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Abstract 
To reduce self-weight, car manufacturers and machine part producers tend to parts made of high 

strength steels and advanced high strength steels. The load bearing capacity of these components 

depends largely on the quality of the welds, therefore the joining of such high strength steels sheets 

by automatized tungsten inert gas (TIG) welding without filler metal was investigated. The selected 

steel grades were transformation induced plasticity (TRIP) steel (with 1000 MPa ultimate tensile 

strength) and twinning induced plasticity (TWIP) steel (with 800 MPa ultimate tensile strength). 

The weldability of both steel grades without filler metal and without pre heating and post weld heat 

treatment was investigated also in dissimilar joints. The visual and metallographic examinations, 

hardness measurements and tensile testing showed that the usability of this welding process to weld 

good TWIP-TWIP joints is good, to TRIP-TRIP joints is limited and to TRIP-TWIP joints is poor. 

 

Keywords: Advanced high strength steel, Transformation induced plasticity steel, Twinning 

induced plasticity steel, Tungsten inert gas welding, Quantitative metallography. 

 

1. INTRODUCTION 
 

To decrease self-weight of steel structures and machine parts manufacturer tends to use steel grades 

with higher and higher strength. Although structural steels can have very high ultimate tensile 

strength (S700, S960...S1300QL [1]) their welding is difficult, and the formability and fatigue 

properties of the joints are not very high [2-5]. At applications where safety and toughness is 

especially important -like in car bodies- other types of high strength steels (HSS) or advanced high 

strength steels (AHSS); like dual phase, transformation induced plasticity (TRIP) and twinning 

induced plasticity (TWIP) steel grades are used [6, 7]. 

The TRIP and TWIP AHSS grades have large plasticity which makes them ideal for the production 

of difficult car body parts and they have also very good tensile properties to increase passenger 

safety and to decrease the weight of the vehicle. However the welding of these steel grades has 

challenges because of the high alloying element content and small grain size and in case of TRIP 

steel the four-phasic microstructure[8]. So far gas metal arc welding (GMAW) [9] also with flux 

cored wire [10] resistance spot welding [11-13] and laser beam welding [14-18]of these AHSS 

sheets have been studied. But studies about the tungsten inert gas welding (TIG) or gas tungsten arc 

(GTA) welding of  AHSS steels is rear and their mostly about low alloy HSSs [19]. Therefore in 

our current study we intend to determine the weldability of high alloy TRIP and TWIP steels. 
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2. MATERIALS AND METHODS 
 

To investigate the possibility of robotized TIG welding neither filler metal (142 process) nor 

preheating or post weld heat treatment was used during the tests. 

The AHSS types investigated in this study were one TRIP steel and one TWIP steel. The steel 

grades were: Zn-coated HCT800T (1.0948) steel, commercial name TRIP 800 and 22Mn0.6C steel, 

commercial name TWIP 1000 with the nominal 800 MPa and 1000 MPa ultimate tensile strength 

(UTS) respectively. The chemical composition and main properties of the used AHSSs are listed in 

Table 1. The TWIP steel had fully austenitic microstructure, the trip steel contained 60.2% ferrite, 

25.4% bainite, 2.4% martensite and 12.2% austenite. The microstructure of the used base AHSSs 

are shown in Figure 1. 

 

Table 1 Chemical composition and main properties of the used materials 

Materials 
Chemical composition 

[wt. %] 
Sheet 

thickness 
[mm] 

Tensile properties grain 
size, d 
[µm] 

UTS 
[MPa] 

YS 
[MPa] 

A11.3 
[%] 

Z 
[%] C Mn Si Al Ni Cr Fe 

TRIP 800 0.27 2.1 1.52 0.25 - - bal. 1.5 ± 0.05 795±6 490±14 21±1 9±1.5 2.6 

TWIP 1000 0.51 15.0 0.46 1.00 - 13.0 bal. 1.0 ± 0.05 1030±12 540±15 52±2 8.5±1 4.9 

 

For the welding tests 100×50 mm pieces were cut mechanically from the sheets without edge 

chamfering. The AHSS sheets were cleaned before the welding with acetone. The sheets were 

mechanically clamped and butt welded perpendicular to the roll direction to 100×100 mm 

specimens. For the welding tests a REHM Invertig.Pro
®

 digital 350 AC/DC welding machine 

automated with a Yamaha F1405-500 type linear drive was used. The welding torch was 

perpendicular to the sheets the working distance to the thicker sheet was 4 mm. The tungsten 

electode was Ø 2.4 mm, WT20 type (~2% ThO2) with 30º bevel-angle. As shielding gas 99.996 % 

argon was used both face and root side. During the welding process the sheets were not in direct 

contact to each other, at the end of the sheets 1 mm gap was left to provide co-axial joints and the 

sheets were mechanical clamped during welding. The height step (in case of the TWIP-TRIP joint) 

was on the torch side. The polarity for the welding tests was DC+. Preliminary welding tests were 

made with different parameters, than visually examined. During parameter optimization the 

specimens were evaluated on the basis of the macroscopic joint appearance, full weld penetration 

and absence of visible weld defects (cracks, burn through etc.). The welding parameters which were 

evaluated to be the best according to the visual examinations are listed in Table 2.  

 

Table 2 The TIG welding parameters for the AHSSs 

Joint type 
Current 

[A] 
Vwelding  

[cm·min-1] 
Arface 

[l·min-1] 
Arroot 

[l·min-1] 
TRIP TRIP 35 8 12 8 

TRIP TWIP 39 8 12 8 

TWIP TWIP 39 8 16 8 

 

The specimens for microscopic examination were mechanically cut in cross sections, mounted in 

metallography resign and mechanically grinded on SiC papers P80, P120, P320, P600, P1200, and 

P2500 with continuous water rinsing. Finally the specimen were polished with 1 µm and 0.5 µm 

particle size Al2O3 suspension. After etching the specimens were investigated with Olympus PMG3 

optical microscope. Tensile tests were made with MTS 810 universal materials testing machine. To 
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prepare the tensile specimen the sheets were grinded to achieve even sheet thickness and cross 

section area. Hardness measurements were made with Buehler 1010 Vickers hardness tester on 

specimens prepared for metallographic investigations. Nickel and chromium equivalents (Nieq., 

Creq.) were determined according to Equation 1 and 2. 

 

Nieq.=%Ni + 30×%C + 0.5×%Mn + 30×%N (1)

Creq.=%Cr + 1.4×%Mo + 1.5×%Si + 0.5×Nb + 2×%Ti (2)

 

The Nieq. and Creq. values and the predicted phases after welding according to Schäeffler diagram – 

presuming 50-50% intermixture of the two sheet parts in the weld pool – are listed in Table 3. 

 

Table 3 The Nieq. and Creq. values and the predicted phases of the weldments 

Joint type Creq. Nieq. predicted microstructure 
TRIP TRIP 0,69 9,15 austenite+martensite 

TRIP TWIP 7,19 15,98 martensite 

TWIP TWIP 13,69 22,80 austenite 

 

 
Figure 1 Light microscope micrographs of the: a) TRIP 800 and b) TWIP 1000 AHSSs 

 

3. RESULTS AND DISCUSSION 
 

The visually best looking joints of each type (welded according the parameters of Table 2) are 

shown in Figure 2. No visible weld defects could be detected, therefore these joints were 

investigated further in details. The microhardness profiles and the corresponding micrograps of the 

selected joints are shown in Figure 3 and the results of the tensile tests are listed in Table 4. 

 

Joint type Face side Root side 

TRIP TRIP 

TRIP TWIP 

TWIP TWIP 

Figure 2 Macroimages of the weld beads 
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In case of the TRIP-TRIP joints the weld metal in the fusion zone had fine martensitic 

microstructure (as expected from Table 3) with considerable hardness of ~500

affected zone (HAZ) had coarser grain structure with marte

properties of the joints showed decreased UTS~760 MPa (due to coarse grain structure in the HAZ) 

with ~8% fracture elongation which is lower than the base material but for most engineering 

applications it could be acceptable. Note that at lower root side shielding gas flow rates <

slight discoloration alongside the weld occurred originating from the Zn

too high flow rates > 9 l·s
-1

 the melt

automatize the welding of TRIP to TRIP steel sheets for mass production.

 

Figure 3 The hardness profiles of the welded joints and the corresponding

optical microscope micrographs of the different zones
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TRIP joints the weld metal in the fusion zone had fine martensitic 

microstructure (as expected from Table 3) with considerable hardness of ~500

affected zone (HAZ) had coarser grain structure with martensite and retained austenite. The tensile 

properties of the joints showed decreased UTS~760 MPa (due to coarse grain structure in the HAZ) 

with ~8% fracture elongation which is lower than the base material but for most engineering 

acceptable. Note that at lower root side shielding gas flow rates <

slight discoloration alongside the weld occurred originating from the Zn-coating of the sheets and at 

the melt-through was not sufficient. Altogethe

automatize the welding of TRIP to TRIP steel sheets for mass production. 

The hardness profiles of the welded joints and the corresponding

optical microscope micrographs of the different zones 
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TRIP joints the weld metal in the fusion zone had fine martensitic 

microstructure (as expected from Table 3) with considerable hardness of ~500 HV01. The heat 

nsite and retained austenite. The tensile 

properties of the joints showed decreased UTS~760 MPa (due to coarse grain structure in the HAZ) 

with ~8% fracture elongation which is lower than the base material but for most engineering 

acceptable. Note that at lower root side shielding gas flow rates < 7 l·s
-1

 a 

coating of the sheets and at 

through was not sufficient. Altogether it is possible to 

 
The hardness profiles of the welded joints and the corresponding 
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In case of the TRIP-TWIP weld metal, coarse dendritic microstructure was found and although they 

appeared visually good there were intergranular cracks in the weldment indicating cracking while 

solidification. The hardness profile showed excessive increase in hardness up to 700 HV01 in the 

weld metal. Tensile specimens cold not been made from the joints, because they broke brittle during 

machining. As a conclusion it is not recommended to weld this combination of AHSSs without any 

filler metal or special heat treatment considerations. 

In case of the TWIP-TWIP joint the fusion zone contained some bainite and had a lower hardness 

values (~ 210 HV) than the base material. The HAZ had finer grains also with some bainite and had 

higher hardness values (~290 HV) than the base material. The tensile tests showed about 950 MPa 

UTS with considerable (~22 %) fracture elongation (about 43% of the base material), and ductile 

fracture. Therefore the weld can be qualified as a good joint and it is most suitable for robotized 

TIG applications. 

 

Table 4 The Tensile properties of the  

TIG welded specimens for the AHSSs 

Joint type 
UTS 

[MPa] 
A11.3 
[%] 

TRIP TRIP 762± 20 8.16±1.37 

TRIP TWIP - - 

TWIP TWIP 949±105 21.59±6.31 

 

CONCLUSIONS 
 

In our research the applicability of TIG welding without filler material (142 welding process) 

without excess preheating or post weld heat treatment to join TRIP 800 and TWIP 1000 thin AHSS 

sheets was investigated for the purpose of future robotization for mass production (for e.g. car body 

parts welding). From the above mentioned investigations the following conclusions can be drawn: 

� TRIP-TRIP joints can be made with adequate quality but the welding process is sensitive to 

the shielding gas flow rate. 

� To weld TRIP-TWIP joints 142 process is not recommended, to achieve crack free joints 

special heat treatment sequence needs to be developed, but it will be most likely not 

economic for mass production 

� TWIP-TWIP welds had the best mechanical and ductile properties, it is the easiest to make 

therefore recommended for automation. 
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