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Optimum design and comparison of hollow flange beams

K.Jarmai, J. Farkas & T.Liszkai
Upniversity of Miskolc, Hungary

ABSTRACT: A hollow flange beam (HFB) consists of a straight web and two hollow flanges. The shape of
flanges can be triangular, circular or square one. To compare these structural versions with welded I-beams an
optimization procedure is developed. The optimum cross-sectional dimensions are determined which
minimize the cross-sectional area and fulfil the design constraints on stress due to bending and on local
buckling of web and compression flange. The comparison shows that a HFB has smaller cross-sectional area
(weight), larger moment of inertia (smaller deflection) and larger critical bending moment of lateral-torsional
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1 INTRODUCTION

Hollow flanges can be used instead of simple plate
flanges in welded beams (Fig.1). The shape of
hollow flanges can be triangular, circular or
rectangular (square). A special triangular hollow
flange beam (TFB), called also ,,dogbone”, was
developed by the Australian firm Palmer Tube
Technologies Ltd (Dempsey 1993), but this steel
section was subsequently cancelled and is not
manufactured.

The section is cold-formed from flat strip. The
triangular flanges are closed by two electric
resistance welded seam. They have used higher-
strength steel of ultimate tensile strength 520 MPa
and a yield strength 450 MPa.

They have not used any optimization procedure.
We have worked out an optimization method to
compare the TFB-s with circular CFB and square
SFB and with welded I-beam.

The main advantages of HFB over simple welded
I-beams are as follows: (a) the local buckling
strength of beam parts is higher, therefore the
thicknesses can be smaller; (b) the whole beam is
higher, therefore the beam deflection is smaller; (c)
the torsional stiffness is much larger, therefore the
lateral-torsional buckling strength is larger.
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The problem of lateral-torsional buckling of TFB
is investigated by Pi & Trahair (1997). They have
proposed a reduction of the torsional stiffness due to
web distortion. We show that the Eurocode 3 (EC3)
formulae give smaller values for lateral-torsional
buckling factors, thus, the EC3 method can be used
for comparison.

In the optimization the optimum cross-sectional
dimensions are sought which minimize the cross-
sectional area and fulfil the design constraints on
maximum stress due to bending as well as on local
buckling of the web and the compression flange.

First the cross-sectional characteristics are derived
for an arbitrarily hollow flange shape and the
optimization procedure is described, then the
optimum cross-sectional - areas and moments of
inertia are expressed and compared for the above
mentioned four beam shapes.

The lateral-torsional buckling strengths are
characterized by buckling factors in the function of
L/h for simply supported beams of span length L and
web height % subject to uniformly distributed normal
load.

It should be mentioned that Avery & Mahendron
(1997) have investigated the effect of transverse
stiffeners on the lateral-torsional buckling of TFB.
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Figure 1. General hollow flange beam

A graphical optimization procedure is worked out
for the design of welded I-beams against lateral-

torsional buckling by Farkas (1997).

The properties of the whole cross-sectional area
can be written in the following forms:

2 .
A=ht, +24, =ht,+ P’ h? ©)
Bt h ?
I = T +2{lj§+A/(5+ij } (8)

Substituting equations (2), (4), (5) and (6) into
equation (8), one obtains the following for the
moment of inertia

nt n* n*
I = ﬂl_z + 2{11;4 Tt P2 E(l + Py) )

and the elastic section modulus can be written as:
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The calculation of the torsional constants of
.closed thin-walled beams is treated e.g. in the book
Farkas & Jarmai (1997).

2 SECTIONAL CHARACTERISTICS OF A
GENERAL HOLLOW FLANGE BEAM B

A general hollow flange beam is shown in Figure 1.
Introducing the ratio between the flange depth and
web depth as the main variable:

2h
»
=1 1
= 0
and the slenderness:
t
= 2
- | @
the flange height can be expressed as:
ch :
= . G)

The second moment. of inertia, the cross-
sectional area of the flange and the location of the
gravity centre y(; of the flange can be expressed as a
function of web depth # or flange depth hf

h4
Ife = Bhy = Rs' 35 @
2 2 B
Ay =Bhy =P - O]
h
Vg =Ph, = PsGE ) ©)

where P}, P2 and P3 are constants

From (9) and (10) we get the final form of the elastic
section modulus:

ﬁh3 g2h3
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3 GENERAL OPTIMUM DESIGN

The objective function is the cross-sectional area (7).

The constraint on maximum normal stress due to
bending moment Mgy according to EC3 (1992) is
defined by:

O =_A{m_ax_5fy.l = fy (12)
Wox Vma
Vg =11 (13)

where )/ ] is a safety factor,
or expressed by the required section modulus Wy

W, 2 W, = Mo a4
yl

Local buckling constraints

For the web:

t,2ph (15)

where

l_= 124 235 (16)

B o,

where £ is the ultimate plate slenderness for the web
and o is the absolute value of the normal stress at
the upper and the lower end of the web. Expressing
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the ratio of ofand Omaxs
h

2
h +h
2
The final form of the plate slenderness for the web

provided that the maximum normal stress opqy in
the extreme fibre is equal to the yield stress:

o=

17

constraints (local buckling for the web and for ':(t}he;
flange) we introduce only one buckling constraint:

t>fh
For the web:

—1—=124e 1+
B

w

For the upper part of the flange: LR
£26)

>
1124|214 0) = 1245152 asy ‘2Pnb
B f, Expressing the flange width B by means of- the weéb
depth ~ we get another form of (26): :
22 (19)
; -

For th; upper part of the flange: e tanc

e " Gh
t 25 @) 28, = fh
where B depends on the shape of the flange and §'is ) 1
the ultimate plate slenderess for a flange according ~According to BC3(1992) ——=42¢

IB Jo
to EC3. ; X
Converting the objective 1unction (7) ey (et
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and substituting (22) into (11) the stress constraint
gets the following form:

P’

B+=

B ¢’
(1 + g) 4(1 + g)

[ 6%+ Py(1+ Pg)’ ]}

- (23)
As Wy is a constant the only variable is ¢, so the
task is to find the optimum ¢ which gives the
minimum cross-sectional area.

4 TRIANGULAR FLANGE BEAM (TFB)

The dimensions of a TFB can be seen in Figure 2.
The flange details of TFB are shown in Figure 3.
Because of the production technology of TFB its
thickness has to be a constant along its
circumference. Instead of -using both buckling
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Figure 3. Flange details of TFB




Since the web and flange have the same thickness,
the largér value from B, # and firh is governing. The
symbol g is used, but the optimization has to be
performed either with f,,  and with ;h.

The solution of (31) gives the value of £ at which
web and flange buckling constraints are active.

Bh=ph
h __ch

124s\1+¢  42sana

It can be seen from (32) that the solution for ¢
does not depend on the yield stress of the material.
The only factor which affects the solution of ¢'is the
angle of the flange o.

Solving (32) for given flange angles for the
interval 0.1<{'<I:

3D
(32)

The first member of (41) can be neglected in
comparison with the other members.
I, = P,h} (42)
The design constants P;, P, and P;3 can be expressed
from (41), (38) and (40), respectively:
P = —’B.——Z[cosa +cos” & +
gsina(l+cosa)

1+cosa)’
N ) ]

3
_4p(1+cosa)
~ csina

(43)

b (44)
_1+2cosa
" 21+ cosa)
Substituting the design constants into (23), and
iterating this equation we can get the optimum value
of &

The cross-sectional area of TFB can be calculated

3 43

for a=30° ¢, = 0180020 (33)

. L ’ as follows:

oro=35""g,, = 0215147 %) For steel with a yield stress of 355 MPa:

for o=40° ¢, =0253818 (3%5) % »
- . =30° s = 0. -W,

Below the limit of ¢, the web buckling =30 Auprrg = 0536347 °2 (46)
constraint is active and deﬁ‘nes the thlfzknfess o'f TFB. =35° Ay = 0531289 WOE (47
Above ¢, the flange buckling constraint is active. 5

The sectional properties can be expressed as a=40° A = 0.526035- W3 (48)
opt1lB = V- 0

follows: the cross-sectional area of a triangular
hollow flange:

2h,1(1+cosa)
sina

considering that the local buckling constraint is
active:
t=ph

4ﬂh}(l +cosa) ,

- csina B P2hf 38)

The location of the gravity centre G of the flange is
described by the distance:

A, = Bt +2gt = (36)

3N

h
2qz‘ e h
_ 2 _ /
e= = 39
4, 2(I+cosa)
and
Y h,(1+2cosa) P 40)
L= —_—= 7 =
Ve =0 2(1 +cosa) i
The moment of inertia of the flange section is:
'B 2¢°tsin*a [ h, !
I/;f =F+Bt€z+'—T+ ——2——*—6 2qt (41)

The optimum dimensions for TFB are as follows:

An wilB :
Py . = 49)
opt
Pehy
go Ihn f
h, =200 50
f ) (50)
2h
oy = 61
7. tang
tupl = ﬂ hapl (52)

5 CIRCULAR HOLLOW FLANGE BEAM (CFB)

The dimensions of a CFB can be seen in Figure 4.
The design constants (P;, P, and P3) can be
expressed by means of the ultimate plate slenderness
of the flange.
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The ultimate plate slenderness according to EC3
(1992) for the flange, considering that the local
buckling constraint for the flange is active:

2r

D _goer 9025

Y

5

¢

(53)

h, =2r (54)

B+

2

_B L5
6f(1+¢) 4(1+¢)

7[('1+

2
+__
Ay

4 25,
= 2
2
g) ’
2

z
Wy %
85,
(61)

The optimum value of £ can be calculated by the
iteration of £ The optimum value of {'is 0.92, 0.81,
0.75 for steel with a yield stress of 235 MPa, 355
MPa, 450 MPa, respectively.

The minimum cross-sectional area of CFB can be
calculated as follows:

For steel with a yield stress of 355 MPa:

2
Apprcrp = 0513517 - Wy ©2)
The optimum dimensions of CFB are as follows:

) Aa 1CFB
il =
" P’ TOpT
VPhsy
ph Py ©4)
3 = o oA e
w.opt P 1248m
1
Doy =56t >
Du "
rl’[" = 5 - (66)

Figure 4. Dimensions of a CFB

The P, P,, P3 design constants can be expressed
from (4):

27! '
I =mr't="2— = Ph! = B(2r)' =167
(55)
V3
T35 (56)
from (5):
2
4= PJit = Pyar? =2amt =42 (57)
T
P = 58
S (58)
from (6):
Yo =Ph, =P2r=r (59
1
h=3 (60)

Substituting P, P2, P3 into (23) we can get its final
form
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6 SQUARE HOLLOW FLANGE BEAM (SFB)

The dimensions of a SFB can be seen in Figure 5.
The design constants P;, P, and P3 can be expressed
by means of the ultimate plate slenderness of the
flange.

The ultimate plate slenderness, according to EC3
(1992) for the flange, considering that the local
buckling constraint for the flange is active, is:

b st 2
t 5

h, =b, (68)
The P;, P;, P3 design constants can be expressed
from (4):

5, = ©7)

2b%¢

£

3

Dot '
=§§L:}>lh}=plb:

1p

(69

L




2 For steel with a yield stress of 355 MPa:
) ' - A sep = 0536256 W (76)
x 2 The optimum dimensions for HFB with CHS flange:

~

3 , ., 4k
{A.[=P2hj =4bv‘.t='5‘—— : P (71)

A,
{leary L hﬂpl = Iﬂ’lsrBz (77)
) g() "
(72) P+h=
| ty,, =P, = e B (78)
(73) R TY™Y e |
B=z | (74) |
L By =g ~ 79
Substituting Py, P,, P3 into (23), we can get its final sopt = EG opt opt . (79
form .
AW = b,
o t o = sopt (80)
Sopt SL
7T-WELDED T-SECTION
The objective function is
A=ht, +2bt, ) 81)
the stress constraint is ‘
_A_l_ < _IL (82)
W, 7 ,
the web buckling constraint is
t 1 :
> =0 83
h p 124¢ ®3)
the flange buckling constraint is
t
bysa b (84)
b 42¢ .
1 b ]
4 |
L ] 1
I
|
Fféﬁre 5. Dimensions of a SFB
L .
The optimum value of £ can be calculated by the |
iteration of £ The optimum value of ¢ for steels of
yield stress of 235 MPa, 355 MPa, 450 MPa is 0.5. |
The cross-sectional area of SFB can be calculated I : 1
as follows:

Figure 6. Dimensions of a welded I-section
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The optimal solution of the problem is the following

1

- I <
(Farkas 1984, Farkas & Jérmai 1997): G /_¢ = P <1 e
in which
=202, =3/18 W7 85 = =
P o (85) by = 0.5[1 0 (Aur —02)+ /ﬁr] (93)
L5W,
By =13 5 2 (86) The values of the imperfection factor ¢ for lateral
" 87 torsional buckling should be taken as: & ;. = 049 for
o = PP ( B} ) welded sections.
5 - . )
ot = Py ﬂ? (88) The formulla of 1,, isasfollows:
t Ay == g2 (94)
b[,p, = Jopt (89) LT /11 .
g .. . where
The minimum cross-sectional area of welded I- '
section for steel of 355 MPa yield stress E)? :
2 : —| =939¢ 95)
A,y = 05541651 (90) "7,
235 9%
The above obtained results are summarized in Table f ©6)
L. g
N 0.25
L M—W’?’ -
Table 1. Cross-sectional area and moment of inertia 11, ~
of optimized TFB, CFB, SFB and welded I-beams Ay = . — o7
05 GI1,
: G+
beam type A, | W 1w n°El,
TFB 0.536347 2.95464
CFB 0.513517 4.12001 for beams with pinned ends with uniformly
SFB . 10536256 3.64304 disributed loads €1 = 1'132, Iy is the torsion
I-beam 0.554165 2.70677

It can be seen that the HFB-s have smaller cross-
sectional area and larger moment of inertia than the
welded I-beam. The CFB has the smallest cross-
sectional area and the largest moment of inertia.

8 LATERAL-TORSIONAL
STRENGTH

BUCKLING

8.1 The EC3 method

The design buckling resistance moment of a laterally
“unrestrained beam shall be taken as:

1
Mh,Rd XurBJ, Py - 1
Y
where
w,
B, = W”"‘ for Class 3 cross-sections

plx

and 7 is the reduction factor for lateral-torsional
buckling

- uniformly distributed normal load it is.

constant, I,is the warping constant, [, is the
moment of inertia about the minor axis, L is the
beam length between points which have lateral
restraint.

8.2 The method of Pi & Trahair (1997)
They have proposed a calculation method which

considers also the effect of web distortion. Their
formula for the design bending moment is

28

M, 2
AJ/NIA‘ = anam = OGaM( /Iil A;IJ (98)

S "
where «,, is the factor for the effect of loading, for
:1.1662.
Values of o, in the function of A, -are
compared with the lateral-torsional buckling
factors y,, given by EC3 in function of A L in
Table 2. T v :
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Table 2. Comparison of lateral-torsional buckling
factors given by Pi & Trahair as well as by EC3

Ay or Ayp aua, Xir
0.5 0.9845 0.8430
1.0 0.6111 0.5399
1.5 0.3416 0.3145
2.0 0.2036 0.1962

It can be seen that the buckling factors given by
EC3 are smaller than those of Pi & Trahair, thus, the
EC3 method is suitable for comparison.

8.3 Comparison of lateral-torsional buckling factors
using the EC3 formulae

We calculate the buckling factors in the function of
@ = L/10h inthe range of ¢@=1-10.
(a) Using the formulae given in Section 4, the

7 __ 163875
- 51025
(1+5619397)

(b) Formulae for CFB with ¢, =081 and £, =
355 MPa:

prt gt (146/2)

w, =2 T8 T 13994 %1072 R
"y 45,
L=He _10503%1028°
1+¢
474 .
1, =" _03s466+10 0
' 7645,
c'ht

I, = =709315%107* "
326

C

characteristics of a TFB, expressed in terms of the
web height are as follows:

with ¢, =018, f = 355 MPa and a =30° one
obtains

W, - it 025 SU) , sli+6/2)
" | tana sina

=09218*107 A%,
W, . =079608*107n° . A% =09293
_ §3h3ﬂ

= 3 (1 +L) =9.9279*107°h*
64tan’ o cosa

¥

B ¢*Beos’
" 2sin a(sina + cosa)

3 ) 2
I, = §ﬂ3 (1+ 1 )(1— ) ) =
24tan’” cosa 1+cosa

=2.0263*10° K6

B =29218*10 A

It should be mentioned that we use the symbol @
instead of @ , since the hollow flanges are closed
sections.

~ According to (94) and (97)
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1, = —i—hftf (3233., +2@ @,y + 3m,2,2)

where

n n
T = —?j(l"'%J s Oy = _é(l— )
G S

Since the exact calculation of the warping
constant for the closed sectional parts of CFB leads
to very complicated integrals, we use the formula of
the warping constant derived for SFB with the
approximation that #, = Dv2/2, this means that,

instead of the circle, a square is used inscribed inside
the circle. This approximation gives the following
value:

I, =218333*107A4°5,

134385¢

7 o 134385p
" (1+12660519)"

(¢) Formulae for SFB with ¢,, =05 and f, = 355
MPa:

plx

/4 P ht (2 =111688*10724°
=5 +g f( +g)—.

W, =0872368*107h°

.



I, =¢ht, /6=152425%10"h'
I, =¢’n't, 14=228637*10"h'

The formula for warping constant is the same as
for CFB:

I, =699612*107h°;

2.01048¢

) (1+12735692)"

The results of calculations are summarized in
Table 3.

It can be seen that the lateral-torsional buckling
strength of HFB-s is larger than that of welded I-
beam. The high values for CFB show that the
torsional stiffness of circular hollow flanges is very

large because of the high value of ¢, =081
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