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Controlling ion transport through nanopores: model-
ing transistor behavior
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We present a modeling study of a nanopore-based transistor computed by a mean-field con-
tinuum theory (Poisson-Nernst-Planck, PNP) and a hybrid method including particle simulation
(Local Equilibrium Monte Carlo, LEMC) that is able to take ionic correlations into account includ-
ing finite size of ions. The model is composed of three regions along the pore axis with the left and
right regions determining the ionic species that is the main charge carrier, and the central region
tuning the concentration of that species and, thus, the current flowing through the nanopore. We
consider a model of small dimensions with the pore radius comparable to the Debye-screening
length (Rpore/λD ≈ 1), which, together with large surface charges provides a mechanism for cre-
ating depletion zones and, thus, controlling ionic current through the device. We report scaling
behavior of the device as a function the Rpore/λD parameter. Qualitative agreement between PNP
and LEMC results indicates that mean-field electrostatic effects determine device behavior to the
first order.

1 Introduction

In this work, we present a modeling study for a nanopore-based
transistor through which ionic current can be controlled via ma-
nipulating the charge pattern on the pore wall. Nanopores are
nano-scale holes in synthetic membranes made of, for example,
silicon, graphene, or plastic1,2. Their natural relatives are called
ion channels that, as parts of a complex physiological machinery,
facilitate controlled ion transport through the cell membrane3.
Similarly, synthetic nanopores are essential building blocks of
nanofluidic circuitries that aim to control the behavior of fluids
in the nanometer scale1. Furthermore, nanopores in proton-
conducting membranes are the key elements for microfuel cells,
which can convert chemical energy directly into electricity1, most
effectively from alternative fuels that has very high energy con-
tent by weight because of the high hydrogen content in their
molecular structures.

The radius of our nanopore model is comparable to the char-
acteristic screening length of the electrolyte leading to behavior
different from micropores such as formation of extended deple-
tion zones and correlations between neighboring regions. Elec-
trostatic and excluded volume correlations between ions are ex-
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pected to be important requiring special computational tech-
niques beyond the mean-field level of the Poisson-Nernst-Planck
(PNP) theory. We use a Monte Carlo (MC) particle simulation
method in comparison with PNP to compute these correlations
and to assess the applicability of PNP in such nano-scale confine-
ments. We show that transistor behavior scales with the pore
radius relative to the screening length, thus making it possible to
design nanofluidic devices of varying length scales by adjusting
the electrolyte concentration applied in the device.

Nanopores with controlled ion flow are related to semiconduc-
tor transistors that modulate the current between the emitter and
collector via tuning the availability of charge carriers in a certain
region of the device. This control can be realized by injecting
charge carriers or by manipulating the electric field, and, thus,
the probability of charge carriers inhabiting the device (e.g., their
concentrations). Control of electric field is commonly done by
setting the electrical potential at a third electrode, the gate.

In nanopores, there are several ways to regulate the elec-
tric field inside the pore. Using embedded electrodes, electri-
cally tunable nanopore-based transistors can be fabricated4–16

similarly to field-effect semiconductor transistors. Control of
cation/anion concentration in nanopores, however, can also be
achieved by manipulating the surface charge pattern on the wall
of the nanopore17–23 just as the density of electrons and holes can
be controlled with doping in semiconductor devices. Moreover, if
the membrane is made of a semiconductor material, the two tech-
niques can be combined9,24–27, namely, ion accumulation can be
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controlled both with doping the semiconductor material confin-
ing the pore and with the electrical potential imposed on it.

The charge of the nanopore can be manipulated with chemical
methods by anchoring functional groups to the pore wall16,28–34.
Surface charge can also be modulated with pH if protona-
tion/deprotonation of the functional groups is pH sensitive35–37.
Sensors can be designed if molecules attached to the pore
wall can bind other molecules selectively so that binding these
molecules modulates the current of the background elecrolyte
through the pore in a characteristic and identifiable way38–47.
In the special case of charged biopolymers (such as DNA), elec-
tric current and/or field changes during the translocation of the
polymer through the nanopore that can make sequencing possi-
ble48,49.

The difference between nanopores and their microfluidic coun-
terparts50 is that the radial dimension of the nanopore (pore ra-
dius, Rpore) is comparable to the Debye screening length of the
electrolyte that is defined as

λD =

(
∑

i

q2
i ci

ε0εkT

)−1/2

, (1)

where qi is the charge and ci is the bulk concentration of ionic
species i, respectively, ε0 is the permittivity of vacuum, ε is the
dielectric constant of the electrolyte, k is Boltzmann’s constant,
and T is the absolute temperature. The Debye-length is loosely
identified with the thickness of the electrical double layer that is
formed by the ions near the charged wall of the nanopore. If the
pore is narrow enough or the double layer is wide enough (at
lower concentration), the diffuse part of the double layer extends
into the pore preventing the formation of a bulk electrolyte in the
along the centerline of the pore51–53.

The double layers are generally depleted of the coions whose
charge has the same sign as the pore’s surface charge. If we ap-
ply large enough surface charge, depletion zones (regions of very
low local concentration) for the coions can be established in cer-
tain sections of the nanopore. Since consecutive sections of the
nanopore along its axis behave as resistors connected in series,
any of these elements with a deep depletion zone (with large re-
sistance) makes the resistance of the whole pore large. Transistor
behavior can be produced if we can adjust the depth of the deple-
tion zone in such a section.

This paper explores transistor behavior for a model nanopore
for different charge patterns, pore geometry, and bulk concen-
tration. We focus on small Rpore/λD ratios by using relatively
small pore radii below 2.5 nm. In such a narrow pore, we ex-
pect that ion size effects are important, therefore, we model ions
as charged hard spheres immersed in a continuum background
dielectric. To compute ionic correlations beyond mean-field,
we use the Local Equilibrium Monte Carlo (LEMC) simulation
method that is an adaptation of the Grand Canonical Monte Carlo
(GCMC) technique to a non-equilibrium situation54–60. We cou-
ple this method to the Nernst-Planck (NP) equation (NP+LEMC
method) to compute flux just as PNP does. PNP is a contin-
uum theory that, sometimes combined with the Navier-Stokes
equation to describe water flux, is commonly used to study

nanopores9,10,12,22,23,25,27,61–77. PNP studies that consider tran-
sistor models similar to ours will be discussed in the Discussions
in relation to our results9,23,25,27,62,67,68,76.

This work belongs to a series of publications57–59 in which we
use a multiscale modeling approach to study nanodevices using
models of different resolutions computed by the appropriate com-
putational method. In a previous publication58, we compared re-
sults for an implicit water (studied by NP+LEMC) and an explicit
water (studied by molecular dynamics) for a bipolar nanopore
model (“−+” charge distribution on the pore wall along the axis).
We showed that the implicit water model properly captures device
behavior (rectification), because it includes those degrees of free-
dom (ions’ interaction with pore, pore charges, and applied field)
that are necessary to reproduce the axial behavior of concentra-
tion profiles and ignores those (explicit water molecules) that de-
termine the radial behavior. As it turned out, radial behavior had
secondary importance in reproducing the device behavior.

In another study59 we showed that even mean-field electrostat-
ics captures those effects that provide the qualitative axial behav-
ior of the bipolar nanopore by comparing PNP to NP+LEMC. That
work justified using PNP in computational studies of nanopores
by calibrating PNP to a particle simulation method (LEMC), at
least, for the case of 1:1 electrolytes. In this work, we continue
this study by creating a transistor model that can be viewed as
two bipolar diodes combined head-to-head (“−+−”). For that
reason, it is often called a bipolar transistor. In this symmetric
three-region model, the two “−” regions are used to define the
main charge carrier ionic species (cations), while the central re-
gion is used to control the concentration of cations by tuning the
surface charge of that region.

2 Model and methods

Model of nanopore

The device studied here is composed of two baths separated by
a membrane. The two sides of the membrane is connected by a
single cylindrical pore that penetrates the membrane. The system
has a rotational symmetry around the axis of the pore, therefore,
the solution is presented in terms of cylindrical coordinates z and r
(the simulation cell in the LEMC simulation is three-dimensional,
however). The solution domain is a cylinder of 30 nm width and
9 nm radius for a pore with Hpore = 10 nm length and Rpore = 1
nm radius. For longer and wider pores, these dimensions are
proportionately larger. Fixed values of the concentrations and
potential are prescribed on the half-cylinders on the left and right
hand side.

The membrane and the pore is confined by hard walls. The
thickness of the membrane is the length of the pore, Hpore. A sym-
metric charge pattern is created on the wall of the nanopore as
shown in Fig. 1. There are regions of widths Hn on the two sides
of the pore carrying σn surface charges, while there is a central
region of width Hx and charge σx. This symmetric arrangement
is usual in the literature9,10,22,78–80. Furthermore, the sym-
metry makes it possible to avoid asymmetric current-voltage
curves and to reduce the number of parameters (e.g., sign of
voltage).
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Fig. 1 Schematics of the cylindrical nanopore that has three regions
of lengths Hn, Hx, and Hn. These regions carry σn, σx, and σn surface
charges, respectively. The radius of the nanopore is Rpore. The simu-
lation cell is larger than this domain of this figure, but also rotationally
symmetric; the three-dimensional model is obtained by rotating the fig-
ure about the z-axis. The electrolyte inside the pore and on the two sides
of the membrane is represented as charged hard sphere ions immersed
in a dielectric continuum of dielectric constant ε = 78.5. The dielectric
constant is the same everywhere including the interior of the membrane.
The PNP model closely mimics this model as described in the main text.

Here, the σn regions set the main charge carrier. In this study,
we typically use negatively charged regions (hence the notation
n), so the main charge carriers are the cations because the σn sur-
face charges produce depletion zones of anions in these regions.

The task of the central region with the adjustable surface
charge σx is to regulate the flow of cations (this is the indepen-
dent variable of the device, hence the notation x). If σx is positive,
it produces a depletion zone for cations, so the pore contains de-
pletion zones for both ionic species. The total current, therefore,
is small. This corresponds to the OFF state of the device. We
define special cases for combinations of σn and σx when these
surface charges are -1, 0, or 1 e/nm2. We denote these charges by
symbols “−”, “0”, and “+”, respectively. So if σn =−1 e/nm2 and
σx = 1 e/nm2, the nanopore is characterized by the string “−+−”.

Reduced model of electrolyte and ion transport
We describe the interactions and transport of ions with a reduced
model, in which the degrees of freedom of solvent molecules
is coarse-grained into response functions. Particularly, water is
modeled as an implicit continuum background that has two kinds
of effect on ions.

Water molecules screen the charges of ions. This “energetic”
effect is taken into account by a dielectric constant, ε, in the de-
nominator of the Coulomb potential acting between the charged
hard spheres with which we model the ions:

ui j(r) =

 ∞ for r < Ri +R j
qiq j

4πε0εr
for r ≥ Ri +R j,

(2)

where Ri is the radius of ionic species i and r is the distance be-
tween the ions.

Water molecules hinder the diffusion of ions with friction. This
“dynamic” effect is taken into account by a diffusion coefficient,
Di(r), in the Nernst-Planck (NP) transport equation for the ionic

flux:
− kT ji(r) = Di(r)ci(r)∇µi(r), (3)

where ji(r) is the particle flux density of ionic species i, ci(r) is the
concentration, and µi(r) is the electrochemical potential profile.

As we showed in our previous study58, there are profound dif-
ferences between the results obtained from MD for the explicit-
water and from NP+LEMC for the implicit-water model regard-
ing radial distributions and electrical potential (screening). We
showed, however, that the implicit-water model properly captures
axial behavior that is the relevant factor for device behavior. Be-
cause of the results of Ref. 58 and due to the fact that implicit-
solvent models (studied by PNP) are generally accepted in the
nanopore literature, we use this model here and do not pursue
explicit-solvent simulations in order to obtain extensive results
for the transistor behavior.

The diffusion coefficient profile, Di(r), is a parameter to be
specified by the user. In the baths, we can use experimental val-
ues. We can adjust its value inside the pore to experiments (as in
the case of the Ryanodine Receptor calcium channel55,81) or to
results of molecular dynamics simulations (as in the case of bipo-
lar nanopores58). It can also be just an arbitrary parameter as
in this study, because its value inside the pore tunes the current
practically linearly and its precise value is inconsequential from
the point of view of understanding the behavior of the system.

To solve the NP equation, we need a closure between the con-
centration profile, ci(r), and the electrochemical potential profile,
µi(r). Such a closure is provided by statistical mechanics. We
apply two kinds of methods in this work, a particle simulation
method (LEMC) and a continuum theory method (PNP). Once
the relation between ci(r) and µi(r) is available, a self-consistent
solution is obtained iteratively in which the conservation of mass,
namely, the continuity equation, ∇ · ji(r) = 0,is satisfied.

Local Equilibrium Monte Carlo

LEMC is an adaptation of the GCMC technique to a non-
equilibrium situation54–56,81. The independent state function of
the LEMC simulation is the chemical potential profile, µi(r), while
the output variable is the concentration profile, ci(r). Chemical
potential is constant in space in equilibrium for which GCMC sim-
ulations were originally designed. Out of equilibrium, however,
µi(r) is a space-dependent quantity.

The transition from global equilibrium to non-equilibrium is
possible by assuming local equilibrium (LE). We divide the solu-
tion domain into small volume elements, Bα , and assume that
the chemical potential is constant in this volume, µα

i . This value
tunes the probability that ions of species i occupy this volume.
LEMC applies ion insertion/deletion steps that are very similar
to those used in global-equilibrium GCMC with the differences
that (1) the electrochemical potential value, µα

i , assigned to
the volume element Bα is used in the acceptance probability,
(2) the volume of the volume element, V α , is used in the ac-
ceptance probability, and (3) the energy change associated with
the insertion/deletion, ∆U , contains all the interactions from the
whole simulation cell, not only from volume element Bα . A self-
consistent solution is found by an iterative process, in which µα

i is
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changed until conservation of mass (∇ · ji = 0) is satisfied. Details
can be found in our earlier publications54–56,81.

The interaction of ions with walls has two components: the
hard sphere–hard wall exclusion (ions cannot overlap with the
walls of pore and membrane) and electrostatic interactions (ions’
interaction with pore charges). In the three-dimensional LEMC
model, the pore charges are placed on the pore wall as point
charges on a grid. The size of a grid surface element is about
0.2×0.2 nm2. The magnitude of point charges was calculated so
that the surface charge density agrees with the preset values σn

or σx. This solution was chosen to mimic the continuous charge
distribution used in the PNP calculations.

The advantage of this technique (coined as NP+LEMC) is that
it correctly computes volume exclusion and electrostatic correla-
tions between ions, so it is beyond the mean-field level of the
PNP theory. Its advantage compared to the Brownian Dynamics
method82–84 is that sampling of ions passing the pore is not nec-
essary: current is computed with the NP equation. Sampling of
passing ions can be poor especially when these events are rare due
to the small current associated with the depletion zones of ions.
The transistors studied here belong to this category because their
behavior is governed by these depletion zones. The NP+LEMC
method has been successfully applied for membranes54,85, ion
channels55–57,81 and nanopores58–60.

Poisson-Nernst-Planck theory
In this work, we apply a two-dimensional version of the steady
state PNP system as described in Matejczyk et al.59. PNP is a
mean field method that does not consider the particles as indi-
vidual entities, but investigates the concentration profiles as the
probability of finding a center of a particle in a certain location.
The concentration depends on the interaction energy of the ion
with the average (mean) electrical potential, Φ(r), produced by
all the charges in the system, including all the ions. The electro-
chemical potential in PNP reads as

µ
PNP
i (r) = µ

0
i + kT lnci(r)+qiΦ(r). (4)

The excess term describing to two- and many-body correlations
between ions and hard-sphere exclusion, therefore, is absent.
These correlations are sampled naturally in LEMC.

The concentration profiles are related to the mean electrical
potential through Poisson’s equation, namely

∇
2
Φ(r) =− 1

ε0ε
∑

i
qici(r). (5)

The above equations are valid if we measure concentration in m−3

(number density). The results, however, will be shown in unit
mol/dm3 in order to make it easier to relate to usual concentra-
tion units.

The solution domain is different in the case of PNP and
NP+LEMC. In NP+LEMC, the interior of the membrane is part
of the simulation cell, where electric field lines can protrude (it
is an empty continuum with dielectric constant ε). In PNP, this
region is excluded from the solution domain. On the nanopore’s
wall, we prescribe Neumann boundary condition that produces

the desired surface charge: ∂Φ(r)/∂nW = σpore(z), where σpore(z)
is the prescribed surface charge at coordinate z (σn or σx) and nW

is the normal vector on the surface of the pore wall. The bound-
ary condition ji ·n = 0 for the impenetrable membrane surface is
also set.

On the membrane’s surfaces that are perpendicular to the z-
axis at z = ±Hpore/2 we impose the boundary conditions ji(r) ·
nM = 0 and ∂Φ(r)/∂nM = ∂Φapp(r)/∂nM where nM is the outer
normal and Φapp is the applied field used in the LEMC model.
This solution mimics the LEMC case where there is an electric
field across the membrane.

In the case of the two half-cylinders confining the solution do-
main, the same boundary conditions are prescribed as in the case
of the NP+LEMC model. Bulk concentrations cL

i and cR
i are set

on the left and right hand side cylinders. Dirichlet boundary con-
ditions for the electrical potential are set: ΦL and ΦR. In practice,
ΦL = 0 (left side is grounded) and ΦR =U (U is the voltage).

To solve the two-dimensional PNP system we use the
Scharfetter–Gummel scheme which is based on a transformed
formulation of the system in entropy variables86. We use a two-
dimensional finite element method for the actual implementation
and a triangular mesh containing 100− 200 thousand elements.
The mesh is non-uniform in order to obtain high accuracy, espe-
cially close to the pore entrances and charged pore walls.

3 Results
This paper studies the quantitative effect of changing the charge
pattern (the values of σn, σx, Hn, and Hx) on the nanopore’s wall.
We introduce special cases that we denote by strings “−+−”,
“−0−”, “− − −” and so on as introduced earlier. Some of these
patterns are defined as ON states of the transistor (“−0−” and
“−−−”), while “−+−” is defined as the OFF state. This way, we
can define a switch whose device function is the ratio of currents
in the ON and OFF states, ION/IOFF. The larger this number is,
the better the device works as a switch.

In this work, we use a 1:1 electrolyte with the same ionic dia-
maters for the cation and the anion (0.3 nm). This choice makes
a more straightforward comparison with PNP that cannot distin-
guish between ions of different sizes possible. The dielectric con-
stant is ε = 78.5, the temperature is T = 298.15 K. The bulk dif-
fusion constant of both ion species is 1.334 ·10−9 m2/s, while the
value inside the pore is ten times smaller59,60, a choice that does
not qualitatively affect our conclusions.

In the case of 0.1 M concentration, this corresponds to about
800 ions in the LEMC simulations. An NP+LEMC calculation con-
tained 80 iterations with LEMC simulations sampling 30 million
configurations in an iteration. Such a simulation lasted about 3
days. This resulted in small statistical uncertainties for the cur-
rents; the error bars are smaller than the symbols with which the
current data are plotted in the figures. The PNP calculations, on
the other hand, took only a few minutes.

In this work, we will show cross-averaged axial concentration
profiles computed as

ci(z) =
1

Aeff

∫ Reff

0
ci(z,r)2πr dr, (6)
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where Aeff = R2
effπ is the effective cross section of the pore that is

accessible to the centers of the ions. For the hard sphere ions in
LEMC Reff = Rpore−Ri, while for the point ions in PNP Reff = Rpore.
This definition makes profiles more comparable between LEMC
and PNP.

Effect of charge pattern: changing surface charges

As a first step, we vary the charge densities σx and σn and examine
the resulting effect on the ionic current through the nanopore for
a fixed geometry (Hn = 3.4 nm and Hx = 3.2 nm). This current is
driven by voltage 200 mV; the concentration of the electrolyte is
c = 0.1 M on both sides of the membrane. These parameters are
valid for all figures unless otherwise stated.

Figure 2A shows results for a fixed σn =−1 e/nm2 and varying
σx. The negative value of σn makes the nanopore cation-selective
due to the large surface charge and small pore radius. Therefore,
the main charge carrier is the cation. The current of the anion
remains below 0.5 pA. The anions have depletion zones in the two
n regions as seen in Fig. 2B. Whether the anions have depletion
zones in the central x region depends on the value of σx, but this
is irrelevant, because they already have depletion zones in the n
regions.

In this model, the value of σx tunes the depletion zones of the
cations, and, thus, the cation current. In the case of σx = −1
e/nm2 (“−−−”), cations do not have a depletion zone in the
middle, so they carry electrical current. This is an ON state of
the device (top panel of Fig. 2B). Increasing σx towards positive
values, the depletion zone of cations gradually appears (see Fig.
2B) and the cation current gradually decreases (see Fig. 2A).

Effect of charge pattern: changing region widths

Next, we fix the charge densities and change the geometry,
namely, the widths Hx and Hn for a fixed pore radius. Particularly,
we examined the effect of changing the relative widths of the x
and n regions while keeping the total width Hpore = 2Hn+Hx = 10
nm fixed. In the ON state (“− − −”), there is no difference
between these regions, so we need to examine the OFF state
(“−+−”) only. We plot the currents in the OFF state as functions
of Hx in Fig. 3.

The top panel showing the total current exhibits a minimum
that is better observed in the inset that shows ION/IOFF. Because
ION does not depend on Hx, the ratio is proportional to the recip-
rocal of IOFF. The minimum in IOFF, therefore, corresponds to a
maximum in the ratio characterizing the quality of the device as
a switch.

The explanation of this extremum can be depicted from the bot-
tom panel of Fig. 3. For small Hx values, the pore is largely nega-
tively charged, so the main charge carrier is the cation. For large
Hx values, the situation is reversed: the main charge carrier is the
anion. The minimum of the current occurs at a Hx value, where
both regions have sufficient size to produce sufficiently deep de-
pletion zones for both ionic species: for cations in the n regions,
and for anions in the x region. This value is somewhere around
Hx = 5 nm.

Fig. 2 (A) Current as a function of σx while σn =−1 e/nm2 is kept fixed.
Selected charge patterns are indicated with “−−−” (ON), “−0−”, and
“−+−” (OFF). Increasing σx makes the x region more positive, so the
I(σx) function is monotonically decreasing. (B) Concentration profiles
for these selected charge patterns. Widths of the regions are Hx = 3.2
and Hn = 3.4 nm, electrolyte concentration is c = 0.1 M, voltage is 200
mV. Symbols and lines denote NP+LEMC and PNP results, respectively,
here and in all the remaining figures unless otherwise stated.

Effect of pore length

Figure 4 shows the result for the case, where the Hn/Hx ratio
is kept fixed (at the value of 1.0625) and the total pore length,
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Fig. 3 Currents in the OFF state (“−+−”) through nanopores with vary-
ing region lengths. The total length, Hpore = 2Hn +Hx = 10 nm, is kept
fixed. The results are shown as functions of Hx. Top panel shows the to-
tal current, while the bottom panel shows the cation and anion currents.
The inset of the top panel shows the ION/IOFF ratio, where the charge
pattern of the ON state is “−−−” (its current is independent of Hx).

Hpore = 2Hn+Hx is changed. Figure 4A shows the relative currents
for the “− − −”, “−0−” (ON), and “−+−” (OFF) states. We
plot relative currents (normalized by the values at Hpore = 10 nm)
because we are rather interested in how fast the currents decrease
as functions of Hpore in the different cases (ON and OFF).

Figure 4A shows that the currents decrease faster in the OFF
state than in the ON states. This results in an increasing ION/IOFF

ratio as shown in the inset of Fig. 4A. The explanation is the deep-
ening depletion zones with increasing Hpore (Fig. 4B).

The inset of Fig. 4A also shows that the ON/OFF ratio exhibits
a saturation behavior so we can extrapolate to large Hpore values
that are more common in experiments, but harder to attain with
particle simulations such as LEMC. Summarized, increasing pore
length promotes the formation of depletion zones due to weaken-
ing electrostatic correlations between neighboring zones.

Effect of pore radius and concentration
We discuss the effect of nanopore radius and concentration to-
gether, because concentration determines λD (see Eq. 1), so Rpore

and c influence the Rpore/λD ratio that distinguishes nanopores
from micropores as discussed in the Introduction. In this work,
we study the effect of changing Rpore/λD in three ways. First, we
keep λD constant by fixing the concentration at c= 0.1 M and vary
Rpore, then we do the reverse. Finally, we change both Rpore and c
while keeping Rpore/λD fixed.

Figure 5A shows the normalized currents as functions of Rpore

for the OFF (“−+−”) and the two ON (“−0−” and “− − −”)
cases. Here, we normalize with the currents at Rpore = 1 nm.

Fig. 4 (A) Total currents as functions of pore length, Hpore, for various
charge patterns with Hn/Hx = 1.0625 kept fixed. The currents are normal-
ized with the values at Hpore = 10 nm. The inset shows the ION/IOFF ratio
for the two cases where the ON states are defined either with “−0−” or
“−−−”. (B) Concentration profiles of the anions (the charge carriers) for
Hpore = 10 nm (black) and Hpore = 25 nm (red) for charge patterns “−+−”
(solid) and “−0−” (dashed) as obtained from NP+LEMC simulations.

The relative current in the OFF state decreases faster with de-
creasing Rpore than in the ON state, which, in turn, results in in-
creasing ION/IOFF ratios with decreasing Rpore as shown by the
inset. Figure 5B shows the ratios of the OFF- and ON-state
cross-section-averaged axial concentration profiles of the cations,
cOFF(z)/cON(z), for different pore radii. As Rpore decreases, the
depletion zones of the OFF the state in the middle get deeper rel-
ative to the ON state, so the ION/IOFF ratio increases as the inset
of Fig. 5A shows. Figure 5C shows the radial concentration pro-
files of the cations, c+(r), at z ≈ 1 nm that is the deepest point
of the depletion zone. The figure shows that the narrower pores
are more efficient in excluding the cations in the central depletion
zones; concentrations never reach the bulk value (0.1 M).

Next, we study the effect of changing Rpore/λD by keeping Rpore

fixed at 1 nm and changing λD through varying concentration
from c = 0.05 M to c = 1 M (it corresponds to changing the Debye
length from λD = 1.36 nm to λD = 0.304 nm). Figure 6A shows the
currents for the “−−−” (ON) and “−+−” (OFF) states. Both cur-
rents decrease with decreasing concentration, but the OFF-state
current decreases faster than the ON-state current. This results
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Fig. 5 (A) Total normalized currents as functions of pore radius, Rpore,
for various charge patterns for Hn/Hx = 1.0625 and Hpore = 10 nm. The
currents are normalized with the values at Rpore = 1 nm. The inset shows
the ION/IOFF ratio for the two cases where the ON states are defined
either with “−0−” or “− − −”. (B) Ratio of cation concentration profiles
in the OFF (“− + −”) and ON (“− − −”) states for different pore radii. (C)
Radial concentration profiles of cations for z ≈ 1 nm (at the deepest point
of the depletion zone).

in an increasing ION/IOFF ratio with decreasing c (see inset). The
explanation again follows from the behavior of depletion zones.

Figure 6B shows the cation concentration profiles in the OFF
state divided by the profiles in the ON state. The behavior of these
curves for different bulk concentration reveals that the cations
have deeper depletion zones compared to the ON state for smaller
bulk concentrations. The ION/IOFF ratio increases with decreasing
c due to deepening depletion zones in the OFF state relative to the
ON state characterized by the cOFF(z)/cON(z) function.

Fig. 6 (A) Concentration dependence of the current in the ON (“− − −”)
and OFF (“−+−”) states. The inset shows the ION/IOFF ratio. (B) Ratio of
cation concentration profiles in the OFF and ON states for different bulk
concentrations.

Finally, we performed simulations for two fixed values of
Rpore/λD (1.56 and 2.6) by using various combinations of Rpore

and c (see caption of Fig. 7). These ways of studying Rpore/λD

dependence are summarized in Fig. 7A by plotting the ION/IOFF

ratio against the Rpore/λD ratio. The fact that the data are located
along a single curve shows a scaling behavior: we can either use
a wide pore with small concentration (if fabrication of a narrow
pore is the limiting factor), or a narrow pore with large concen-
tration (if using small concentrations is the limiting factor due,
for example, to detecting small currents).

Figure 7B shows the cOFF(z)/cON(z) cation profiles for those
combinations of Rpore and λD (changed via changing c) that pro-
vide the 1.56 and 2.6 values for the ratio. The coincidence of
the curves shows that scaling is valid not only for current ratios,
but also for concentration ratios. Such scaling behavior is always
advantageous in designing devices for a given response function.

4 Discussion
Controlling with pH
Manipulating charge pattern on the nanopore surface is a non-
trivial chemical treatment for which, generally, the nanopore
needs to be removed from the measuring cell. There is, how-
ever, a way of altering charge pattern during the measurement
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Fig. 7 (A) The ION/IOFF ratio as a function of the Rpore/λD variable
for the cases, when we change Rpore at fixed λD (c = 0.1 M, red), and
when we change λD by changing concentration for a fixed Rpore = 1 nm
(black). The numbers near symbols indicate pore radii (red) or concen-
tration (black). (B) Ratio of cation concentration profiles in the OFF
and ON states for combinations of Rpore and λD for fixed Rpore/λD =

1.56 (solid lines and open symbols) and 2.6 (dashed lines and closed
symbols) ratios. From bottom to top, the curves correspond to the
following (Rpore/nm; c/M) pairs: (1.924; 0.0563) (blue), (1.5; 0.1) (red),
(1; 0.225) (black) for Rpore/λD = 1.56 and (3.5; 0.0511) (blue), (2.5; 0.1)
(red), (1; 0.626) (black) for Rpore/λD = 2.6. The ION/IOFF values for these
points are indicated by blue triangles in Fig. 7A.

by changing the pH of the bath electrolytes in the measuring cell.
If there are different chemical groups on the pore surface in the
x and n regions that respond differently to pH (protonation vs.
deprotonation), their charge can be changed with varying pH.

For example, if the surfaces of the n and x regions are function-
alized by carboxyl and amino groups, respectively, they become
negative and positive, respectively, at neutral pH (“−+−”, OFF
state). Changing the pH to acidic, the carboxly groups in the n
regions get protonated and become neutral. The amino groups of
the x region, in the meantime, remain positive, so this results in a
“0 + 0” (ON) state. Changing the pH to basic, the amino groups in
the x region get deprotonated and become neutral. The carboxyl
groups of the n regions, in the meantime, remain negative, so this
results in a “−0−” (also ON) state.

The results are shown in Fig. 8. Currents are shown as func-
tions of a quantity depicted as “total pore charge”. This is prac-
tically the sum of the magnitudes (with sign) of surface charges

Fig. 8 Demonstration of the effect of pH by plotting the current against
the “total pore charge” characterizing the asymmetry of the pore’s charge
distribution. Assuming that the n and x regions have about equal lengths,
this dimensionless number is obtained by ∑

3
k=1 σk/σ0, where σk is the

surface charge of region k and σ0 = 1 e/nm2. OFF states of the transistor
are present in cases when this number is close to zero, namely, when
depletion zones for both ionic species are present (“−+−”). For the
example given in the main text (carboxyl and amino groups), this charge
pattern is present at neutral pH. ON states are present when depletion
zones for one of the ionic species are absent. The charge patterns “0 + 0”
or “−0−” can be produced by tuning the pH towards acidic or basic,
respectively.

in the three regions. This figure is closely related to Fig. 3, where
this “total pore charge” was controlled with Hx. There, the mini-
mum of the curve was at Hx ≈ 5 nm, that corresponds to zero “to-
tal pore charge”. In that case, there are both positive and negative
regions in a balanced ratio so that depletion zones of both cations
and anions form in an optimal way so that current is minimized.
Here, the OFF state (“+−+”) appear at neutral pH, while the
pore can be switched ON with changing pH in any direction10.

Controlling with charge vs. potential
Controlling surface charge is quite different from controlling the
electrical potential from a practical point of view, but from a mod-
eling point of view, they are similar because charge is always re-
lated to electrical potential through Poisson’s equation (Eq. 5).
To show this, we plot the electrical potential profile on the sur-
face of the nanopore, r = Rpore, for different values of σx in Fig.
9A. The potential profile changes in zone x, because it is not an
imposed quantity. The magnitude of the potential characterized
by its value in the center, z = 0, depends unambiguously on σx.
As Fig. 9B shows, there is a monotonic relation between charge,
σx, and potential, Φ(0,Rpore). Therefore, to a first approximation,
controlling the surface charge can mimic controlling the electrical
potential, so the results of this study can be informative regarding
the case of field effect nanofluidic transistors too.

Using an electrode to control the electrical potential near
the nanopore leads to the presence of dielectric interfaces be-
tween materials of different polarization properties (electrolyte
vs. metal, for example). Polarization charges are induced at these
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Fig. 9 (A) The value of the mean electrical potential on the surface of
the pore wall (r = Rpore) for three selected charge patterns as obtained
from NP+LEMC calculations. (B) The value of this potential in the center
of the pore (z = 0, r = Rpore shown with larger symbols in panel A) as a
function of σx. The figure demonstrates the monotonic relation between
surface charge density, σx, and surface potential, Φ(z = 0,r = Rpore).

dielectric boundaries that are different in every configuration of
the ions, therefore, their presence influences the outcome of the
calculations through influencing the probabilities of the individ-
ual configurations. Calculation of induced charges or the electri-
cal potential produced by them is a time consuming process com-
pared to the homogeneous dielectric model and precalculated ap-
plied potential used here, because the ion-ion interactions are not
additive any more87–89. We refer studying this important case to
future studies.

It is common to include electrodes (through imposing Dirich-
let boundary conditions) and dielectric boundaries in mean field
calculations (such as PNP). These calculations, however, include
the effect of polarization charges only on the average electrical
potential. Electrostatic correlations resulting from the effect of
induced charges on individual ionic configurations is ignored. If
the electrodes are far from the nanopore, this approximation can
be sufficient, however.

Comparison of PNP and NP+LEMC
One of the motivations of this work was to produce results for
the model nanopore transistor using both a mean-field continuum

theory (PNP) and a hybrid method applying particle simulations
(NP+LEMC) that can compute ion size effects and electrostatic
correlations beyond the mean-field treatment. In the light of the
results we can conclude that PNP is able to capture the qualitative
behavior of the device as shown by Figs. 2–8.

This indicates that the behavior of ionic profiles (as the first-
order determinant of current) mainly depends on the interaction
of ions with pore charges and applied field, while interaction of
ions beyond interaction with the mean electric field is secondary.
Interaction with pore charges tunes the depth of depletion zones
and directly modulates the electric current. The applied poten-
tial makes the profiles asymmetric along the axial dimension and
produces the driving force of the steady-state current.

The approximate nature of the PNP theory appears in quantita-
tive disagreement between PNP and NP+LEMC results. This can
be seen both in the current data (Figs. 2A, 3, 4A, 5A, 6A, 7A, and
8) and in the concentration profiles (Figs. 2B, 5B, 6B, and 7B).
Sources of this quantitative disagreement are the following. (1)
Ions modeled as point charges in PNP can approach the charged
wall infinitely close, so their interaction with the surface charge is
overestimated near the wall. PNP, therefore, overestimates con-
centration profiles at the peaks (Figs. 2B and 5B). (2) Lack of hard
sphere exclusion in PNP also tends to cause overestimation com-
pared to NP+LEMC. (3) Lack of electrostatic correlations in PNP,
on the other hand, tends to decrease concentration profiles in the
depletion zones compared to NP+LEMC, where ions that have
peaks (counterions) tend to draw the ions of opposite charges
(coions) into the depletion zones through pair-correlations.

Qualitative agreement, however, indicates that PNP is a proper
tool to study the behavior of this system and those even larger
in dimensions as demonstrated by several computational stud-
ies10,21,23,62,67,68,74,75,90,91. Basically, PNP works well for these
systems (also in the case of bipolar diodes), becase the behavior
of these devices is primarily driven by the depletion zones caused
by mean-field effects (interaction with pore charges and applied
field).

Qualitative disagreement is expected in cases where ionic cor-
relations cause asymmetic behavior such as electrolytes contain-
ing multivalent ions (e.g., 2:1 and 3:1 electrolytes). Furthermore,
PNP cannot compute cases where the size of ions and specific in-
teractions with binding sites are important such as in the case of
sensors60. In general, particle simulations are better suited for
modeling sensors based on specific interactions and geometries.

Comparison of PNP studies from literature

The behavior of the device studied here depends on all the pa-
rameters used in the model. One basic reason of the fact that
our model shows reasonable switching behavior and considerable
current response to changing σx for such short pores is that we
use relatively large surface charge. Its value, ±1e/nm2, however,
is typical in experiments for PET nanopores. The other reason
is that we use small Rpore/λD values. If this ratio is small (nar-
row pore or low concentration), the double layer formed at the
pore wall does not reach a bulk behavior in the pore center and
depletion zones of coions can form in the respective regions.
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A similar parameter domain was considered by Gracheva et
al.9,25,27 who considered a nanopore through a semiconductor
membrane and by Park et al.76 who considered a model called
double-well nanofluidic channel. The qualitative behavior re-
ported by these authors is similar to the model considered by us.
Extended depletion zones created by gate voltages of appropriate
sign were found.

Other studies considered wider and longer pores at lower con-
centrations keeping the Rpore/λD ratio close to 123,62,67,68. Sur-
face charge was quite low in these studies that did not make it
possible to exclude the coions from the pore. Depletion zones,
therefore, were not formed in the entire positively or negatively
charged regions of the nanopore. Whether the scaling behavior
found in our model holds in this parameter regime is unclear. This
question will be addressed in later studies.

Instead, a different mechanism worked that produced the de-
pletion zones at the junctions of the differently charged regions.
This behavior can be observed in Fig. 4B (solid red curve). The
concentration of cation is made asymmetric by the applied field.
The profile decreases in the central x region from z ∼ −4 nm to
z ∼ 4 nm reaching quite a low value at z ∼ 4 nm at the junction of
the x and the right n regions. This junctional depletion zone can
be made deeper by making the pore longer or the voltage larger.
Fig. 4(c) of Daiguji et al.62, for example, clearly shows this behav-
ior for 0.015 e/nm2 surface charge, 5 mM concentration, 2 µm x
region, and 5 V voltage.

5 Summary
To summarize, we identified two different mechanisms for creat-
ing depletion zones depending on the values of nanopore param-
eters, especially, the magnitudes of the surface charges (σ0). If
σ0 is large (our case), depletion zones are formed in the entire
n and x regions (not only at the junctions) if the Rpore/λD ratio
is low enough (overlapping double layers and excluded coions).
In this case, interaction with the surface charges (σx and σn) is
the primary effect that creates the depletion zones in the radial
dimension (see Fig. 5C). This mechanism works even if the pore
is short and voltage is low.

If surface charge is low enough and/or Rpore/λD is large
enough, bulk electrolytes are formed at the centerline of the pore
so coions are not excluded. Depletion zones for both ions at one
of the junctions are created by the applied field along the ax-
ial dimension. The two mechanisms can combine12. The second
mechanism, for example, can enhance the effect of the first mech-
anism as pore length increases as seen in Fig. 4.

We identified a scaling behavior of device function (ION/IOFF)
in relation to the Rpore/λD ratio. This scaling works for both
PNP and NP+LEMC. The two methods provide qualitatively sim-
ilar results indicating that device behavior is governed by mean-
field effects (interaction with mean potential produced by surface
charges, applied field, and all the ions).
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