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Abstract

In recent years, self-driving cars are being introduced to streets, which generated
significant attention and discussion. The widespread adoption of autonomous
vehicles (AV) brings changes in several fields. One of the most exciting changes
is presented by the effect that driverless cars bring to the well-known traditional
traffic model, the Macroscopic Fundamental Diagram (MFD). This is a key issue
as MFD is a basic model for strategic traffic planning and also for real-time traffic
control. In this paper therefore the impacts of autonomous vehicles that are
relevant to the urban MFD are investigated through traffic simulation. The paper
seeks the answer to a basic question, i.e. how the different percentage of
autonomous vehicles among traditional vehicles and the autonomous driving
levels influence the urban MFD. A detailed simulation study was carried with
SUMO (microscopic traffic simulation software) in an artificial grid network.

Keywords:  autonomous vehicles, percentage, autonomous driving levels,
fundamental diagram, urban traffic, SUMO

1 Introduction

In our days and in the near future connected and automated vehicles transform
our traditional transportation systems (SAE International, 2014; Szigeti et al.,
2017). Therefore, the impact of autonomous transport must be properly
investigated as it directly influences the traffic dynamics, the applicable control, as
well as the methodologies for traffic network analysis and planning [1, 2].

An autonomous vehicle (AV) by definition is a vehicle that is capable of sensing
its environment and navigating without human input. Based on the amount of
driver intervention and attentiveness required, the autonomous driving is
classified into six different levels by the Society of Automotive Engineers (SAE)
international. The SAE international delivered a harmonised classification system
for Automated Driving Systems (ADS), specifically SAE J3016 Taxonomy and
Definitions for Terms Related to On-Road Motor Vehicle Automated Driving
Systems (see Table 1) [3].



Experience with the availability and deployment of previous vehicle technologies
can be used to forecast the AVs implementation. The penetration of driverless
cars depends on both availability and user acceptance of the technology. Based
on some widely accepted basic principles [4], six scenarios with different
penetration in each autonomous driving level are studied in this paper.

Table 1. The levels of automation defined in SAE J3016 [3]

Level 0 — The full-time performance by the human driver of all aspects of the dynamic
No driving task, even when enhanced by warning or intervention systems
automation
Level 1 - The driving mode-specific execution by a driver assistance system of either
Driver steering or acceleration/deceleration using information about the driving
Assistance environment and with the expectation that the human driver performs all

remaining aspects of the dynamic driving task.

Level 2 — | The driving mode-specific execution by one or more driver assistance systems
Partial of both steering and acceleration/deceleration using information about the
Automation | driving environment and with the expectation that the human driver performs
all remaining aspects of the dynamic driving task.

Level 3 - | The driving mode-specific performance by an automated driving system of all
Conditional |aspects of the dynamic driving task with the expectation that the human drivers
Automation respond appropriately to a request to intervene.

Level 4 — | The driving mode-specific performance by an automated driving system of all

High aspects of the dynamic driving task, even if a human driver does not respond
Automation appropriately to a request to intervene.
Level 5 — | The full-time performance by an automated driving system of all aspects of the
Full dynamic driving task under all roadway and environmental conditions that can
Automation be managed by a human driver.

The Macroscopic Fundamental Diagram (MFD) of traffic flow is practically a set of
diagrams that gives relationships among the traffic flow Q (vehicles/h), the traffic
density p (vehicles/km) and the space mean speed V (km/h) [5]. The MFD can
be used to define the capacity and thus the service level of a road system.
Moreover, the MFD describes traffic dynamics when applying inflow regulation or
speed limits. Fundamental diagram consists of three different (two dimensional)
graphs: flow-density, speed-flow, and speed-density. All the graphs are related by
the fundamental equation:

Q) =p-V(p) 1)

The fundamental diagram can be derived by plotting of field data points and using
appropriate curve fitting to the scatter plots. MFD can also be applied for urban or
metropolitan areas as proposed by [6]. The concept of urban MFD has been
widely investigated during the past decades, e.g. [7-10].

The aim of this work is to study the potential impact of autonomous vehicles on
the classical urban MFD.




2 Method

In this research, there are two main parameters to investigate in relationship with
the fundamental diagram, i.e. the impact of penetration (percentage of AVs in the
whole traffic flow) and autonomous driving level.

The work has been carried out with SUMO microscopic traffic simulation software
by using different car types and percentages. The simulations were run in a grid
network considering each group of these new parameters. The traffic volume of
the links as well as the throughput of the whole network were measured in the
simulator virtually. All measures of the MFD can be obtained from SUMO’s
edgeData which represents macroscopic link-level measurement practically. The
results were evaluated in order to understand the evolution of the different
scenarios and reveal the relationships between network capacity, percentage of
autonomous car as well as autonomous driving level.

Regarding the MFD, network-level and link-level fundamental diagram can be
distinguished, both by using Eq. (1). The first one models the throughput of the
traffic network per hour:

Qv (pa) (2)

where Qy is the number of vehicles that pass the network. p, is the average
density of the network, and it simply equals to the known total number of vehicles
in the network divided by the total link kilometres of the road network, i.e.

T oili
== 3
pa 2?21 li ( )

where [; is the length of link i, n is the number of links [5,10].

The second approach interprets the MFD of one single road link of the network,
ie.

Qi(py) = pi* Vi(py) (4)

where Q; is the flow, p; means the density, V;(p;) defines the mean velocity, and
Q; is the flow on link i.

In our work, fundamental diagrams were modelled as polynomials. Thus, the
points of the simulation results were approximated with cubic polynomial curve
fitting (the fitting curve was constrained to cross the original):

Qlp)=a-p*+b-p*+c-p (5)
where, a, b, ¢ are polynomial coefficients.

3 Simulation Study and Evaluation

In order to analyse the effect of automated and autonomous technology a
detailed simulation study was carried with SUMO microscopic traffic simulator.



3.1 Network setup and scenarios

As shown in Fig. 1, a grid traffic network was constructed, designed to represent
common situation on the urban road network. The applied network was an 8x8
grid, i.e. 64 intersections in the network. The length between adjacent node was
500 meters. The network edges were bidirectional road links with single lanes. A
traditional “time gap based” traffic signal method was applied (built-in tool of
SUMO [11]). This control scheme switches to the next phase after detecting a
sufficient time gap between successive vehicles in order to achieve a better
distribution of green-time among phases dynamically [12].

Figure 1. Grid test traffic network

As the aim of this work is to investigate potential impacts of driverless cars on
road network performance, a straightforward approach to autonomous vehicles
fleet penetration has been taken. This is based upon some basic principles that
are widely accepted:

« at low market penetration, technical capability is limited (for example, to driver
assistance which mean low autonomous driving level);

* as market penetration increases, consumer confidence also augments and
better use of connected and automated technology prevail [4].

Fig. 2 shows an example projection for the increasing technical capability of AVs
overtime. Technological change is usually marked by early adopters prior to full
saturation. The scenarios for AV deployment should reflect this.

Technological
capability

Availability of technology
User acceptance oftechnology

Time

Figure 2. Future states of availability and user acceptance [4]



Measurements in one link and in the whole network were realized. The modelled
scenarios are summarised in Table 2.

Table 2. The scenarios used in this simulation

Scenario Scenarios Ratio of AV penetration composition

nr traditional

: cars Level 1 | Level 2 | Level 3 | Level 4 | Level 5
1 Base 100% 0% 0% 0% 0% 0%
2 25% penetration 75% 15% 5% 5% 0% 0%
3 50% penetration 50% 25% 10% 10% 5% 0%
4 75% penetration 25% 25% 20% 15% 10% 5%
5 100% penetration 0% 15% 20% 20% 25% 20%
6 Upper bound 0% 0% 0% 0% 0% 100%

3.2 Autonomous vehicle modelling methodology

Default SUMO parameters have been modified in order to model a plausible
future for AVs. In this paper, the default car following model was applied (Krauss
Model). The parameter selection is related to longitudinal movement,
acceleration, deceleration and gap acceptance. These behaviours are formalised
as parameters in the car-following model of SUMO. The implemented model
follows the idea as that let vehicles drive as fast as possibly while maintaining
perfect safety (always being able to avoid a collision if the leader starts braking
within leader and follower maximum acceleration bounds). The following list
shows the editable parameters of the Krauss Model:

« Mingap: the offset to the leading vehicle when standing in a jam (in m).
« Accel: The acceleration ability of vehicles of this type (in m/s?).
« Decel: The deceleration ability of vehicles of this type (in m/s).

« Emergency Decel: The maximum deceleration ability of vehicles of this type in
case of emergency (in m/s?).

« Sigma: The driver imperfection (between 0 and 1).
e Tau: The driver’s desired (minimum) time headway (reaction time) (in s).

For level 0 the default values were taken for all parameters. But the emergency
deceleration was set to 8 m/s®. This value is based on the study of [13]. For other
autonomous driving levels, the deceleration and the emergency deceleration
remained the same, considering the safety.

For the level 2 and level 5, the mingap, acceleration, time headways were taken
from [4]. For level 1, the values of these items were set as the average value of
level 0 and level 2. For the level 3 and level 4, the values of these items were
changed linearly between level 2 and level 5. The driver imperfection for level 5
and level 4 was set to 0, because these levels do not need human driver's




intervention. It was assumed to be 0.4, 0.3 and 0.2 for level 1, level 2 and level 3,
respectively. The parameters for all levels are tabulated to Table 3.

Table 3. Variables in SUMO car-following model

Capacity Mingap Accel Decal Emergency Sigma (driver Tau

level (m) (m/s2) (m/s2) Decel (m/s2) imperfection) (s)
Level 0 25 2.6 4.5 8 0.5 1.0
Level 1 2 3.05 4.5 8 0.4 0.95
Level 2 15 3.5 4.5 8 0.3 0.9
Level 3 1.25 3.6 4.5 8 0.2 0.8
Level 4 0.75 3.7 4.5 8 0 0.7
Level 5 0.5 3.8 4.5 8 0 0.6

3.3 Simulation results

The main simulation results are provided by Figs 3-4. and Table 4. From the
results for the whole network, one can see that from scenario 1 to scenario 6 the
capacity of the whole network is increasing and the critical density varies.
Scenario 6 has the largest critical density straightforwardly. The same tendency
can be found in whole network for critical density and capacity that going up in the
beginning, then decreasing, roaring up at the end.

From the results for one single link, one can see that the capacities for scenario
1, 2, 3 and 4 are similar and relatively smaller, and the capacities for scenario 5
and 6 are bigger and have an increasing trend. The same change can be found
on the critical densities.

Fig. 4. shows the coefficients of the fitting curves which are fitted with quadratic
polynomials. From the changes of the coefficients, one can see, the goodness of
fitting is relatively high which means the total variation of the coefficients can be
explained by the quadratic polynomials well.
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Figure 3. Simulation results for the whole network and a single link



Table 4. Network overall fitting result

Q=a-p>+b-p*+c-p

Scenario Network Single link

X X

a b c Peri § Qma a b ¢ | Peri | Cma
Scenario 1/1.7978| -239.19 | 5502.3 14 | 35112 | 3.63e-04 | -0.3372 |38.5766| 62 1182
Scenario 2|4.2538| -318.17 | 6253.9 13 | 36906 |4.71e-04| -0.3331 |[37.1062| 67 1132
Scenario 33.5108 | -299.51 | 6392.7 14 | 40434 | 7.33e-04| -0.3696 |(38.1478| 64 1120
Scenario 4/6.2310| -421.07 | 7640.7 13 | 41887 | 7.39e-04 | -0.3561 |[37.2340| 63 1118
Scenario 5/3.0208| -261.08 | 5813.0 15 | 38648 | 7.66e-04 | -0.3759 |[41.5738| 69 1331
Scenario 6/0.3600| -153.71 | 5097.1 18 | 44059 | 2.20e-04 | -0.2543 |(38.9403| 92 1601
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Figure 4. The variations of the fitted polynomial coefficients (network level)
together with the regression curves

4 Conclusion

The effect of automated and autonomous vehicles to the urban MFD have been
analysed through microscopic traffic simulation. A thorough simulation study was
fulfilled in a grid traffic network. The results justified some regularity in the change
of the urban MFD (network and link level as well) along with the autonomous
technology evolution. The results are also important from the point of view of
practical traffic engineering as the fundamental diagram is a common modelling



approach when planning or analysing a road network. Therefore, one should take
these changes into consideration in the future.

5 Acknowledgement

The research work was supported by the Hungarian Government and co-financed
by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00001: Talent
Management in Autonomous Vehicle Control Technologies) and by the Janos
Bolyai Research Scholarship of the Hungarian Academy of Sciences.

References

(1

(2

(3

4

(5]

6]

[

8l

9

(10]

(11]

(12]

(13]

L. Kisgyorgy, G. Vasvari: Analysis and observation of road network topology, 19th
International Conference of Hong Kong Society for Transportation Studies, Hong
Kong, December 2014,

Sz. Szigeti, Cs. Csiszar, D. Foldes: Information Management of Demand-Responsive
Mobility Service Based on Autonomous Vehicles, Procedia ENGINEERING 187: pp.
483-491. 2017.

S. O.-R. A. V. S. Committee et al., “Taxonomy and definitions for terms related to on-
road motor vehicle automated driving systems,” SAE Standard J3016, pp.01-16,
2014.

A. Ltd, “Research on the impacts of connected and autonomous vehicles (cavs) on
traffic flow research on the impacts of connected and autonomous vehicles (cavs) on
traffic flow,” tech. rep., Department for Transport, 2016.

J. C. Williams, H. S. Mahmassani, S. lani, and R. Herman, “Urban traffic network flow
models,” Transportation Research Record, vol. 1112, pp. 78-88, 1987.

J. Godfrey, “The mechanism of a road network,” Traffic Engineering & Control, vol. 8,
no. 8, 1969.

H. Mahmassani, J.C. Williams, and R.Herman, “Performance of urban traffic
networks,” in Proceedings of the 10th International Symposium on Transportation and
Traffic Theory, pp. 1-20, Elsevier Amsterdam, The Netherlands, 1987.

C. F. Daganzo, “Urban gridlock: Macroscopic modeling and mitigation approaches,”
Transportation Research Part B: Methodological, vol. 41, no. 1, pp. 49-62, 2007.

M. Keyvan-Ekbatani, M. Papageorgiou, and |. Papamichail, “Perimeter traffic control
via remote feedback gating,” Procedia-Social and Behavioral Sciences, vol. 111,
pp. 645-653, 2014.

A. Csikés, T. Tettamanti, and |. Varga, “Macroscopic modeling and control of emission
in urban road traffic networks,” Transport, vol. 30, no. 2, pp. 152-161, 2015.

“Simulation/traffic lights,” http://sumo.dir.de/wiki/Simulation/Traffic_Lights, 14 March
2018.

D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development and
applications of SUMO - Simulation of Urban MObility,” International Journal On
Advances in Systems and Measurements, vol. 5, pp. 128-138, December 2012.

N. Kudarauskas, “Analysis of emergency braking of a vehicle,” Transport, vol. 22,
no. 3, pp. 154-159, 2007.



