard system behaviour. In the extreme case where only the 
centres of the squares are confined and there is no orientational restriction, we expect the complete destabilisation 
of the parallel phases in favour of the tilted structures.
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