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Lidar-based Gait Analysis and Activity Recognition
In a 4D Survelllance System

Csaba Benedek, Bence Galai, Balazs Nagy and Zsolt Janko

Abstract—This paper presents new approaches for gait and A critical issue in surveillance of people is the assignment
activity analysis based on data streams of a Rotating Multi Beam of broken trajectory segments during the tracking process,
(RMB) Lidar sensor. The proposed algorithms are embedded hat 5re ysually produced by frequent occlusions between the

into an integrated 4D vision and visualization system, which is le in th imolv by the fact that th destri
able to analyze and interactively display real scenarios in natural people in the scene, or Simply by the fact that theé pedestrians

outdoor environments with walking pedestrians. The main focus May temporarily leave the Field of View (FoV). People re-
of the investigations are gait based person re-identification identification [2] requires the extraction of biometric descrip-
during tracking, and recognition of specific activity patterns tors, which in our case may beeak featuressince we are
such as bending, waving, making phone calls and checking the ¢4¢;5ing on a relatively small number of people (i.e., we are
time looking at wristwatches. The descriptors for training and . . . o

recognition are observed and extracted from realistic outdoor not trying to 'dent'fy specific peOpIe from large databases). O_n
surveillance scenarios, where multiple pedestrians are walking the other hand, in our scenarios the people are non-cooperative,
in the field of interest following possibly intersecting trajectories, they have to be recognized during their natural behavior, and
thus the observations might often be affected by occlusions or the process should be (nearly) real time.

background noise. Since there is no public database available  G5it 55 g biometric feature has been extensively examined
for such scenarios, we created and published a new Lidar-based . th t d d 31 141 [5]. si holoaical
outdoors gait and activity dataset on our website, that contains in the recent decades [3], [4], [5], since psychological ex-

point cloud sequences of 28 different persons extracted and Periments already proved in the 1960s that many people can
aggregated from 35 minutes-long measurements. The presentedefficiently recognize their acquaintances based on the way
results confirm that both efficient gait-based identification and they walk [6]. A video-based gait recognition module may

activity recognition is achievable in the sparse point clouds of a be integrated into surveillance systems in a straightforward

single RMB Lidar sensor. After extracting the people trajectories, - it d t d additi | inst tai dit
we synthesized a free-viewpoint video, where moving avatar way, since It does not need additional instrumentation, and |

models follow the trajectories of the observed pedestrians in real does not require the people to have contact with any special
time, ensuring that the leg movements of the animated avatars equipment: they may naturally walk in the FoV of the cameras.

are synchronized with the real gait cycles observed in the Lidar Although several studies on gait based person identification

stream. have been published in the literature (see Sec. I-A for an
Index Terms—multi-beam Lidar, gait recognition, activity —overview), most existing techniques have been validated in
recognition, 4D reconstruction strongly controlled environments, where the gait prints of
the test subjects have been independently recorded one after
I. INTRODUCTION another, and the assignment has been conducted as an offline

The analysis of dynamic 3D (i.e. 4D) scenarios with muRrocess. On the other hand, in a realistic surveillance scenario,

tiple moving pedestrians has received great interest in varid}§ 9ait features should be observed in an arbitaly (urban
application fields, such as intelligent surveillance [1], vide8F natural) scene, where multiple pedestrians are concurrently
communication or augmented reality. A complex visual sceféesent in the field, and they may partially occlude each other.
interpretation system implements several steps starting witf Preserve the online analyzing capabilities of the system,
people detection, followed by localization and tracking, tryinf!® Person assignment should also be performed during the
to achieve higher level activity recognition or abnormal eveR€tion, where the relative frequency of newly appearing and
detection functions, and efficient visualization. re-appearing people is arbitrary and unknown.
Apart from person identification, further challenges in 4D
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moadified by the user. Although there exist stereo vision basednsidered. However, in a real surveillance environment one
solutions for capturing and reconstructing dynamic outdoshould expect to observe various activities such as people mak-
scenes, such us [7], they are not fully automatic and they ang phone calls, bending, checking their watches, waving their
extremely computation-intensive. hands, etc. Since in the 4D studio the previously mentioned
The integrated!D (i4D) vision and visualization systemmotion templates can be recorded in a straightforward way for
proposed in [8] offers a reconstruction framework for dynamitie free-viewpoint video output, the main challenge here is to
3D scenarios by integrating two different types of data: ouimplement an automatic activity recognition module based on
door 4D point cloud sequences recorded by a rotating multire Lidar point cloud sequence.
beam (RMB) Lidar sensor, and 4D models of moving actors
obtained in an indoor 4D Reconstruction Studio [9] in advance
(offline). The system is able to automatically detect and tra@k
multiple moving pedestrians in the field of interest, and it In this section, we give an overview on existing visual
provides as output a geometrically reconstructed and textugalt analysis and recognition techniques from the literature,
scene with moving 4D studio avatars, which follow in redlocusing on their connections to our measurement scenarios.
time the trajectories of the observed pedestrians. As showrSeveral methods tackle the detection problem on videos of
in the workflow of Fig. 1, the RMB Lidar sensor monitoramonocular optical cameras. Since we can only assume the
the scene from a fixed position and provides a dynamic posubjects’ side view visibility in very specific environments
cloud sequence. The measurement is processed to build a[B0, [12], a key research issue is to find a view invariant
model of the static part of the scene and detect and track tiepresentation of the extracted gait features. Among various
moving people. Each pedestrian is represented by a spaeggmroaches, a view transformation model using a multi-layer
moving point cluster and a trajectory. A sparse cluster is th@erceptron is introduced in [13], while the gait energy image
replaced with an avatar created in a 4D studio [9]. Finally tH&EI) representation has been adopted in [14], [15]. A new
integrated 4D scene model can be displayed from an arbitralijnensionality reduction technique is presented for the average
user viewpoint. silhouettes in [16]. Patch Distribution Features are built on
The basic i4D system [8] had a few notable limitatiofisst the GEI representation in [17], [18]. A new image-to-class
only a short time tracking process was implemented, therefatistance metrics was proposed in [19] to enable efficient
after loosing the trajectories the re-appearing people wearemparison of different gait patterns. [20] performs spatio-
always marked as new persons. This re-identification isstemporal silhouette print comparison via the Dynamic Time
has been partially addressed in [10], based on Lidar bad#drping (DTW) signal processing algorithm, and features
weak biometric identifiers featuring the measured height afidm simple silhouette averaging are utilized in [21]. A number
the intensity histogram of the people’s point cloud segments.techniques transform the objects into a canonical shape rep-
However, the previous two descriptors may confuse the targetsentation [22], [23]. All the above methods aim to maximize
if their heights and clothes are similar. The vertical resolutiche detection performance for different public multi-view gait
of an RMB Lidar sensor is quite low0(4° in case of the databases [24], such as tBASIA gait datasef25], the USF
Velodyne HDL 64-E sensor applied in [10]), which means thalatabasg26], andthe CMU Motion of Body (MoBd)atabase
one needs a height difference of at least 6-8cm between tj£2d]. Although these datasets contain motion sequences of
people for reliable discrimination. Another problem is that thenany pedestrians from different viewpoints for cross view
intensity channel of the considered sensor is not calibrated, validation, they are recorded in strongly controlled indoor or
the measured intensity values are not necessarily characteristitdoor environments in terms of illumination, background
for a given clothing material, and they may depend on ttearfaces and background motions. Additionally, the test sub-
sensor’s distance and the view angle. jects follow fixed trajectories [26] or walk on a treadmill [27],
The secondlimitation of the [8] system was that althoughconditions which impose significant restrictions versus real
the avatars followed the real person trajectories, always tusurveillance scenarios, where the targets may move arbitrarily.
ing according to the trajectories’ tangents, the animated I&gpe HID-UMD database [28] contains walk videos captured
movements were not synchronized with the real walk cycles. more general outdoor environments, with various view an-
The step cycles recorded in the 4D Studio were simptles, camera distances and background parameters. However,
repeated continuously disregarding the step frequency asidhilarly to the other mentioned datasets, the pedestrians are
phase information, having a distracting visual impact. Theresalking alone in each video sequence, a constraint which
fore, gait analysis may also contribute to the improvement ofakes high quality silhouette extraction a feasible task. On the
the existing animation framework, by continuously extractingther hand, in real dynamic scenes with a large FoV, we must
actual gait phases from the Lidar measurements and us@xgect multiple freely walking pedestrians, possibly occluding
the extracted phase information for realistic animation of treach other, therefore the critical silhouette extraction step
walking models. The contributions of the present paper focasght become a bottleneck for the whole process. Problems
in part on overcoming the above mentioned limitations, bsaused by occlusions can be partially handled by information
supporting the re-identification and animation steps of tlesion of different views [29], however this approach requires
system with gait-based features. a carefully positioned and calibrated multi-camera system,
A third limitation of [8] that we try to overcome in this making quick temporary installation difficult for applications
paper is that previously only “normal” walking scenarios wermonitoring ad-hoc or special events.

Related work in gait analysis
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Fig. 1. Workflow of the i4D system framework [8]. Figures a)-&nbnstrate the steps of Lidar based moving object detection and multi-target tracking,
f)-h) shows the reconstruction process of moving avatars in the 4D studio, i) displays a reference video image from the same scenario (not used by the
workflow) and j) is a snapshot from the reconstructed 4D scenario, shown from four different viewpoints

A possible option for obtaining depth information fromvisual gait analysis and activity recognition, supporting pedes-
the scene is using stereo cameras or Time-of-Flight (Toffjan re-identification and 4D visualization tasks in realistic
technologies. Cheap Kinect sensors have been investigatadveillance environments. Although pedestrian detection and
for gait analysis in a number of works [30], [31], [32], andracking tasks have already been conducted on RMB Lidar
a corresponding gait database has already been publishezhsurements [10], [37], to our best knowledge our research
[33] for reference. However Kinects are still less efficient fo38], [39] has been the first attempt to involve such sensors
applications for real life outdoor scenarios due to their smail gait recognition. Due to the low spatial resolution of the
FoV and range (resolvable depth is between 0.8m — 4.0m), asahsor, and the presence of partially incomplete pedestrian
the low quality outdoor performance of the sensor, especiaiifapes due to various occlusion effects, we decided to follow a
in direct sunlight. A 2D laser range scanner has been usedodel freeapproach, in contrast tmodel basednethods [40],
measure gait characteristic in [34], [35], however, due to its 2@1], [42] which fit structural body part models to the detected
nature, the scanner is not able to perform object classificatiaijects and extract various joint angles or body segment
and it cannot oversee large scenes with multiple objects eithength parameters. For example, [41] used particle swarm

Velodyne’s Rotating Multi-Beam (RMB) Lidar sensor isoptimization for model fitting based on the edge distance
able to provide point cloud sequences from large outdoorap, which definitely requires high quality silhouettes. On
scenes with a frame-rate of 15 Hz, with380° FoV, and the contrary, our main efforts focus on noise tolerant robust
produces point clouds with approximately 65K points/framextraction of the descriptors and the integration of the efficient
with a maximum radius of 120m. The RMB Lidar sensofusion of the gait parameters with other feature modalities.
does not need any installation or calibration after being placed
into a new environment. However, the spatial density of the  [l. LIDAR BASED SURVEILLANCE FRAMEWORK

point cloud is quite sparse, showing a significant drop in the 1o main steps of the processing pipeline are demonstrated
sampling density at larger distances from the sensor, and 8ig. 1. The RMB Lidar records 360:ange data sequences
can also see a ring pattern with points in the same ring mugh irregular point clouds (Fig. 1(b)). To separate dynamic
closer to each other than point; of diﬁereqt rings. Accord.i"{‘éreground from static background in a range data sequence,
to our measurements, the the size of a point cloud assoc'_""éegrobabilistic approach [43] is applied. To ensure real-time
to a person in a courtyard with a radius of 10-20m variggeration, we project the irregular point cloud to a cylinder
between 0.18-0.5K points, which t&o orders of magnitude giface yielding a depth image on a regular lattice, and perform
smaller than the figures of Kinect (10-20K points/person), afle segmentation in the 2D range image domain. We model the
also significantly lower than the density of the stereo camefysistics of the range values observed at each pixel position as

measurements from [36]. a Mixture of Gaussians and update the parameters similarly
to the standard approach [44]. The background is modeled
by the Gaussian components with the highest weight values
in the mixture, and outlier detection enables the extraction of
In this paper, we investigate the possibility of using the possible motion regions. However, by adopting the above
RMB Lidar sensor (specifically, the Velodyne HDL 64-E) foischeme, we must expect several spurious effects, caused by

B. The contributions of the paper
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the quantisation error of the discretised view angle and back-yif’ﬁg St
ground flickering, e.g., due to vegetation motion. These eﬁects/ﬁ/
are significantly decreased by a dynamic MRF model [43], .
which describes the background and foreground classes b
both spatial and temporal features. Since the MRF model is
defined in the range image space, the 2D image segmentati =
must be followed by a 3D point classification step by resolving {44 I N \
the ambiguities of the 3D-2D mapping with local spatial (a) Bird's view (b) Top view
filtering. Using a contextual foreground model, we remove a
large part of the irrelevant background motion which is mainly<: 2. S =T -
. i the point cloud from bird's view (b) projection plane from top view, taken
caused by moving tree crowns. A sample frame for the respitihe tangent of the smoothed person trajectory.
of foreground detection is shown in Fig. 1(c).

P~ bl

Plane of ! ’ == Person trajectory

projection

f.i === Plane of projection
H i A

Silhouette projection: (a) a tracked person and its projection plane

The next step is pedestrian detection and tracking. The inpt proj.
of this component is the RMB Lidar point cloud sequence, ~ S plane
where each point is marked with a segmentation label o ¢ - '
foreground or background, while the output consists of cluster directioi*
of foreground regions so that the points corresponding to th
same object receive the same label over the sequence (Fi
1(d)). 3

First, the point cloud regions classified as foreground are
clustered to obtain separate blobs for each moving persgg 3. silhouette projection types from top-view. (a) the projection plane’s
candidate. A regular lattice is fit to the ground plane and timermal points towards the sensor (undefined silhouette orientation) (b) the
foreground regions are projected onto this lattice. Morpholoar_ojection plane is the tangent of the trajectory (sideview silhouettes)
ical filters are applied in the image plane to obtain spatially
connected blobs for different persons. Then the system extracts
appropriately sized connected components that satisfy area I11. L IDAR BASED GAIT ANALYSIS

constraints determined by lower and higher thresholds. The

centre of each extracted blob is considered as a candidatd! the proposed framework, the main goal of gait investi-
for foot position in the ground plane. Note that connecteftion i to support the long-term assignment (LTA) process

pedestrian shapes may be merged into one blob, while blél;sthe tracking module. To fulfill the requirements of real

of partially occluded persons may be missed or broken ingdTveillance systems, we need to extract unique biometric

several parts. Instead of proposing various heuristic rules [fgtures online during the multi-target tracking process from
eliminate these artifacts at the level of the individual timE'€ measurement sequence. _
frames, a robust multi-tracking module has been developedFOr gait analysis, we focus on 2D silhouette based ap-

which efficiently handles the problems at the sequence levBfoaches, which are considered quite robust against low
resolution and partial occlusion artifacts, due to capturing

_The pedestrian tracking module combines Short-Term Agjtormation from the whole body. The first step is projecting
signment (STA) and Long-Term Assignment (LTA) steps. The 3p points of a person in the RMB Lidar point cloud
STA part attempts to match each actually detected objggt,, apnropriately selected image plane. Since the FoV of
candidate with the current object trajectories maintained e \|odyne sensor is circular, a straightforward projection
the tracker, by purely considering the projected 2D centroflane could be taken at a given ground position as the local
positions of the target. The STA process should also Bg\qent of the circle around the sensor location (see Fig.
able to continue a given trajectory if the detector misses the,y) ‘However this choice would not ensure viewpoint invari-

concerning object for a few frames due to occlusion. In thegg; e a1 res as the silhouette's orientation may be arbitrary.
cases the temporal discontinuities of the tracks must be filled

with estimated position values. On the other hand, the LTA
module is responsible for extracting discriminative features for
the re-identification of objects lost by STA due to occlusion
in many consecutive frames or leaving the FoV. For this
reason, lost objects are registered to an archived object list,
which is periodically checked by the LTA process. LTA must
also recognize when a new, previously not registered person
appears in the scene. Finally, we generate a 2D trajectory
of each pedestrian. Even with applying Kalman filtering, the
extracted 2D raw object tracks proved to be quite noisy,
therefore, we applied a 80% compression of the curves filg. 4. Comparison of the (a) high resolution CMU MoBo silhouettes
the Fourier descriptor space [45], which yielded the smoothgptured with an optical video camera and (b)-(c) our low quality RMB Lidar
. . . based silhouettes
tracks displayed in Fig. 1(e).

trajectpry

(a) Circular tangent (b) Trajectory tangent (sideview)

F1

(a) MoBo (image) (b) Lidar - near (c) Lidar - far

b
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frame number

(a) Width vector (b) Silhouette print

) ) Fig. 6. Features of the silhouette print [20] technique on Lidar data
(a) Pedestrians on the Lidar frame

Person | M Person2 [l Person 3 M Person4 M
realistic surveillance scene (see Person 2).

In the following parts of this section, we analyze various
features for gait-based person re-identification in the projected
person-image sequences. For comparison, we implemented
four different model-free silhouette or range image based

" . approaches in our Lidar-based surveillance framework. The
first three techniques are Lidar-focused modifications of state-
(b) Projected silhouettes of-the-art approaches, proposed earlier for standard optical and
Fig. 5. Comparison of the (a) Output of the multi-pedestrian tracker for fiN€Ct data, while the fourth method is an improvement of
sample Lidar frame (person point clouds+trajectories)(b) projected pedestr@aur model from [38]. By each selected method, we had to
silhouettes on the selected Lidar frame explore first whether their expected input feature maps can be
derived from the RMB Lidar streams. Usually the adoptions
did not proved to be straightforward, and we experienced
Instead, we interpolate the side view projections of the 3Mat the above mentioned limitations of silhouette extraction
human silhouettes, by exploiting the assumption that peogkspecially occlusion and low resolution) significantly affected
mostly walk forwards in the scene, turning towards the tangethe performance.
direction of the trajectory. At each time frame, we project
the point cloud segment of each person to the plane, whigh sjlhouette print
:ntersects the actual gr(_)u_nd position, is perpendicular to theKale et al. [20] used the width of the outer contour of a
ocal ground plane, and it is parallel to the local tangent vectgr

of the Fourier-smoothed trajectory from the top view (Fi Inarized silhouette as the basic feature. In this method, a
J y P 9 ounding box is placed around the extracted silhouette patch,

and 3(b)). SO . . .
The projected point cloud consists of a number of separat‘?ﬁ'(:h is divided intaD equal box-parts along the vertical axis.

oints in the image plane. which can be transformed inta en the width of the silhouette is stored in each box-part,
P 9 p o . r¥i|elding a D dimensional (used) = 20) width-vector at a
connected 2D foreground regions by morphological opera- ; ; . .
. . . given time frame (Fig. 6(a)). The width-vectors of consecutive
tions. In Fig. 4 (a) and (b), we can compare a (spaﬂall%

downscaled silhouette from the CMU (MoBo) Database [27. ames are co.mb_med .mto an image ca_lled §|Ihou¢tte pnryt (SP)
. . : age, which is visualized in Fig. 6(b), in which brighter pixels
and aquite cleansilhouette provided by our system. We

can see that due to the morphological dilation kernels tr%ferto larger values of the width vectors. Similarities between

Lidar-based masks retain much less detail of the the objtﬁ)Er prints are calculated using the dynamic time warping

. W) algorithm [20].
contour, but the shape is clearly observable at a coarse SCaAls sore starting the evaluation in our Lidar dataset, we

In addition, a main advantage is of the Lidar technology is_,. : : -
that the laser measurement is directly obtained in the Bhdated our implementation on the original CMU MoBo [27]

: . : . . . optical) database, and reproduced similar efficient results to
Euclidean coordinate space, without perspective distortion :
. . ; ]. Thereafter, the adaptation of the method to the more
scaling effects, thus the projected silhouettes may be alSo : : i i
) : : .Challenging Lidar-scene has been straightforward: we gener-
compared without re-scaling. However, the density of the poin

cloud representing a given person is significantly lower ataaf:d 5 prints for every person for gallery (training) data, and

larger distance from the sensor, yielding silhouettes whic uring the re-identification step we have chosen the person,

have discontinuities as demonstrated in Fig. 4(c). Furth\]gr ose galleries showed in average the lowest DTW distance
fom the current probe (test) data.

challenging samples can be observed in Fig. 5, which shows a
shapshot from a 5-person-sequence with the actually extracted ) )

silhouette masksFirst, the silhouettes of Persons 2 and 4 arg- Depth Gradient Histogram Energy Image
disconnected, since they are far away from the seiSsmond The Depth Gradient Histogram Energy Imag®GHEI)

for people walking towards the sensor, the 2.5D measuremétthnique was proposed for gait recognition in Kinect sen-
provides a frontal or back view, where the legs may be partialbpr data [32]. Instead of binarized silhouettes, the inputs of
occluded by each other (see PersonThiird, some silhouette DGHEI are depth images derived from the 2.5D measure-
parts may be occluded by other people or field objects innaents. Depth gradients are calculated with histogram binning,

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Author manuscript

IEEE TRANS. CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6
g
% : L
3 [ )
cpth Map DGHEI Channel | Channel 2 Channel 3 (a) Filter mask (b) Dropped1 (c) Dropped2 (d) Kept frame

(a) DGHEI features (b) CGCI feature maps Fig. 9. Demonstration of the automatic frame selection step.

Fig. 7. Feature maps of (a) DGHEI [32] and (b) CGCI [30] on Lidar data

gallery (training) and probe (test) features.

(>25 fps), samples from a single gait cycle provide too sparse
est neighbor classifier for classification. We have implementgfy to enable later data compression, global PCA and MDA
been introduced for Kinect point clouds [30]. This techniqueetwork (CNN), both havingV outputs, whereV is equal to

Person | [l Person2 Il Person 3 M Person 4 I Thereafter person recognition was achieved by comparing the
In our environment, a number of key differences had to be
implemented compared to the reference model [14], leading
to a new descriptor that we callidar-based Gait Energy
Image (LGEI). The first key contribution is, that since the
RMB Lidar measurement sequences have a significantly lower
temporal resolution (15 fps), than the standard video flows
Fig. 8. Lidar based Gait Energy Images extracted for the pegplég. 5  information. For this reason, we do not separate the individual
gait cycles before gait print generation, but we sele¢tised
) ) ) k = 100) randomseed framedgrom each person’s recorded
and the histogram bins are averaged for full gait cycles. Prigpservation sequence instead, and for esmbdwe average
cipal Component Analysis (PCA) and Multiple Discriminanihe; consecutive frames (uséd= 60) to obtain a given LGEI
Analysis (MDA) are used for dimension reduction, and a neagample. This wayk LGEIs are generated for each individual,
this workflow for the RMB sensor measurements: a sampleinsforms are calculated for the whole dataset.
depth image and the corresponding DGHEI feature map iSthe gecond key difference is, that instead of following
shown in Fig. 7(a). the direct GEl-set based person representation and vector
comparison of [14], we propose here a neural network based
C. Color Gait Curvature Image approach. Similarly to [46] we have chosen to use a committee
The Color Gait Curvature Imagé€CGCl) approach has also©of @ Multi-Layer Perceptron (MLP) and a convolutional neural
uses three 2.5D gait features: Gaussian curvature, mean &ug-number of people in the training scenario. The dominant 35
vature and local point density, which are combined into a £CA and 5 MDA components of the LGEIs are used to train
channel descriptor map, shown in Fig. 7(b). Then, 2D DiscreteMulti Layer Perceptron (MLP) for each person, while the
Cosine Transform and 2D-PCA steps are applied to the feat@®N inputs are the raw 2D LGEIls. We uséhh activation
channels separately. Classification is performed by calculatifygictions whose output is in the-1, 1] domain. Thus for a
a weighted sum of the absolute differences of the three featti@ning sample of théth person, theth network’s prescribed

components. output value isl, while the remaining outputs arel.
In the person recognition phase, we generate probe LGEIs
D. Proposed Gait Energy Image based Approach for each detected and tracked subject: we start from a random

seed frame of the sequence and average the upcoining

In our proposed model, we adqpt the |dea_ of Gait E_ner%nsecutive silhouettes. The trained networks produce outputs
Image (GEI) based person recognition to the Lidar survelllanwizthin the rangeowr,ocnn € [—1,1], and theith output

environment, The_ original GEI approach was intrqduce_d Xorresponding to théth trained person) of the MLP-CNN
Han and Bhanu in 2006 [14] for conventional optical vide ommittee is taken as the maximum of the outputs of the
sequences. GEls are derived by averaging the binary Pergll networks:oi — max(0ly o, 0ly)s 1 = 1 N. As a

. - MLP> ¥CNN/» Tty :

silhouettes over the gait cycles: valid identification of a givenz probe LGEI, only positive
1 & 0'(G) values are accepted. Therefore, with the notation of
Glz,y) = 5 > Bi(x,y) (1) imax = argmax; o’(G), sampleG recognized as persoimax,
t=1 if o™ > 0, otherwise we marki asunrecognized

where B;(x,y) € {0,1} is the (binary) silhouette value of For reducing further artifacts caused by frequent occlusions,
pixel (z,y) on time framet, and G(x,y) € [0,1] is the we also developed a frame selection algorithm for our LGEI-

(rational) GEI value. In [14] a person was represented bybased approach. A binary mask is created by summing and
set of different GEI images corresponding to the different olbhresholding the consecutive silhouettes for every person (Fig.
served gait cycles, which were compressed by PCA and MD®(a)). For every silhouette we calculate its internal and external

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Author manuscript

IEEE TRANS. CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

watch phonecall, waveand wave two-handed (wavegctions.
A sample outdoor frame with four people is shown in Fig. 10.

A. Selected features

Our approach for action recognition is motivated by the
: LGEI based gait analysis technique (Sec. llI-D), however,
(a) Video frame (only reference) (b) Lidar frame various key differences have been implemented here.

_  First, while gait could be efficiently analyzed from side-
Fo. ér?i'tionA sample frame from an outdoor test sequence used for actiifye\y point cloud projections, the actions listed above are better
observable from a frontal point of view. For this reason, we
have chosen a projection plane for action recognition, which is
perpendicular to the local trajectory tangent, as demonstrated

{os trajecto
Plage of /depth « ! Y

map projection P i in Fig. 11(a). (Note that this plane is also perpendicular to the
W LGEl's prOJec_'uon plar_1e). _ _

f 12 i A Second various actions, such as waving or making phone
s “li Depth values calls produce characteristic local depth texture-patterns (e.g.

/ ;' _"f = /""\ the hand goes forward for waving). Therefore, instead of
£ deriving binarized silhouettes (Fig. 4), we create depth maps
(a) Projection (b) Depth map by calculating the point distances from the projection plane
Fig. 11.  Demonstration of the the frontal projection and depth mapccording to Fig. 11(a), a step which yields a depth image
calculation for activity recognition. Projection plane is perpendicular to ttehown in Fig. 11(b). Then, we introduce theeraged depth
trajectory. map(ADM) feature as a straightforward adoption of the LGEI
concept, so that we average the depth maps for therlast
frames, where is the a preliminary fixed time window related
area w.r.t. the mask. If the internal area is less then 40% of tleethe expected duration of the activities (we used= 40
mask’s area (Fig. 9(b)) or the external area is more then 3@fames uniformly). ADM sample images for each activity are
of the mask’s area (Fig. 9(c)) the frame is discarded froghown in Fig. 12 (top row).
the LGEI calculation. As a result, several irrelevant frames Third, while gait is considered a low-frequency periodic
get dropped and do not compromise the LGEI calculation. Anotion of the whole body, where we do not lose a significant
example for a kept silhouette frame is shown in Fig. 9(d). Nogmount of information by averaging the consecutive images,
that the above sample collection scheme is is not effected thyg above actions are aperiodic and only locally specific

prior gait cycle estimation in contrast with [14]. for given body parts. For example, waving contains sudden
movements, which yield large differences in the upper body
IV. ACTION RECOGNITION regions of the consecutive frames. Thus, apart from ADM

. . . . . .. we introduce a second feature, calladeraged XOR image
While the previous section analyzed gait as biometric feax : . : i )
i . AXOR), which aims to encode information about the motion
ture duringnormal walk the analysis can lead to wrong result

: ) ) .dynamics. An exclusive-OR (XOR) operation is applied on
if the input sequence does not only contain forward-walki . L .

. 0 consecutive binarized frontal silhouettes, and the AXOR
people, but other actions as well. On the other hand, t

” . ! : . meap is calculated by averaging these binary XOR images and
recognition of various actions can provide valuable mform?ékin the sauares of the average values. The AXOR ma
tion in surveillance systems. The main goal of this sectionqs 9 q g ) b

€

. Isplays high values for the regions of sudden movements,
to propose features for recognizing selected - usually rar ¥ g ) )
) AR . ) as shown in Fig. 12 (bottom row), especially regarding the
occurring - activities in the Lidar surveillance framework,~ ™ . 2
X . ) . .~ _Yaving actions in images (e) and (f).
which can be used for generating automatic warnings in case
of specific events, and removing various ‘non-walk’ segments o N
from the training/test data of the gait recognition module. B Training and recognition
In the literature, one can find a number of activity recog- For each action from the sdtend watch phone wave
nition approaches based on image sequences, point cloudarmwave? two separate convolutional neural networks (CNN)
depth maps, where occupancy patterns are calculated [47are trained, one for the ADM and one for the AXOR features,
different features are extracted such as spatio-temporal contespectively. As explained in [52], a small (4-layer) CNN could
distribution of interest points [48], histogram of orientede constructed, using the spatially downscaled 2@ox 16
principal components [49] or oriented 4D normals [50], anpixels) and normalized ADM and AXOR feature maps. During
3D flow estimation [51]. However, the sparsity of Lidar pointhe training of the CNNs, we prescribed the output valués
clouds (versus Kinect) becomes a bottleneck for extracting tfee positive and—1.0 for negative samples by each activity.
above features. Based on experiments with various descriptdise negative training data also included various samples from
we decided to follow a map-averaging approach again, whidlermalwalking The outputs of the CNNs range froml.0 to
is detailed in the following section. Apart from normal walk,1.0 , and a probe sample is recognized as a given action if the
we have selected five events for recognitidiend check corresponding ADM-based and AXOR-based CNN outputs
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measurement sequence, however the accuracy is not critical
here, but the viewer has to be visually convinced that the leg
movements are correct. The cycle estimation is implemented
: by examining the time sequence of the 2D bounding boxes,
- so that the box is only fitted to the lower third segment of the
@ (b) © C) © ® silhouette. After a median filter based noise reduction, the local
(h) 0] 0] (k)

maxima of the bounding box width sequence are extracted,

and the gait phases between the key frames are interpolated
during the animation. Although as shown in Fig. 13, the width
sequences are often notably noisy, we experienced that the
synthesized videos provide realistic walk dynamics for the
users.

Fig. 12. ADM (top row) and AXOR (bottom row) for the (a,g) walk, (b,h) VI. DATASET FOR EVALUATION

bend, (c,i) check watch, (d.j) phone call, (e,k) wave and (f,I) wave two-handed Utilizing relevant test data is a key point in evaluation.

(wave2) actions. Since to our best knowledge no Lidar based gait or activity

recognition dataset has been published yet for surveillance

©

120 environments, we have created the SZTAKI Lidar Gait-and-
70 Activity (SZTAKI-LGA) databasé, which is designed for
070 60 8 100 120 140 160 80 . 200 the evaluation of gait based person identification and activity
120

recognition in a multi-pedestrian environment.
70W For gait analysis our proposed SZTAKI-LGA database
30— ’ ’ ] containsten outdoor sequences captured in a courtyard by

40 60 80 160 1éO 14‘10 1é0 éO 200 )
rame num a Velodyne HDL 64-E RMB Lidar sensor. All the sequences

120
70W\/\/\W have 15 fps frame rate, their length varies between 79 and
30 ‘ \ ‘ ‘ ‘ ‘ ‘ ‘ 210 seconds (in average 150 sec.), and each contains 3-8
4060 8 100 120 140 160 380, 200 people walking simultaneously in the scene. In each case,
the test subjects were asked to walk naturally in the scene,
Fig. 13. Silhouette width sequences for three selected persom a test then all leave the Field of View, re-appear in a different
scenario - used for gait step synchronization during visualization order, and walk till the end of the sequence. Thizeen-
play enables to test gait descriptors in realistic surveillance
situations, with the goal of matching the corresponding gait
both surpass a decision threshold (used = 0.6). If N0 patterns collected in the firstréining) and second frobe
activity is detected, we assume that the observed person iifits of each test scenario. Since the sequences were recorded
thewalkingstate. If multiple CNN outputs surpass the decisiof, gifferent seasons, we can also investigate how different
threshold, we select the action with the highest confidencegothing styles (such as winter coats or t-shirts) influence the
discriminating performance of the observed gait features.
V. 4D SCENE VISUALIZATION For action recognitionpurposes we recorded 1 indoor and
The visualization module takes as input the trajectori@soutdoor sequences with a total time of 633 seconds. The test
of the identified walking people, and the timestamp ar@hta contains various examples for the five addressed activities:
location of the recognized actions. As output a free-viewpoihend (88 samples)watch (53), phone (50), wave (58) and
is synthesized, where moving animated avatars follow theave2 (46) which are extracted from the sequence. Each
motions of the observed people. The moving avatars sgequence contains multiple pedestrians, and the typical length
properly detailed, textured dynamic models which are createghge of a given annotated activity sample varies between 40-
in a 4D reconstruction studio, whose hardware and softwak80 frames.
components are described in [9]. The 4D person models can
be placed into an arbitrary 3D background (point cloud, mesh, VIl. EXPERIMENTS AND DISCUSSION
or textured mesh), which can be either created manually withWe have evaluated the proposed gait based biometric iden-
a CAD system, or by automatic environment mapping of tH#ication and activity recognition algorithms on the SZTAKI-
Lidar measurements [8]. LGA database. The structures of the convolutional neural
The last step of the workflow is the integration of the systeftetworks used for gait and activity recognition were similar,
components and visualization of the integrated model. Taly the second layer’s type, the number of feature maps and
walking pedestrian models are placed into the reconstructéé kernel size parameters were different, as detailed in Fig. 15.
environment so that the center point of the feet follows thEhe MLP component in gait analysis used 6 hidden neurons
trajectory extracted from the Lidar point cloud sequence. Tia@d N outputs, equal to the number of people in the training
temporal synchronization of the observed and animated Iggenario.
movements is implemented using the gait analysis. This stePrye sz7AKILGA database is available at the following URL:
requires an approximation of the gait cycles from the Lidauttp: //web. eee. szt aki . hu/ i 4d/ SZTAKI - LGA- DB.
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Fig. 14. Quantitative evaluation of LGEI based matching betwthe gallery (columns) and probe (rows) samples. Rectangles demonstrate the CNN+MLP
outputs, the ground truth match is displayed in the main diagonal.

TABLE Il
COMPUTATIONAL TIME (IN SECONDS OF THE MAIN STEPS OF THE
DIFFERENT APPROACHES FOR THIEIDAR BASED GAIT DATABASE

Training set| CNN/MLP | Recognition of
Method . o i
generation | training 100 test samples
SP+DTW 8.43 - 43.7
Ist convolutional layer  Gait: 2ud convolution‘fﬂ layer ill;li}r/:onnccted DGHEI 110.3 - 0.98
kixk] kernels, Activity: average pooling layer B hicicicn &n CGClI 108.9 _ 0.26
71 feature maps k2xk2 kernels, 12 feature maps output neurons LGE| 1427 269 0.98
Parameters ki|fL|k2|f2|h |n
gait recognition 3 |57 |9 |98|N
activity recongition| 7 |5 |2 |- | 20| 1

! _ . A. Evaluation of gait recognition
Fig. 15. Structure of the used convolutional neural netwogksN). By gait

recognition, N is equal to the number of people in the training set. The gait recognition module has been validated on all the 10
test gait-sequences of the database. We compared the perfor-
mance of the four different features introduced in Sec. IlI-A-

identifications among all test samples, and listed the obtained
0.25] 0.95| 0.27 || 0.91 | 0.90 | 0.91 | (esults in Table I.
0.50 | 0.80] 0.32 || 0.77 | 0.74] 0.80 Although according to their introducing publications, both
| 0.46 [ 0.87] 0.33 ] 0.87 ] 0.90] 0.92| the CGCI [30] and DGHEI [32] methods proved to be notably
efficient for processing Kinect measurements, their advantages
could not be exploited by dealing with the much sparser
TABLE II Velodyne point clouds. In particular, as we can observe in
PERFORMANCE IMPROVEMENTS CAUSED BY TRAJECTORY BASED Table | the CGC| methOd proved to be the |eSS SUCCGSSfUl
PROJECTION PLANE ESTIMATIONTT) AND FRAME SELECTION(SF) ! . . .
USING THE LGE| METHOD. among all the tested techniques for the low density Lidar data,
Scenario | AEFCT | AESTT | SE+CT | SE+TT an ob_sgrva;[;]on that tlTa'Ec cotuld Ihaveglerg?dgl begntpre(:]lcted Iby
Wnterl 078 085 081 095 g)é?nm;:r;;ngub)e visually featureless escriptor channels
Spri ng0 0.80 0.95 0.81 0.98 g o
pring By testing the width-vector based SP+DTW approach [20],
Sumrer 0 0.99 0.99 1.00 1.00 . . )
Surmer 1 075 079 083 005 we experienced that it only favored the first test scene
. . . . (W nt er 0), which included nearly complete silhouettes with
Projection plane: circular tangent (CT) or trajectory tamg@T) noiseless contours. However as the quality of silhouettes
Frames composing LGEIs: all frames (AF) or selected frames (SfRjecreased due to frequent occlusions, and several holes and
discontinuities appeared in more crowded tests scenes, the

Summer 4
Sumrer 5

EVALUATION RESULTS OF THE C-I(-)AMBFI’_AERIIED METHODSRATES OF CORRECT lI-D: Sllhou,ette pr!n'& Dynamic Time Warping (SP+DTW),
RE-IDENTIFICATION. N EQUALS THE NUMBER OF PEOPLE Depth Gradient Histogram Energy Imag®GHEI), Color
Sp+ | DG- LGEl Gait Curvature ImaggCGCl), andLidar Based Gait Energy
Scene N DTW | HEI CGClI CNN TMLP T Mix Imagewith MLP+CNN committee (LGEI). All the methods
Wniero T 2109610971 036 1 0941 098  0.99 ]Eextcept the s}i{lhouettr(]a print) werte trtaigid rt:tsn::g 100 gtallery
. eature maps for each person, extracted fro ing parts
Wn.t erl g 822 82? 8;; ggi ggg 832 of the sequences. In the evaluation phase, we generated 200
Sprf ngo . . . . . . probe maps of each test subject from thstsegments of the
Springl | 8 | 0.33] 0.59] 0.20 || 0.63 | 0.66 | 0.70 videos. Each probe sample was independently matched to the
Summer0 | 5 | 0.39 | 0.97] 040 || 0.99 | 0.95| 1.00| yaineq person models, thus we usead - NV test samples in
Summerl | 6 | 0.33 | 0.83] 0.29 || 0.77] 0.95] 0.95| ; geenario withV people. For evaluating the performance of
Summer2 | 3 | 0.33 | 0.98| 0.53 || 0.96 | 0.99| 0.99| e gifferent methods, we calculated the rate of the correct
Summer3 | 4 | 0.50 | 0.94| 0.32 || 0.94| 0.93 | 0.94
4
4
5

| Average |
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SP+DTW approach provided quite low recognition rates. 1.07 \

The DGHEI [32] proved to be the second best gait descrip- 0.9
0.8 \‘\\_“

tor, outperformed only by our LGEI based method by 5%
0.7

overall. This observation is not surprising, considering that the
DGHEI approach has originally been proposed by extending
the Gait Energy image (GEI) with depth gradient extraction

and direction histogram aggregation. As detailed in [32] the

above improvement increased the performance when high-
quality depth images were available, however, in our scenarios 95—
with lower resolution depth maps (see Fig. 7(a)) these features 1.3 5 7 9 1113151719 2212528
could not be efficiently utilized, and the performance become Number of people

slightly lower than with the LGEI approach. Note that we

have also tested the DGHEI based recognition with CNNg. 16. The overall results on the whole dataset.

and MLP neural networks, but this modification did not yield

0.6

Recognition performance

improvement versus the original nearest neighbor classifier TABLE IV
proposed in [32]. THE CONFUSION MATRIX OF ACTION RECOGNITION

Our proposed LGEI solution has been tested first by je tect>
aratelypus?ng the MLP and CNN networks, and therea tepr)eGu Bend | Watch| Phong Wave | Wavez) FN| FP
with the MLP+CNN committee. As the last three columns [of Bend 85 3
Table | confirm, the MLP and CNN outperformed each othérswatch 37 1 4 111] 3
on a case-by-case basis, and the committee has genéraPyone 5 36 2 2 5 6
resulted in improved results over the two network componeniSyave 4 44 5 5 |3
As already shown in [39], in LGEI classification the MLH-"\wave2 5 9 31 11 |2

CNN committee could also outperform the standard Vector
Comparison approach proposed in [14].
Table | also demonstrates that compared to the SP+DTW,
DGHEI and CGCI techniques the LGEI method providetan 8 people at the same time in our courtyard we obtained
superior results in most of the test scenarios. The performamé§ably degraded silhouette shapes, an artifact caused by the
drop observed by some of thmore crowded(6-8 person) capture conditions, but independent of the biometric separating
scenes has been principally caused by the increased nunfigdability of the gait features. Exploiting that in our 10 test
of occlusions which obviously yielded lower quality input datgeduences 28 different people have appeared, we collected the
for the classification framework. As examples, the score matfilnouette sequences of the different test subjects from all test
ces between the trained neural networks and the measured ggnarios into a global database. Then, we selected step by
patterns from the different test subject are displayed in FigteP 2,3,..,28 people from the database, and each time we
14 for five test scenes. This figure highlights the backgroufi@ined and evaluated an LGEI-CNN+MLP committee for the
of the varying performance in the different test cases: frogftual subset of the people (using separated training and test
the point of view of (LGEI-based) gait recogniti@pri ng0 samples). The diagram of the observed recognition rates as
and Sumnmer 0 proved to besimple scenarios with nearly @ function of the number of persons is displayed in Fig. 16,
diagonal score matrices, whil&pri ngl and Surmer 1 are which shows a graceful degradation in performance, staying
quite difficult sequences, where the measurable benefits of gfgadily around 75% for 17-28 people.
LGEI technique are the most apparent compared to the weakef he measured computational time requirements of the main
performing reference approaches. steps for the different approaches are listed in Table Il
By further examination of the LGEI method, we investigate@lthough the training of the SP+DTW approach is signifi-
the improvements caused by two auxiliary innovations of ogantly quicker than the other references, the recognition part
proposed approach: is slower due to running DTW comparison between the probe
« Applying trajectory tangent (TT) oriented planes of silSample and all stored gait print samples. The LGEI approach
houette projection instead of the straightforward circuldleeds relatively significant time for training set generation
tangent (CT) direction (refer to Fig. 3 in Sec. II). and training of the CNN and MLP networks, however the
. Automatic selection of frames (SF) instead of USin@ecognition step is still very efficient: less then 0.01sec/probe
all frames (AF) in LGEI generation, by dropping thesample.
presumptively low quality silhouettes (Fig. 9 in Sec.

11I-D). TABLE V
AS ShOWn in Tab|e I for four Selected SequenCeS, botﬁ’RECISION’RECALL RATES OF ACTION RECOGNITION FOR EACH EVENT
new algorithmic steps yielded notable improvements in the Bend | Watch | Phone| Wave | Wave2
recognition rates. Sample num, 88 53 50 58 46
Our next evaluation stage addresses the performance varia-Precision 1.00 | 0.82 069 | 0.76 | 0.70
tion of LGEI based gait recognition, by increasing the numbér  Recall 097 | 0.77 0838 | 090 | 097

of people in the database. As discussed above, with more

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Author manuscript

IEEE TRANS. CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

Action types: X:bending — O: check watch <> :phone call,  O: wawing, A wawing two-hand

Output Q0 XX OO0 o Qoo
Personl { GT 0oooan e Q0000000 oo aooooo Esss!
Output 00 RO Sssse sl L00
Person2 {
GT === asistasniia sy SOEADOCED0L S=ssmssm=a ) ABLLO
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Persond {
GT Q000000 P el DO m
1 1 1 1 1 1
200 400 600 800 1000 1200 Frame num.

Fig. 17. Result ofactivity recognitionin a selected outdoor test sequence (4 peo@etputrow: frames where our approach detected various activities,
GT (Ground Truth): manually annotated reference frames. Each mark corresponds to 10 consecutive frames.

B. Evaluation of activity recognition

For evaluating the proposed activity recognition module,
we used the ten activity sequences of the database, appl
ing a cross validation approach. For testing the recognitio
performance on each sequence, we trained the actual CNNs (a) Point cloud sequence (used for recognition)
with the manually annotated activity patterns of the other nine
sequences. For both training and recognition we also use
various negative samples cut from normal walking parts of
the scenarios. The number of selectealk frames was equal
to the average number of frames corresponding to the othe
activities. .

As the result, the aggregated confusion matrix of action
recognition in the test scenes is shown in Table IV. The matri
value of theith row andjth column indicates the number of

false positive (FP) detections, defined as follows for riow

« FN: number of ignored occurrences of thih action, (c) ynthet|c walk, gait phases synchronized with the Latmervation
which were neither identified by any of the other activities
« FP: number of erroneous alerts of tith activity in the Fig 18, sample consecutive frames from the recorded (a) Lidar and (b) video

case when none of the addressed events occurred  sequences, and the synthesized 4D scene with leg movements synchronized

with the observation
As we can see, thdend phone wave and two-handed

waving (vave activities were almost always denoted as an

event (FN<5), while checkwatchindicated11 false negative frames where our approach detected various activities, while
samples, since the small hand movements were occasiongdy GT (Ground Truth) row indicate the manually annotated
imperceptible due to occlusion&end was never confused reference frames. In agreement with Table 1V, in nearly all
with other actions, whilavaveandwave2were mixed up in cases the real activities are detected by the system with a time
a number of cases. It is also worth noting that the overglblay necessary for ADM and AXOR map generation. Finally,
number of false positives is quite loW(FP< 5% of the real Table V shows the one-vs-all detection precision and recall
events), i.e. the system rarely indicates unexpected warningfes of each event separately, these cumulative results also

in case of normal walks. This advantageous property can &nfirm our above discussed experiences.
well examined in the timeline diagram displayed in Fig. 17,

which corresponds to one of the outdoor test sequences. The

horizontal axis corresponds to the frame index, and the différ: Demonstration of the visualized 4D scenario

ent activities are denoted by different markers (as explainedin the visualization module of the 4D surveillance system
in the top row). For each person, ti@utputrow marks the the synchronization of the measurements and the steps of the
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