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Abstract
Combined sedimentological and structural analysis was carried out in the field and on 2D seismic reflection profiles to 
recognize pre-orogenic structures in a Cretaceous fold-and-thrust belt. Detailed field observations were made in the Kesz-
thely Hills, Western Hungary, while 2D seismic interpretation was carried out in the neighbouring Zala Basin. As a result, 
a fault-controlled intraplatform basin system was identified by a detailed analysis of bounding faults, and related outcrop-
scale structures. The Norian–Rhaetian (227–201.3 Ma) synsedimentary faulting was associated with talus breccia forma-
tion, small-scale faulting, and dyke formation, in addition to slumping and other soft-sediment deformations. Based on the 
distribution of talus breccia, WNW–ESE-trending map-scale normal faults were identified in the Keszthely Hills, which is 
in agreement with the directly observed outcrop-scale synsedimentary faults. On seismic sections, similar WNW- or NW-
trending Late Triassic normal faults were identified based on thickness variations of the syn-rift sediments and the presence 
of wedge-shaped bodies of talus breccia. Normal faulting occurred already in the Norian, and extensional tectonics was active 
through the Early and Middle Jurassic. The Late Triassic grabens of the western Transdanubian Range could be correlated 
with those in western part of the Southern Alps, and the Bajuvaric nappe system of the Northern Calcareous Alps. These 
grabens were situated on the proximal Adriatic margin, and they represent the first sign of the Alpine Tethys rifting. The 
locus of extension was laterally migrated westward, towards the distal Adriatic margin during Early and Middle Jurassic.

Keywords Pre-orogenic extension · Synsedimentary deformation · Norian tectonics · Alpine Tethys rifting · Triassic 
paleogeography

Introduction

Pre-orogenic structures have an increasing role in the 
structural interpretation of thrust and fold belts (But-
ler et al. 2006). Several balanced sections show that the 

retro-deformed original stratigraphy cannot be considered 
as a layer-cake and prominent pre-orogenic deformation 
can be recognized (Perez et al. 2016; Yagupsky et al. 2008; 
De Vicente et al. 2009). Identification, investigation, and 
understanding the structural geometry, fault pattern, and 
deformation style of these pre-orogenic structures have pri-
mary importance, since these early structures may have a 
significant effect on the final geometry of subsequent folding 
and thrusting.

In many cases, structural inheritance is responsible for 
the development of backthrusts, young-on-older thrust, and 
compressional structures non-perpendicular to the shorten-
ing, such as oblique or lateral ramps (Bonini et al. 2012; 
Pace et al. 2014; Ustaszewski and Schmid 2006).

In most cases, pre-orogenic faults develop during the 
passive-margin evolution, before the onset of shortening. 
However, normal faults can also be re-activated or newly 
evolve later, during foreland basin evolution, due to the 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0053 1-018-1637-3) contains 
supplementary material, which is available to authorized users.

 * Gábor Héja 
 hejagabor@hotmail.com

1 MTA-ELTE Geological, Geophysical and Space Science 
Research Group of the Hungarian Academy of Sciences 
at Eötvös University, Budapest, Hungary

2 MOL Hungarian Oil and Gas Plc., Budapest, Hungary
3 MTA-ELTE Volcanology Research Group of the Hungarian 

Academy of Sciences, Budapest, Hungary

AQ1

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

A1
A2
A3

A4
A5

A6
A7
A8

A9

A10
A11

http://crossmark.crossref.org/dialog/?doi=10.1007/s00531-018-1637-3&domain=pdf
https://doi.org/10.1007/s00531-018-1637-3


UNCORRECTED PROOF

Journal : Large 531 Article No : 1637 Pages : 19 MS Code : IJES-D-18-00112 Dispatch : 24-7-2018

 International Journal of Earth Sciences

1 3

Bratislava

Budapest

Lake Balaton

Zagreb
Milano

Wien

Ljubljana

Hurbanovo-Diósjenő Fault

enoZtluaFnairagnuH-diM

Periadriatic Fault Periadriatic Fault

Periadriatic Fault

study
area,
Fig. 1B

Gui
di

ca
rie

 F
au

lt

SEMP

deformed Europe

remnants of Penninic Ocean

remnants of Neotethys Ocean

Austroalpine Nappes
in general

Suture of Eoalpine
intracontinental subduction

Late Triassic platforms

Areas dominated by Norian -
Rheatian intraplatform basins

T2 basins reactivated in T3

100 km

Zk-1

R-3

Zk-1

Nb-2

Szgy1

K-25 Hév-7
K-24

K-19Hév-6

Cs-7

Rzt-1
Rz-4
Rzt-3

Várt-1

Vá-3

Vá-2

Bet-1

Uzst-1

Zszt-3

Zu-2

Zu-1

Zl-1

Zl-3

Keh-1

Kd-3K-8
K-12

Zcs-2
Zcs-1

Kd-1

Kd-2Mis-1

Mis-2

Pa-1 Pa-2

Zl-4

L1

L6

L3

L5

L2

L4

Carnian Ederics Lst. (platform)

Carnian Marl and Limestone (basin)
Upper Carnian-Norian Hauptdolomit (platform)

Upper Norian Rezi Dolomite (basin)

Upper Norian-Rhaetian Kössen Marl (basin)

Carnian Sédvölgy Dolomite (platform)

5 kmN

Miocene - Pliocene basalt

Late Miocene (Pannonian) sediments

KESZTHELY HILLS

ZALA BASIN

SOUTHERN
BAKONY

Pa-2

Trace of 2D seismic sections
Trace of 2D seismic section (Fig. 5)

Wells, that reached the
pre-Senonian basement

Fi
g.

5a

Fig. 7b

Fig. 7c

L1
L2
L3
L4
L5

Csókakő quarry
Pilikán quarry
Gyenesdiás eastern quarries

Felsőhegy quarry
Kőmell Cliff

Gyenesdiás western quarries

L6

Senonian

Miocene

Jurassic

suoecater
C

ciozone
C

ZALA BASIN KESZTHELY HILLS

nainra
C

nairo
N

Padkő Mb.
Rezi Dolomite

Kössen Marl

Ederics
Limestone

Sédvölgy Dolomite

Sándorhegy F.
Csicsó Marl Mb.

Mencshely Marl Mb.

Nosztor Limestone Mb.

Sevatian

Alaunian

Lacian

Tu
va

lia
n

Julian

naiteah
R

Jurassic and Lower Cretaceous

Dachstein Limestone

Cserszegtomaj
Kaolinite

Hauptdolomit

L7

L7 Budai Hill quarry

other units

Fig. 5
b

LAKE BALATON

Várvölgy

Vállus

Ne
m

es
vit

a

Vonyarcvashegy

Gyenesdiás
KESZTHELY

Cserszegtomaj

Rezi

Ba
lat

on
gy

ör
ök

Lesencetomaj

Hévíz

A

B

C

e e

e

f
a

b

d
e b

g
e

g c

h

h

h

d

Middle Triassic magnetisation directions
Late Triassic magnetisation directions
Jurassic magnetisation directions

TISZA-DÁCIA

DINARIDES

D  o  l  o  m  i  t  e  s

Lombardian
Basin

TRANSDANUBIAN RANGE

undeformed
ADRIA

undeformed EUROPE

WESTERN CARPATHIANS

S O U T H E R N A L P S

A

B

B’

A’

Veszprém Marl

47.5°

45°

10° 15°

45°

47.5°

10° 15°

Description of seismic facies Correlation with lithology

low to high amplitude,
reflectors laterally fades away

very low to low amplitude
short pale reflectors

medium to high amplitude
continuous reflectores

low to high amplitude
continuous reflectors

Jurassic - L. Cretaceous succession

Kössen Marl

Hauptdolomit and Rezi Dolomite
Dachstein and Kardosrét Limestone

Veszprém Marl

1

2

3

4

D



UNCORRECTED PROOF

Journal : Large 531 Article No : 1637 Pages : 19 MS Code : IJES-D-18-00112 Dispatch : 24-7-2018

International Journal of Earth Sciences 

1 3

flexure of the subducting lower plate (Butler et al. 2006; 
Billi and Salvini 2003).

Investigation of pre-orogenic normal faults is often com-
plicated, since such structures can be strongly overprinted 
by later compressional deformation in thrust belts. However, 
pre-orogenic synsedimentary structures are often accompa-
nied by secondary features, which may survive the basin 
inversion. Such features are abrupt facies changes, reflect-
ing significant changes in depositional environments (e.g., 
deepening) and characteristic sediments and sedimentary 
structures related to fault activity. However, synsedimen-
tary extension creates facies change only in those cases, 
if the rate of extension-related subsidence of the hanging 
wall is significantly larger than the rate of deposition. If the 
deposition keeps pace with the subsidence of the hanging 
wall, both the hanging wall and the footwall can have the 
same environment, and thus, the fault cannot be identified 
just on the basis of facies changes. In this case, thickness 
variation of the pre-orogenic succession can be an indicator 
of synsedimentary normal faulting. The most characteristic 
fault-related sediments are coarse-grained talus-cone brec-
cias (Ortner et al. 2008); moreover, synsedimentary fault 
movements are often associated with soft-sediment deforma-
tion (Bergerat et al. 2011).

Pre-orogenic extension in the study area was already 
supposed by Csillag et al. (1995), based on the presence 
of coarse breccias and facies distribution. However, they 
neither determined the exact position of faults nor charac-
terized the fault pattern or the stress field. In our study, we 
demonstrate how the combined sedimentological and struc-
tural observations, fault-slip analysis, geological map inter-
pretations, and 2D seismic sections can be used to identify 
and characterize pre-orogenic structures in a poorly outcrop-
ping area. The study area is the westernmost outcropping 
part of the Transdanubian Range (Keszthely Hills) and its 
western continuation submerged below the Cenozoic cover 
of the Zala basin (Fig. 1a, b). The aim of this paper is to 
describe the Late Triassic extensional structures, hitherto 
frequently cited but very rarely characterized. Our results 

can contribute to understanding the early phase of passive-
margin evolution of the study area.

Geological setting

The Transdanubian Range was part of the Adriatic plate, 
which was situated between the Neotethys and the Alpine 
Tethys (Mandl 2000; Csontos and Vörös 2004; Schmid et al. 
2008). First phase of rifting during Anisian was related to 
the opening of the western branch of the Neotethys (Haas 
et al. 1995; Budai and Vörös 2006), while rifting of the 
Alpine Tethys initiated during Late Triassic and Early Juras-
sic (Bertotti et al. 1993; Decarlis et al. 2017).

The following deformations of the Transdanubian Range 
are related to the closure of these oceans. The partial closure 
of the western part of the Neotethys led to the folding in the 
study area during the Albian–Coniacian (Fodor et al. 2017). 
These structures are discordantly covered by the Senonian 
strata, and they represent one of the most significant defor-
mations of the Transdanubian Range.

After the final subduction of Alpine Tethys, collision 
and continental subduction of European plate below Adria 
occurred during the Late Paleogene. This event led to the 
eastward extrusion of ALCAPA unit along the Periadriatic 
Fault (Schmid et al. 2008) (Fig. 1a). The eastern continu-
ation of this structure is the Mid-Hungarian shear-zone, 
which is located directly south of study area (Balla 1984; 
Csontos and Nagymarosy 1998; Fodor et al. 1999).

The Pannonian back-arc basin system was formed dur-
ing the Miocene, in the hinterland of this subduction (Tari 
1994; Horváth et al. 2015; Balázs et al. 2016). Therefore, the 
study area was affected by strong extension, and thus, the 
studied Keszthely Hills are parts of a Miocene extensional 
horst bounded by normal faults and grabens, such as the Zala 
Basin (Fodor et al. 2013).

As it was briefly summarized above, the geodynamic 
evolution of the study area was affected by the opening and 
closure of two distinct oceanic systems, and accordingly, it 
has a complex stratigraphy. In this paper, we focus on the 
Late Triassic and Jurassic synsedimentary deformations, and 
therefore, we describe only the coeval sediments in detail.

Late Triassic‑to‑Early Cretaceous stratigraphy

The oldest known formation of the study area is Carnian in 
age (Haas et al. 2014). The Carnian basinal marl and lime-
stone (Veszprém Marl and Sándorhegy F.) are laterally inter-
fingering with the coeval carbonate platform (Ederics For-
mation) (Csillag et al. 1995), which was partly dolomitized 
(Sédvölgy Dolomite) (Haas et al. 2014).

From the end of the Carnian, the Hauptdolomit Forma-
tion was deposited (Fig. 1c). The formation is built up by 

Fig. 1  a Position of the study area on the simplified paleogeographic 
map of the Alps (after Schmid et al. 2008; Goričan et al. 2012; Haas 
2002). Austroalpine cover nappes were coloured on the basis of their 
dominant Late Triassic depositional environment (basin/platform). 
Yellow arrows show the Middle, Late Triassic, and Jurassic mag-
netization directions based on the measurements of a Becke and 
Mauritsch (1985), b Channell et  al. (1990), c Gallet et  al. (1998), 
d Heer (1982), e Mauritsch (1980), f Mauritsch and Becke (1987), 
g Mauritsch and Frisch (1978), and h Márton and Márton (1983). b 
Geological map of the study area based on Budai et el. (1999b) and 
Császár and Gyalog (1982). For coordinates of the investigated out-
crops, see Table 1. c Stratigraphy of the Keszthely Hills and the Zala 
Basin based on Csillag et al. (1995) and Kőrössy (1988). Formations 
are shown in approximately proportion to thickness. d Seismic facies 
types of the pre-Senonian basement of the study area
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thin-layered bituminous dolomite in the study area. Occa-
sionally, stromatolite intercalations occur. The formation 
was deposited in ultra-back-reef–lagoon environment (Fruth 
and Scherreiks 1984).

From the end of Middle Norian (Budai and Kovács 1986), 
extension-related intraplatform basins were formed, which 
were filled up by late Middle–Upper Norian Rezi Dolomite 
and Rhaetian Kössen Marl (Haas 1993; Csillag et al. 1995; 
Budai and Koloszár 1987; Budai et al. 1999a). Budai and 
Koloszár (1987) subdivided the Rezi Formation into three 
members. The lower member is represented by dark-grey 
cherty bituminous-laminated dolomite. The middle member 
is made up by the alternation thin-layered and thick-layered 
dolomite, which often contains re-deposited green algae 
fragments (Fig. 1c). This middle member was interpreted 
as a platform progradation tongue of the coeval platform. 
The upper member is similar to the lower member. Another 
dolomite breccia lithofacies of the Rezi Dolomit with re-
deposited platform-originated blocks were identified in the 
Csókakő quarry (L1) (Csillag et al. 1995).

According to Csillag et al. (1995), the Rezi Dolomite was 
deposited in a synsedimentary half-graben in the Keszthely 
Hills. The dolomite breccia represents the fault-bounded 
talus breccia of a synsedimentary normal fault. On the 
tectonically controlled elevated areas, carbonate platform 
environment still persisted. These areas are represented by 
the footwall of major normal fault bordering the Rezi half-
graben, and the opposite edge of the half-graben (Csillag 
et al. 1995). From the edge of the half-graben, the propaga-
tion of platform occurred. Nevertheless, this model does not 
specify the exact geometry of the basin and the controlling 
normal faults.

The Rhaetian Kössen Marl Formation (Fig. 1c) is poorly 
exposed; therefore, it is rather known from wells (Haas 
1993). It is made up by dark-grey-to-black shales with high 
organic matter content. Thin-bedded limestone intercalations 
occur frequently within the shale; it is strongly folded due to 
slumping (Budai and Koloszár 1987).

The younger Mesozoic formations were eroded in the 
Keszthely Hills, partly, due to the mid-Cretaceous folding 

(Fig. 1c). However, in the western subsurface continuation 
of the Keszthely Hills (eastern Zala Basin) and in the South-
ern Bakony (NE to Keszthely Hills), the younger members 
of the pre-Senonian succession could be traced. The Kössen 
Marl is interfingering with the limestone of the coeval Rhae-
tian Dachstein platform towards NE, based on well data; 
consequently, the Kössen Marl pinches out NE-ward (Haas 
1993, 2002). Platform progradation of the few 100 m-thick 
Dachstein Formation can also be observed above the Kös-
sen Marl in several wells of the Zala Basin (Kőrössy 1988).

The carbonate platform environment still existed in ear-
liest Jurassic (Kardosrét Fm.); however, it drowned in the 
beginning of Sinemurian, due to extension-related strong 
subsidence (Fig. 1c). This extension also created horsts and 
grabens (Vörös and Galácz 1998). There was hiatus, or just 
condensed sedimentation on the top of the submarine horsts, 
while thin, pelagic formations deposited with variable lithol-
ogy in the grabens (Haas et al. 1984).

The Lower Jurassic succession is characterized by pelagic 
red nodular limestone and grey cherty limestone (Haas et al. 
1984; Vörös and Galácz 1998). During the Middle Juras-
sic, cherty limestone and radiolarites were deposited. The 
Upper Jurassic formations seal both the pre-existing horsts 
and the grabens (Vörös and Galácz 1998; Haas et al. 1984). 
This Upper Jurassic succession is made up by red nodular 
limestone and white pelagic cherty limestone. The deposi-
tion of the latter formation is lasted till the Early Cretaceous. 
From the Barremian to the Aptian silty sandy pelagic marl, 
and then shallow marine limestone were deposited (Haas 
et al. 1984).

Methods

In the eastern part of the study area (Keszthely Hills), 
Triassic rocks are exposed; their microtectonic and basic 
carbonate sedimentologic field observations were carried 
out in dolomite quarries. To help the readers, the quarries 
were marked by numbers (see after the names of quarries in 
Sect. 4, and on map Fig. 1b). The measured structural data 
were illustrated on stereoplots. In the adjacent Zala Basin, 
Mesozoic basement is under thick Cenozoic cover. There, 
the investigation of Mesozoic basement is possible based 
on seismic data.

Stereoplots

Several types of structural data were measured in outcrops 
of the Keszthely Hills, which were plotted by the software 
of Angelier (1990) (for legend, see Fig. 2d). Fault-slip 
data rarely contained slicken lines, in most cases, just the 
fault planes were measurable. Therefore, fault-slip inver-
sion was not carried out, since at least four slicken line 

Table 1  Location of the investigated outcrops

Projection datum is WGS84

Name of the outcrop Latitude Longitude

1. Csókakő quarry 46.82219 17.23101
2. Pilikán quarry 46.79337 17.27255
3. Gyenesdiás eastern quarry 46.7790 17.29165
4. Gyenesdiás western quarry 46.77971 17.28958
5. Felsőhegy quarry 46.76542 17.33641
6. Kőmell Cliff 46.7842 17.28789
7. Budai Hill quarry 46.8033 17.26448
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required for the calculation (Angelier 1990). Stress axes 
were estimated based on conjugate faults. Tilt test was 
carried out by the module of “Rotilt” (Angelier 1990), if 
the beds had a significant dip. The basic assumption was 
that tilting of the strata is mostly the result of Cretaceous 
folding. Pre-orogenic structures were back-tilted by the 
dip of the beds, to get a better view on the original geom-
etry. Consequently, tilt test gave a relative chronology with 
respect to tilting/folding.

Seismic sections

The seismic sections were acquired and processed by GES 
Geophysical Services Ltd. in 2001 using vibroseis source 
with 8–90 Hz sweep frequency. Coverage of 100 and 12.5 m 
distance between CDPs ensured the proper lateral resolution 
and a good signal/noise ratio. These acquisition parameters 
represented an advanced technology that time. This facili-
tated a good image of basement structures. The processing 

Fig. 2  Eastern wall of the Csókakő quarry (L1). a Dolomitic breccia 
and two laminated dolomite intercalations. Fluidized zones cross cut 
the dolomite breccia and layers; b cm-scale slump folds with mm-

scale microfolds; c lineation is visible parallel to the slump-fold axis; 
d legend for the stereonets; e stereonet of the measured slump-fold 
axes and bedding
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was standard time processing including a challenging static 
correction due to hilly terrain, DMO correction, and post-
stack migration. The featured sections were not time-depth 
converted and the vertical scales show two ways which travel 
time is second.

Field observations

Csókakő quarry (L1 on Fig. 1b)

Upper Norian Rezi Dolomite is exposed in the Csókakő 
quarry (L1 on Fig. 1b), which is covered by Upper Miocene 
(Pannonian) conglomerate and sand. The most spectacular 
part of the quarry is its eastern wall (Fig. 2a). Two main 
facies types of the Rezi Dolomite are visible here: thin-lay-
ered–laminated dolomite and dolomite breccia. Laminated 
dolomite occurs in the northern part of the eastern wall with 
sub-horizontal dip. Southward-thickening dolomite breccia 
tongues can be observed between the laminated dolomite 
layers, further south. These strata dip already moderately 
toward NNE. Further south, the laminated dolomite inter-
calations pinch out, and in the southern edge of the quarry, 
only massive dolomite breccia is present.

The laminated unit is characterized by dark grey, strongly 
bituminous dolomite (Fig. 2a, b, c). Occasionally, sand-sized 
dolomite lithoclasts can be observed at the base of the lami-
nated dolomite layers (Fig. 2b). These layers show normal 
gradation (Fig. 2b). Slide and slumps are common in the 
laminated dolomite: slumps occur mostly in the northern 
part, while slide scarps are more common in the middle 
and southern parts of the eastern wall. Slump folds shows 
symmetric to slightly asymmetric geometry; the axes of 
the slump folds show a significant dispersion, neverthe-
less, WNW trend is most frequent (Fig. 2e). Lineation was 
observed on the slump folds, which is parallel to the fold 
axis (Fig. 2b, c).

The clasts of the dolomite breccia are up to few meters in 
size (Fig. 2a). They are thick-bedded, white- or light-grey 
boulders, which often contain green algae, molluscs, and 
gastropods. Stromatolitic, intertidal dolomite represents 
another clast type of this dolomite breccia.

The matrix of the dolomite breccia is gradually chang-
ing south ward. In the northern, distal part of the breccia 
tongues, the matrix of this dolomite breccia is laminated 
dolomite. The laminated dolomite matrix is intensively 
deformed into chaotic folds between the re-deposited large 
dolomite blocks. In contrast of that, in the southern part 
of the breccia tongues, the matrix is made up by massive, 
light-grey dolomite, containing the same platform-originated 
fossils as the fossil-rich clasts of the dolomite breccia.

Two laminated dolomite intercalations are visible 
between the dolomite breccia tongues in the middle part of 

the eastern wall (Fig. 2a). The gently NNE-dipping beds are 
cross cut by several, few centimetre wide zones (Fig. 2a). 
The infill of these zones is small dolomite breccia clasts 
sitting in dolomite matrix.

The lower laminated dolomite layer is interrupted by a 
5–10 m-wide sub-vertical collapsed zone, where chaotic, 
dark-grey dolomite is mixed with huge, light-grey dolomite 
blocks (Fig. 2a). The dark-grey dolomite probably originally 
represented the same material as the laminated one, but 
its original sedimentary features were destroyed (strongly 
deformed) later; therefore, the original lamination cannot 
be recognized there (Fig. 2a). The upper laminated dolomite 
intercalation is down bending and thickened above this zone 
(Fig. 2a).

Very similar, up to meter-sized dolomite blocks were 
observed in massive dolomite matrix at the Kőmell Cliff 
(L6 on Fig. 1b). Poor outcrop conditions does not permit 
detailed description (Fig. 1b).

Pilikán quarry (L2 on Fig. 1b)

Thinly bedded to laminated, dark-grey, bituminous dolo-
mite (Rezi Fm.) crops out in the Pilikán quarry (L2). In 
the southeastern corner of the quarry, a 3 m-thick dolomite 
breccia intercalation was observed (Fig. 3a). The clasts are 
significantly smaller than those of the previous outcrops; 
their maximum size is just few dm (Fig. 3b). The contact of 
the breccia bed and the underlying dolomite is a wavy ero-
sional surface. It is dissected by a number of normal faults 
(Fig. 3a). The offset of these faults decreasing upward, and 
finally, they are sealed by cover beds, without any flexure. 
In the upper part of the eastern wall meter-sized symmetric 
slump folds occur (Fig. 3a). The thickness variations along 
the limbs of the slump folds can be observed.

On the southern wall, small faults dissect a dark-grey 
marker bed, with a few cm offset; the overlying layers seal 
these structures (Fig. 3c). The NW–SE-trending faults show 
mostly normal offset; however, some of the faults are steep 
reverse faults (Fig. 3c, d).

Similar coarse-grained breccia and symmetric slump 
folds were observed in the southern Buda Hill quarry (L6 
on Fig. 1b).

Gyenesdiás, eastern quarry (L4 on Fig. 1b)

ENE ward dipping beds are dominant in this dolomite 
quarry; therefore, a relatively thick-tilted succession is vis-
ible. In the western wall of the quarry thick beds of Hauptdo-
lomit occur, whereas the southern wall exposes the Rezi 
Dolomite (Fig. 4a). The latter is thin-bedded, laminated, 
dark-grey bituminous dolomite, in which gentle NW–SE-
trending symmetric slump folds were observed. Thick-bed-
ded, light-grey dolomite intercalations occur upward, and 
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they dominate the eastern part of the southern wall, whereas, 
along the easternmost side, laminated dolomite is present, 
again. On the southern wall tilted, conjugate normal fault 
pairs were identified (Fig. 4a). The faults have only a few 
meter offsets. Back-tilted stereonet suggests NE–SW exten-
sion (Fig. 4.b, c).

Gyenesdiás, western quarry (L3 on Fig. 1b)

This outcrop is situated in the western vicinity of the pre-
viously described quarry (Fig. 1b). It is built up by thin-
bedded, laminated dark-grey Rezi Dolomite. Meso-scale 
synsedimentary normal fault/slide was identified with a few 
tens of cm offset (Fig. 4d). The beds are thicker in the hang-
ing wall, and the displacement decreases upwards. There 
is an upward smoothing extensional fault-related fold/flex-
ure above the fault. It is dissected by minor normal faults 
(Fig. 4e). The discrete fault planes of these small-scale struc-
tures are not visible and only the small steps on the bedding 
planes indicate them. The faults suggest WNW–ESE exten-
sion (Fig. 4f).

Felső‑hegy quarry (L5 on Fig. 1b)

This quarry exposes the Hauptdolomit Fm. (Fig. 1b). Thick-
bedded, light-grey dolomite is the most common, but occa-
sionally, a few cm thick, black, bituminous dolomite inter-
beds also occur locally. They contain small, angular clasts 
of light-grey dolomite. The succession is tilted to the NNE. 
On the western wall pre-tilt normal faults were observed 
(Fig. 4g). A dissected, bituminous, dark-grey interlayer has 
increased thickness in the hanging wall. A neptunian dyke 
running parallel to the fault is present in the footwall. It is 
filled by dark-grey, bituminous dolomite. These structures 
suggest NE–SW extension (Fig. 4h).

Seismic section in the western foreland 
of the Keszthely Hills

Two NE–SW-trending segments of 2D seismic sections are 
presented in this paper (Fig. 5a, b), which is situated in the 
northwestern foreland of the Keszthely Hills (Fig. 1b). The 

Fig. 3  Pilikán quarry (L2). a Dolobreccia intercalation of the Upper Norian Rezi F. on the eastern wall; b closer view on dolobreccia; c late Tri-
assic synsedimentary faults on the southern wall of the quarry. For legend of the stereonet, see Fig. 2d

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372



UNCORRECTED PROOF

Journal : Large 531 Article No : 1637 Pages : 19 MS Code : IJES-D-18-00112 Dispatch : 24-7-2018

 International Journal of Earth Sciences

1 3



UNCORRECTED PROOF

Journal : Large 531 Article No : 1637 Pages : 19 MS Code : IJES-D-18-00112 Dispatch : 24-7-2018

International Journal of Earth Sciences 

1 3

sections run parallel to each other, and they add important 
new information to the pre-orogenic structures.

Seismic facies of the formations

The pre-Senonian basement is represented by characteristic 
features (Figs. 1d, 5a, b). The relatively strong reflection 
package between 1.6 and 2.2 s TWT depth is equivalent to 
the Carnian Veszprém Marl. It is characterized by low-to-
high amplitude; reflectors laterally often fade away (Fig. 1d), 
which may represent interfingering with coeval platforms 
(Ederics Fm.). Veszprém Marl was drilled by the nearby 
Kd-3 well under 3.4 km of Upper Triassic dolomite. Above 
this formation, a significantly thick unit without any strong 
reflections occurs, which is interpreted as the Hauptdolomit 
and the Rezi Dolomite, which are considered as one seismic 
unit in this paper. This seismic unit is represented by very 
low-to-low amplitudes; occasionally, short, pale reflectors 
occur (Fig. 1d). The thickness of these two dolomite for-
mations is around 1 s in time, which suggests more than 
3 km thickness, applying the VSP data of Dohr (1981). The 
strong continuous reflections above this unit represent the 
Kössen Marl. The medium-to-high amplitudes are related 
to the significant impedance contrast between the marl and 
the limestone intercalations (Fig. 1d). However, the strong 
reflections first fade away and then disappear approaching 
the faults. The thin, non-reflective unit above the Kössen 
Marl may be correlated to the Upper Rhaetian prograding 
tongue of the Dachstein and Kardosrét Fm. Consequently, 
the strong reflections of the Kössen Marl are sandwiched 
between two, relatively monotonous platform carbonates 
without reflections. The Jurassic–Early Cretaceous succes-
sion, which is made up by thin formations with variable 
lithologies, shows again relatively strong continuous reflec-
tors on seismic sections, which can be characterized by low-
to-high amplitude (Figs. 1d, 5a, b).

This Upper Triassic–Lower Cretaceous succession 
is unconformably overlain by Senonian shallow marine 
marl with limestone intercalations and platform limestone 
(Fig. 5a, b). The variable lithology of the Senonian marl 
causes again continuous reflectors with high amplitude 
(Fig. 5a), while the relatively monotonous platform lime-
stone shows low-amplitude reflectors. On the section A–A′, 
the reflections of the Senonian marl onlap onto the basal 
surface of the Senonian (Fig. 5a). The Senonian deposits 

are unconformably overlain by Miocene succession, which 
was deposited in a prograding delta system. The related 
clinoforms are well visible, and dip apparently towards SW 
(Fig. 5a, b).

Structural geometry

The most prominent structure of the section A–A′ is an 
extensional graben, which is sealed by the Senonian deposits 
(Fig. 5a). This graben can be traced on the northeastern part 
of the section B–B′, but it is much narrower there (Fig. 5b). 
The graben has a segmented southwestern, NE-dipping 
boundary fault (Fault A) and a northeastern, SW-dipping 
boundary fault (Fault B). The graben is dissected by an addi-
tional NE-dipping fault (Fault C) creating two sub-grabens. 
These faults are post-dated by Senonian; however, Fault A 
and C show minor Senonian re-activation (Fig. 5a). On sec-
tion B–B′, Fault C seems to be cut by a younger, probably 
Senonian fault (Fig. 5b). The Kössen Marl forms SW-ward 
thickening half-grabens above the gently SW-ward tilted 
blocks, which are pronounced on section A–A′ (Fig. 5a). 
On the section B–B′, the graben shows more symmetric 
geometry (Fig. 5b). In the southwestern sub-graben, off-
lap surface within the Kössen Marl occurs (Fig. 5a). The 
contact between the Dachstein Limestone and the Kössen 
Marl is also an off-lap surface. In the vicinity of the major 
faults, the seismic image of the Kössen Marl shows poor 
quality, and in the hanging wall of the faults, wedge-shaped 
bodies are outlined (Fig. 5a, b). We interpret these bodies 
as fault-bounded talus breccia. The thickening trends of the 
Kössen Marl suggest that Fault A and C were dominantly 
active during its deposition (Fig. 5a, b). The Dachstein and 
Kardosrét Limestone are gradually thickening towards Fault 
B, which is well illustrated in section B–B′ (Fig. 5b). Only 
minor offset of these formations can be observed along the 
other two faults (Fault A and C). Therefore, the fault activity 
retreated onto Fault B during the deposition of the Dachstein 
and Kardosrét Limestone. If we restore the Senonian re-
activation of Fault A and C, it seems that Jurassic strata 
sealed these faults. However, Jurassic deposits occur only 
in the hanging wall of Fault B, which suggests that the fault 
was active during or after deposition, but before the deposi-
tion of Senonian rocks.

On the southwestern part of the section B–B′, another 
pre-orogenic graben is enclosed by Fault D and Fault E 
(Fig. 5b). The Kössen, Dachstein, and Kardosrét Formations 
do not have any thickness changes related to these faults. On 
the other hand, Jurassic succession is thicker in the graben, 
and reflections in the Jurassic seals Fault D, that suggest 
Jurassic synsedimentary movement. Fault E is re-activated 
by post-orogenic extension probably during Senonian and 
Miocene; nevertheless, it shows significantly bigger pre-
Senonian offset (Fig. 5b).

Fig. 4  a Tilted normal faults in the eastern Gyenesdiás quarry (L3), 
observed in Rezi Dolomite. b Stereonet data before tilt test. c Stere-
onet of data after tilt test. d Gyenesdiás, western quarry (L4). Late 
Triassic synsedimentary normal fault or slide in the laminated to 
thin-layered Rezi Dolomite. f Measured fault-slip data g Late Trias-
sic synsedimentary structures in the Felsőhegy quarry (L5), observed 
in Hauptdolomit. h Measured fault-slip data. Legend for stereonet: 
Fig. 2d
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Small normal faults are visible on the horst between 
Fault E and Fault A. These faults cross cut only the 
Dachstein and Kardosrét Limestone, and they probably 
detach on the Kössen Marl. These structures possibly rep-
resent mega-slides (Fig. 5b).

The sections are situated in the core of the “mid”-Cre-
taceous Sümeg-Devecser syncline (Tari 1994), and they 
are subparallel to the axis of syncline. Therefore, no major 
“mid”-Cretaceous contractional structures are visible on 
these sections. However, minor thrusts and related faults 

Fig. 5  a A–A′ and b B–B′ interpreted 2D seismic sections in the NW foreland of Keszthely Hills. Approximate location of the section is indi-
cated in Figs. 1b and 6a. Blank version of the sections is visible in Supplementary Appendix I
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occur in the pre-Senonian rocks (Fig. 5a). It is interesting 
that these structures are localized by the early pre-orogenic 
faults. In the case of Fault A and B, antithetic small thrusts 
developed in the proximal hanging wall of the faults within 
the Jurassic succession. Above/near the Fault C on top of a 
small horst small double verging thrusts developed in the 
Kössen Marl, which made a gentle anticline in the Dachstein 
Limestone. These compressional structures formed due to 
moderate Cretaceous shortening.

The above-described extensional faults can be traced 
on other seismic sections, as well. On the bases of these 
2D seismic lines, the strike of these structures is between 
WNW–ESE and NW–SE.

Interpretation of field observations

Coarse breccias along the Late Triassic 
Cserszegtomaj Fault

Map-view synsedimentary normal faults can be often out-
lined based on facies distribution and the presence of coarse 

breccias in the proximal hanging wall of the fault (e.g., Ber-
totti et al. 1993). Dolomite breccias of the Rezi Dolomite 
described in the outcrops of the Keszthely Hills have dolo-
mite matrix, which suggests that these are sedimentary brec-
cias. These breccias re-deposited on a most probably fault-
controlled slope (Csillag et al. 1995). Such breccias could be 
alternatively formed after deposition, due to seismic shock 
of semi-unconsolidated mud (Hips et al. 2016). In the study 
area, dolomite breccia outcrops of the Rezi Formation are 
limited to an NW–SE-trending belt along the southwestern 
edge of the Keszthely Hills (Fig. 6c). Coarse breccias of 
the Csókakő quarry (L1) and the Kőmell cliff (L6) could 
be interpreted as proximal talus breccia (Fig. 2a), while 
the more fine-grained breccia intercalation in the Pilikán 
quarry (L2) could be interpreted as a more distal lobe of 
fault-related mass movements (Fig. 3b). Platform environ-
ment is suggested as the source of fossil-rich blocks in the 
Csókakő quarry (L1) (Csillag et al. 1995).

South of the dolomite breccia occurrence of Csókakő 
quarry (L1) Hauptdolomit is exposed (Figs. 6a, 7a). The 
WNW–ESE-trending contact of the two formations was 
identified already by former mapping (Bohn 1979; Budai 
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Fig. 6  a Pre-Miocene geologic map of the Keszthely Hills, and its NW foreland. b Detailed map of the Eastern Keszthely Hills. c Late Triassic 
synsedimentary structures along the Cserszegtomaj Fault
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et al. 1999b); however, it was interpreted as a stratigraphic 
contact (Fig. 1b). In our interpretation, this contact repre-
sents a Late Triassic synsedimentary normal fault, which is 
referred as the Cserszegtomaj Fault in this paper (Fig. 6a). 
Probably, the southern WNW-trending border of the Rezi 
Dolomite occurrences near Gyenesdiás represents further 
NNE-dipping segments of Cserszegtomaj Fault, which was 
connected by ESE-dipping relay ramps (Fig. 6a, c).

Progradational tounge of dolomitized platform carbonates 
above the Rezi Dolomite was documented in the eastern 
part of the Keszthely Hills by Csillag et al. (1995). This pat-
tern suggests rather asymmetric half-graben geometry for 
the Late Norian basin of the Keszthely Hill (Fig. 7a). Note 
that the southward widening geometry of the N-trending 
Rezi syncline could be also explained by the Cretaceous 
folding of a WNW–ESE-trending Late Triassic half-graben 
(Fig. 7c).

The Cserszegtomaj Fault can be correlated with Fault A 
and C introduced on seismic sections. The activity of these 
NE–NNE-dipping faults is evidenced by main syntectonik 
deposits, which is represented by Rezi Dolomite in the Kes-
zthely Hills (Fig. 7a, b), and Kössen Marl on the seismic 
section (Fig. 5a, b). Probably, all of these faults were active 
simultaneously, although the resolution of seismic sections 
does not allow the observation of synsedimentary deforma-
tion of the Rezi Dolomite. The lack of Kössen Marl outcrop 
in the Keszthely Hills made it problematic to observe its 
deformation. Nevertheless, the presence of slumps and sedi-
mentary breccias in the Kössen Marl was documented based 
on wells in the Keszthely Hills (Haas 1993).

Rhaetian? To Jurassic extensional horst 
of the eastern Keszthely Hills

Reinterpretation of former geologic map (Budai et al. 1999b) 
suggests the presence of further map-view pre-orogenic 
structure in the Eastern Keszthely Hills. The easternmost 
part of the Keszthely Hills (Fig. 1b) is built up by Carnian 
formations (Csillag et al. 1995; Budai et al. 1999b). These 
formations partly dolomitized platform carbonates (Ederics 
Fm.) intercalating with the basinal Veszprém Marl (Csil-
lag et al. 1995; Budai et al. 1999b; Haas et al. 2014). The 
Carnian formations have tectonic contact with the Rezi 
Dolomite and the Hauptdolomit. The fault system bound-
ing Carnian formations has a northern WNW–ESE-trending 
segment (Nemesvita Fault), a western N–S trending seg-
ment (Szent Miklós Fault), and a southern NW–SE-trending 

segment (Ederics Fault) (Fig. 6a, b). The whole area is 
dominated by western dips, which formed during the “mid-
Cretaceous” E–W shortening. There are areas (e.g., along 
the Szent Miklós Fault), where the Carnian Veszprém Marl 
is in direct contact with the Upper Norian Rezi F., and thus, 
the whole Hauptdolomit, which is more than 1 km thick, is 
tectonically omitted.

The Szent Miklós Fault is sub-vertical based on the verti-
cal electric sounding of Gulyás (1991). That is why, it was 
interpreted by Dudko (1996) as a syn-orogenic, syn-folding 
strike–slip fault. In our interpretation, the large (km-scale) 
vertical displacement can be explained rather by normal or 
oblique-slip faulting (Fig. 6a, b). The actual sub-vertical dip 
of the fault (Gulyás 1991) can be the result of later, moder-
ate tilting, associated with syn-orogenic Cretaceous fold-
ing, which steepened, but not overturned the original west-
dipping fault.

It is clear from map view that the Szent Miklós Fault 
is dissected by NW–SE-trending sinistral faults with few 
100 m of offset (Fig. 6a, b) (Budai et al. 1999b; Dudko 
1996). These sinistral faults can be considered as syn-folding 
tear faults, since they have significant offset on the eastern 
“mid-Cretaceous” syncline (Vállus syncline); on the other 
hand, they die out towards northwest, and do not crosscut 
the western syncline (Rezi syncline). These sinistral faults 
were probably re-activated during the Late-Oligocene–Early 
Miocene, when a very similar stress field was present (Fodor 
et al. 1999). These sinistral faults also prove that the Szent 
Miklós Fault is an older, pre-orogenic fault, which was over-
printed by the structures of Cretaceous compression. On the 
other hand, no coarse breccia was observed along the Szent 
Miklós Fault, which may suggest that it is younger than Rezi 
Dolomite.

Although there are no data on the age of Nemesvita and 
Ederics Fault, we suggest that these faults are coeval with 
the Szent Miklós Fault, and they represent a pre-orogenic 
extensional horst. The Ederics Fault shows many similari-
ties to Fault B, which is slightly younger than Fault A and C. 
Fault B was moderately active during the deposition of Kös-
sen Marl, but it was still active later, during the deposition of 
Dachstein and Kardosrét Limestone when the southwestern 
boundary faults (Fault A and C) were inactive (Fig. 5a). The 
presence of Jurassic deposits in the hanging wall and the 
Senonian seal suggests that Fault B was slightly active dur-
ing the Jurassic, too. The same situation is suggested for the 
pre-orogenic horst of the eastern Keszthely Hills (Fig. 7a).

Pattern of outcrop‑scale pre‑orogenic normal faults

Many of the described faults in the Keszthely Hills can be 
interpreted as synsedimentary Late Triassic structures, based 
on several features. Such features are thickness variations 
of the beds along faults (Fig. 3c, 4d, e, g), the presence of 

Fig. 7  a Model cross section across the Keszthely Hills, showing the 
pre-orogenic basin geometry. b Position of the Csókakő quarry in 
relationship with Cserszegtomaj fault. c Simplified cartoon explain-
ing the formation of the southward widening Rezi syncline, as a 
folded Late Triassic half-graben
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wedge-shaped syntectonic beds (Fig. 4d, e), or faults sealed 
by younger beds of Late Triassic succession (Fig. 3a, c). In 
the Pilikán quarry (L2), small synsedimentary reverse faults 
occur besides normal faults. Certainly, all of these faults 
formed in the same extensional stress field, and the reverse 
faults formed due to space problems related to the movement 
along a non-planar normal fault plane.

Small steps of the beds in the western Gyenesdiás quarry 
(L4) (Fig. 4e) can be interpreted as healed normal faults, 
where the discrete faults disappeared due to diagenetic pro-
cesses. These structures can be considered as pre-diagenetic 
faults. Tilted normal faults of the eastern Gyenesdiás quarry 
(L3) represent structures which are postdate deposition and 
diagenesis; on the other hand, they developed before tilting/
folding, which age is Early Albian based on projection of 
structural data from the central Transdanubian Range (Fodor 
et al. 2017).

The strike of outcrop-scale synsedimentary normal faults 
is in accordance with map-scale pattern (Fig. 6a), since most 
of these structures shows NNE–SSW or NE–SW extension 
(Figs. 3d, 4c, h,). This direction of extension is in accord-
ance with the trend of other pre-orogenic normal faults, 
described in the central and northeastern Transdanubian 
Range. The ages of such structures are Middle Triassic 
(Budai and Vörös 2006) or Early and Middle Jurassic (Vörös 
and Galácz 1998; Lantos 1997; Fodor 2008). Perpendicular, 
WNW–ESE extension (Fig. 4f) was estimated based on the 
fault/slide of the western Gyenesdiás quarry (L4), which is 
situated most probably on a relay ramp which connects two 
segments of the Cserszegtomaj Faults (Fig. 6a).

Pattern of slumps and slides

The presence of slumps and slides is widespread in the 
laminated Rezi Dolomite. In the Csókakő quarry (L1), an 
extensional and a compressional domain can be separated, 
similar to many case studies (e.g., Farrell 1984; Debacker 
et al. 2009; Alsop and Marco 2011). We suggest that the 
NNE-ward-dipping beds of the southern part of the quarry 
represent the original dip of the slope (see next chapter). 
Slide scarps are present mostly in this part of the quarry 
(extensional domain). The northern side of the quarry, which 
can be characterized by horizontal dips, is dominated mostly 
by slumps. This part of the quarry situated on the toe of the 
slope where compressional domain developed.

The strike of slide scarps and slump-fold axes may allow 
to determine the sedimentary transport direction. The strikes 
of slide scarps are theoretically parallel to the strike of the 
slope. On the other hand, slump-fold axes can suffer nota-
ble rotation, after a significant transport (Alsop and Marco 
2011). During the early stage of slump formation, the slump 
fold shows symmetric geometry. In that stage, the axis of 
the slump is perpendicular to the dip direction of the slope 

(Bradley and Hanson 1998). Slumps observed in Rezi Dolo-
mite show symmetric or slightly asymmetric geometry 
suggesting minor transport (e.g., Fig. 2b). Therefore, the 
transport direction is supposed to be sub-perpendicular to 
the fold axis. While most of the observed slump axes are 
NW–SE directed (Fig. 6c), the gravity slide transport direc-
tion is toward NE in the hanging wall of the fault segments 
[Csókakő quarry (L1), Kőmell Cliff (L6)] (Fig. 6c). On the 
other hand, the slump-fold axes pronouncedly different on 
relay ramps (NE-trending) which may suggest SE-ward mass 
transport [Budai Hill quarry (L7), Gyenesdiás quarries (L3) 
and (L4)] (Fig. 6c).

Slump folds often show features resembling metamorphic 
ductile structures; for example, the presence of stretching 
lineation is common in the case of soft-sediment deforma-
tion (Ortner 2013). However, in our case, a completely dif-
ferent type of lineation was observed. On the polished sur-
face of samples, it is visible that this lineation derives from 
fold hinges of microfolds (Fig. 2b, c).

Dewatering structures

An episode of talus-cone breccia formation probably pro-
vided considerable volume of sediments. The sudden load 
made the underlying unconsolidated thin-layered carbonate 
mud compacted, and de-watered. The chaotic zone of the 
Csókakő quarry (L1) may indicate dewatering and fluidisa-
tion of originally laminated sediments, similar to examples 
of Ortner (2007). Sediment fluidization occurred where the 
original sedimentary features of the laminated dolomite 
were completely destroyed (Knipe 1986; Ortner 2007). The 
dewatering related compaction could be responsible for the 
collapse and subsidence (down bending) of overlying beds 
(upper laminated layer). The vertically arranged few cm 
zones can be interpreted as dewatering pipes, where water 
was released from a deeper beds (Fig. 2a). The tilted beds 
of the Csókakő quarry (L1) are dissected by sub-vertical 
dewatering pipes and fluidized zone (Figs. 2a, 7b). It con-
firms that the tilting in the Csókakő quarry (L1) pre-dates 
diagenetic processes, such as dewatering, and the tilted strata 
there represent the original dip of the tectonically controlled 
slope.

The style of the above-mentioned early deformation was 
probably highly influenced by the early diagenetic process 
such as dolomitization (Meister et al. 2013). Platform-orig-
inated re-deposited blocks observed in the Csókakő quarry 
(L1) (Fig. 2a) probably underwent early dolomitization, as 
well (Haas et al. 2012), which redound the “brittle” re-dep-
osition, represented by blocks. On the other hand, the lami-
nated Rezi Dolomite—which deposited in deeper marine 
environment—probably dolomitized later, during burial; 
therefore, dolomitization did not obstruct soft-sediment 
deformation, such as slumping or soft-sediment fluidization.
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Discussion: regional outlook

Comparison with other Alpine basins

A newly defined Late Triassic extensional graben system 
was identified in this paper, which can be correlated to 
other areas of the Alpine region. Similar Late Triassic 
extensional back-platform basins are known from the west-
ern Southern Alps (Lombardy) and from the Bajuvaric 
nappe system of the Northern Calcareous Alps. On the 
basis of Late Triassic facies boundaries, several authors 
argue that the Transdanubian Range was located more to 
the west, between the Northern Calcareous Alps of the 
Drau Range and Southern Alps (Haas et al. 1995; Mandl 
2000), and these Late Triassic extensional basins formed 
a continuous graben system, which is referred as Kössen 
Basin in this paper (Fig. 8a). The correlation of the related 
succession was the topic of several publications (Haas 
et al. 1995; Gale et al. 2015; Rožič et al. 2009); therefore, 

in this paper, we compare these basins from a structural 
point of view.

The geometry of the Late Triassic extensional basins is 
well reconstructed in the Lombardy; notwithstanding, it is 
strongly overprinted by southvergent Cenozoic thrusts (Ber-
totti et al. 1993; Carminati et al. 2010; Jadoul et al. 2005). 
Approximately 10 km wide, N–S trending horsts and gra-
bens were formed there, which show a similar geometry like 
the Late Triassic grabens of the southwestern Transdanubian 
Range (Bertotti et al. 1993). Bally et al. (1981) documented 
listric geometry for some of these faults, similar to Fault A in 
the present study. According to Bertotti et al. (1993), some 
of the Norian–Rhaetian faults in the Lombardian region 
were active during the Jurassic, which is also a common fea-
ture, compared to our observations. Back-rotating the units 
with the Mesozoic paleomagnetic data (Fig. 1a; references 
therein), the pre-orogenic normal faults of Lombardy and the 
study area have similar N–S strike (Fig. 8a).

The pre-orogenic basins in the Northern Calcareous 
Alps were strongly overprinted by Cretaceous and Ceno-
zoic nappe stacking. Therefore, the Late Triassic basin 
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geometry has not been reconstructed, yet from the struc-
tural point of view. However, several authors propose the 
presence of Norian extensional deformation based on 
facies distribution and other sedimentological evidences 
(Satterley and Brandner 1995; Gawlick and Missoni 2013). 
An exception is the work of Behrmann and Tanner (2006), 
which reported the thickness variation of the Hauptdo-
lomit along N–S and NW–SE-trending faults based on 
restored cross-sections. This also confirms that a signifi-
cant deformation initiated already during the deposition 
of the Hauptdolomit. Considering paleomagnetic data 
(Fig. 1a; references therein), the NW–SE-trending seg-
ment also shows N–S paleo-trend, like in the study area 
(Fig. 8a).

Most of the Anisian basins, which were formed due 
to opening of the Neotethys, were filled up during the 
Carnian. However, in those basins, which were situated 
along the distal Adriatic passive margin, deep-water sedi-
mentation was continuous during Late Triassic. Probably, 
Norian–Rhaetian extension contributed to the preserva-
tion of these basins. Such basins are the Hallstatt basin of 
the Northern Calcareous Alps (Lein 1985; Gawlick and 
Böhm 2000), the Csővár and Mátyáshegy basin in the NE 
Transdanubian Range (Haas et al. 2010), and the Slove-
nian basin in the Southern Alps (Goričan 2012; Gale et al. 
2015; Celarc et al. 2013; Oprčkal et al. 2012). Accord-
ing to Missoni et al. (2008), the Slovenian basin was con-
trolled by strike–slip movement during Late Triassic times 
(Fig. 8a).

Geodynamic implications

Geodynamic background of Norian deformation of the Adri-
atic plate is still under debate. Bertotti et al. (1993) con-
sidered this deformation as the first sign of Alpine Tethys 
rifting. According to Cozzi (2000), Norian faults of the 
Southern Alps can be related rather to the opening of the 
Neotethys. Based on the recent works, continental rifting of 
the Alpine Tethys started just during Early Jurassic (Froitz-
neim and Manatschal 1996; Berra et al. 2009; Decarlis et al. 
2015).

On the basis of the Triassic evolution of the Transdanu-
bian Range, the Anisian extension, related to the opening 
of the Neotethys (Vörös and Budai 2006), can be clearly 
separated from Norian extension. Our results show that the 
main syn-rift sediments (Rezi and Kössen Fm.) are Late Tri-
assic in age in the study area, and extension was continuous 
in the Jurassic. This observation may link the formation of 
these basins rather to the continental rifting of the Alpine 
Tethys. It suggests that the rifting should have started on 
the proximal Adriatic margin even during Norian (Bertotti 
et al. 1993).

Asymmetry of the Alpine Tethys rift

The Late Triassic Kössen basin was situated significantly to 
the east of the future Alpine Tethys, on the proximal Adriatic 
passive margin (Fig. 8a). During Jurassic, westward migra-
tion of extensional tectonism was pointed out in the case of 
Austroalpine nappes (Froitzneim and Manatschal 1996). The 
proximal Adriatic margin was subject of dominantly Hettan-
gian–Sinemurian extension, whereas, in the distal Adriatic 
margin, Pliensbachian–Callovian extension occurred (Fig. 8a). 
A similar situation was interpreted for the Southern Alps, west 
of Lombardy. In the Cusio-Biella-Canavese Zone, extensional 
grabens formed just during the Early Jurassic (Decarlis et al. 
2017).

Nevertheless, Jurassic normal faults and grabens are known 
east of the Lombardian basin. In the Belluno Basin, deep-water 
sedimentation and facies differentiation started just during the 
Early Jurassic. However, thickness changes suggest that a sig-
nificant extension initiated also in the Belluno Basin during 
the Norian, but, in contrast with Lombardian Basin, the sedi-
mentation could keep pace with extension-related subsidence 
(Masetti et al. 2012).

Most authors agree that the opening of the Piemont–Ligu-
rian Ocean is the result of asymmetric rifting, where the Adri-
atic plate represents the lower plate, while the European plate 
is the upper plate (Froitzneim and Manatschal 1996). Alterna-
tively, it is also possible that the rift system changed polarity 
along a major transform fault, such as paleo-Periadriatic Fault 
(Decarlis et al. 2017). According to Lavier and Manatschal 
(2006) and Decarlis et al. (2017), the rift system became asym-
metric only after necking of the lithosphere, when the residual 
crust did not contain any ductile level.

According to our opinion, the rifting of the Alpine Tethys 
was the initial asymmetric, since we connect the formation 
of the Late Triassic basins to the initial continental extension 
within the upper crust. Thus, westward migration of exten-
sional deformation started during Late Triassic (Fig. 8b). This 
feature is asymmetric, while such processes are not present 
on the adjacent European margin. According to a numerical 
model of Balázs et al. (2017), the development of initially 
asymmetric rift zones can be triggered by inherited weakness 
zones (e.g., inherited suture). In the present case, the role of 
Variscan orogeny or its Permian collapse can arise (Manatschal 
et al. 2015). On the other hand, this relationship needs further 
investigation, since the built up of Variscan orogeny has been 
poorly reconstructed yet in the study and neighbour areas, due 
to strong Alpine overprint.
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Conclusions

Late Triassic and Jurassic map-scale normal faults were 
defined in the southeastern part of the Transdanubian Range, 
based on field observation and 2D seismic data. The faults 
show NW–SE-to-WNW–ESE trend. The extension was active 
already during the deposition of the Hauptdolomit (Norian). 
Initially, the sedimentation was able to keep pace with the 
extension-derived subsidence, and thus, platform environment 
was present both in the footwall and hanging wall. At the end 
of Middle Norian, extension-related intraplatform basin of the 
Rezi Dolomite and the Rheatian Kössen Marl formed. The 
extensional deformation was active during the Late Rhaetian 
progradation of the Dachstein Limestone, and through the 
Lower-to-Middle Jurassic. Consequently, we propose con-
tinuous extension during the Late Triassic and Early–Middle 
Jurassic.

In the Keszthely Hills, the late Middle Norian–Upper 
Norian Rezi Dolomite is proved to be the main syntectonic 
deposit. The synsedimentary faulting was associated with the 
development of slides and slumps, and the formation of fault-
bounded talus-cone breccia.

Other type of pre-orogenic extensional faults post-dates 
the deposition of Rezi Dolomite, but pre-dates Albian fold-
ing. These structures formed probably during the Jurassic. The 
Szent Miklós Fault represents one map-view example of these 
structures in the Keszthely Hills.

On 2D seismic section, normal faulting proved to be coeval 
with the deposition of Kössen Marl and Dachstein Limestone. 
The main reasons are thickness variations due to normal fault-
ing, and the presence of talus-cone breccia. Jurassic activity of 
fault B was also proposed in this case.

The Late Triassic extension was the first sign of continental 
rifting of Alpine Tethys, which represents an initially asym-
metric rift, where at least the northern part of the Adriatic 
plate was in lower plate position. The Lombardian Basin–Zala 
Basin–future Bajuvaric nappe system was the first locus of 
rift-related extension on the proximal Adriatic magin. Later 
on, during the Early and Middle Jurassic, the axis of exten-
sional deformation was migrated westward, towards the future 
Alpine Tethys.
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