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Abstract A workflow is presented to determine the detailed, high-resolution pattern of erosion

in maturely explored Sedimentary Basins by analysing the sonic log-based interval velocity

patterns of nine stratigraphic intervals complemented by a geometrical approach involving the

extrapolation of 3-D seismic reflectors. The jointly evaluated results of the two approaches not

only provide important constraints on the inversion tectonics of a basin, but are also used to

better constrain its maturity history and reservoir quality for geothermal energy. The developed

workflow is demonstrated for the West Netherlands Basin. The pattern of erosion, which is

consistent with observed subcrop maps, shows increasing amount of erosion towards the East

and reflects the complex deformation of the basin, in which the reactivation of faults played a

major role. Indirectly the results also indicate that continuous, syn-inversion sedimentation was

taking place on the flanks of the basin during the Late Cretaceous, while its centre was char-

acterised by non-deposition or slight erosion. For geothermal exploration the inferred variations

of amount of erosion has implications for the spatial distribution of porosity which is an

important parameter for the assessment of reservoir quality.

Keywords Basin analysis � Sonic velocity � Geothermal

1 Introduction

The amount of erosion in a sedimentary basin is a vital parameter in basin analysis and in

hydrocarbon geological studies. It has important control on the burial-, porosity- and

diagenetic history of the reservoir rocks as well as on the thermal maturation of organic
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material and timing of hydrocarbon expulsion. In inverted sedimentary basins where

complex deformation has occurred, laterally the amount of erosion may vary significantly.

In such basins it is crucial to know not only the amount, but also the detailed pattern of

erosion, since it provides important constraints on the style of inversion tectonics or on the

fluid-flow system during inversion (e.g., Nalpas et al. 1995; Verweij 2003; Bouw and Oude

Essink 2003).

There are several methods that aim to quantify the amount of removed sediments (for

discussion on these methods see Skagen 1992; Nyland et al. 1992; Japsen and Chalmers

2000; Corcoran and Doré 2005). Analysis of the compaction trends of shales for example is

a widely used method and has a potential accuracy of ±200 m (e.g., Nyland et al. 1992;

Richardsen et al. 1993; Hansen 1996). Shales are ideal for the analysis because their

porosity (and related physical properties i.e., sonic velocity, bulk density) shows a clearly

depth-controlled trend, provided that during and/or after deposition overpressure did not

developed in the succession. Other studies have demonstrated however, that beside shales,

sandstones, mixed sediments and carbonates could also be used for this purpose (e.g., Bulat

and Stoker 1987; Hillis 1991, 1993; Hillis et al. 1994; Japsen 1998, 2000). Time–tem-

perature index-based (TTI) maturity modeling of organic material (e.g., Mathiesen et al.

2000) or EASYRo % method (Sweeney and Burnham 1990) can also provide constraints

on the magnitude of erosion. However, the accuracy in this regard is low, since a wide

range of input parameter combinations can provide the same ‘‘best fit’’ to the measured

maturity indicators. As with maturity modelling, the temperature history of a sample

revealed by fission track modelling is also affected by both the burial/exhumation of the

sample and by the heat flow history (e.g., Green et al. 1989; Andriessen 1995). Although

the accuracy of the estimated exhumation is less than that of the shale compaction analysis

(*500–1000 m; Skagen 1992), fission track modelling is an extensively used method for

erosion estimation, since it provides constraints also on the timing of the event (e.g.,

Rohrman et al. 1995; Mathiesen et al. 2000).

In this paper a multidisciplinary approach is presented aiming to quantify the detailed

pattern of erosion in the West Netherlands Basin (WNB). The WNB was chosen as case

study for the analysis, because in this basin large amount of publicly available exploration

data is available (provided by TNO-NITG, National Geological Survey), which—by

combining various methods—enables high resolution and accurate erosion reconstruction.

The WNB is one of the major tectonic features of the Netherlands, which came into

existence during the Mesozoic (e.g., Van Wijhe 1987; Ziegler 1990; Dronkers and Mrozek

1991; Racero-Baena and Drake 1996; De Jager et al. 1996; Worum et al. 2004; de Jager

2007). In the Late Cretaceous-Eocene period compressional stresses originating from the

Alpine orogen inverted the basin in multiple stages (Late Cretaceous, Mid Paleocene and

latest Eocene), which resulted in the complex deformation and deep erosion of the basin fill

(Fig. 1). The erosion, which is marked by a significant hiatus across the basin, affected

sediments from Eocene–Oligocene to Cretaceous, or even down to mid-Jurassic levels

(Fig. 1). Quantitative reconstruction of the erosion has not been performed in the WNB

before, and only indirect data are published with respect to erosion quantification (e.g.,

Bodenhausen and Ott 1981). It has to be emphasized, however, that the amount of erosion

is expected to be laterally highly variable, since reverse reactivation of pre-existing faults

played a major role during inversion (e.g., Racero-Baena and Drake 1996).

The workflow presented in this paper combines different approaches in order to provide

a better-constrained erosion pattern in the WNB. The bulk of the erosion estimation comes

from a compaction trend (or burial anomaly) analysis of nine, carefully defined lithos-

tratigraphic units from six Jurassic-Cretaceous formations. In the present paper first the
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principles of this method are discussed, with special emphasis put on its reliability and

modified implementation, which is followed by the presentation of the results. The results

provided by the burial anomaly analysis are complemented by those of other methods such

as a statistical analysis of thickness data and a novel geometrical approach involving the

analysis of 3-D seismic reflectors. In this regard the presented workflow is new, which—

compared to other, standalone methods—allows a more accurate, high-resolution deter-

mination of the pattern of erosion in the basin. The results are evaluated jointly, which

allows of the determination of the detailed pattern of erosion and the quantitative recon-

struction of basin inversion in the WNB. The compiled map of erosion provides better

constraints on the Late Cretaceous-Eocene tectonic. It affects the maturity history of the

basin and the spatial distribution of the geothermal reservoir quality. These are discussed

briefly at the end of the paper.

1.1 Burial anomaly analysis: methodology

The principle behind the analysis applied in this paper is the observation that average

seismic velocity of a stratigraphic interval revealed by seismic surveys (e.g., Richardsen

et al. 1993) or by sonic well-logs (e.g., Bulat and Stoker 1987; Hillis 1991, 1993; Hillis

et al. 1994; Japsen 1998, 2000; Japsen et al. 2007) follows an increasing trend with depth.

Fig. 1 Pre-tertiary geological map, geological cross section and simplified litho-chronostratigraphical
chart of the onshore West Netherlands Basin and surrounding areas. Boreholes used in the present study and
the investigated formations are indicated. 1 Houthem Fm., 2 Ommelanden Fm., 3 Holland Fm., 4 Vlieland
Claystone Fm., 5 Aalburg Fm., 6 Sleen Fm
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The velocity-increase is caused by compaction and is assumed to be irreversible. Conse-

quently, uplifted layers that are closer to the surface due to an erosional phase have higher

sonic velocities than those that followed an uninterrupted subsidence path (Fig. 2).

Comparison of the measured interval velocity with the normal depth-trend (also called

‘‘baseline’’) enables one to estimate the amount of erosion. The displacement, along the

depth axis, of the measured interval velocity from the normal-depth trend is called the

burial anomaly (BA) or apparent erosion (Fig. 2; Hillis 1993; Japsen 1998). It is zero for

normally compacted sediments. Using the present-day depth of the studied interval (Dp)

and the amount of post-erosional sediment thickness (Tpe) the amount of erosion (E) and

the maximum depth of burial (Dmax) can be calculated (e.g., Hillis 1993):

Dmax ¼ BAþ Dp

E ¼ BAþ Tpe
ð1Þ

Note that erosion estimation with this method is not possible if Tpe[E, since in this

case the burial anomaly is destroyed (Fig. 2).

1.2 Implementation and reliability of the method

In the following the implementation and those modifications of the method are discussed,

which were applied in the present paper in order to increase the reliability and the accuracy

of the erosion estimation. The reliability of the burial anomaly analysis can be most easily

increased if more than one interval is investigated at the same location. Namely, if no

significant erosion occurred between the deposition of the units burial anomalies resulting

Interval velocity of black layer

reyal
kcalbfo

htpe
D

A

A

B

C

D

E

Normal compaction
trend (baseline)

D-E: Burial anomaly
destroyed by post-

erosional sedimentation

BAC

BAB

B C D E

Fig. 2 The evolution of interval velocity with burial/erosion. The interval velocity of a horizon (e.g., black
layer) in an eroded sequence remains anomalous until the amount of post-erosional sedimentation reaches
and exceeds the amount of erosion

246 Acta Geod Geophys (2017) 52:243–268

123



from a young erosional episode should be equal (Japsen 2000). Should this be the case the

estimation of erosion at the given location is more reliable.

The accuracy of the erosion estimates using burial anomalies depends on three factors:

(1) the validity of the basic assumption (i.e., lithology and porosity are the primary con-

trolling factors of the sonic velocity); (2) the type of stratigraphic interval chosen for the

analysis and (3) the way the baseline is defined.

Although sonic velocity depends primarily on the lithological composition and the

porosity of the sample (e.g., Vernik and Nur 1992; Japsen 1993; Kenter et al. 1997), other

internal and external factors may be also important. For example, diagenetic differences

between two samples having the same porosity and lithology often result in different sonic

velocities, especially in carbonate rocks (Anselmetti and Eberli 1993; Kenter et al. 1997;

Mallon and Swarbrick 2002; Fabricius 2003). Effective stress variations caused by pore

fluid pressure fluctuations also have impact on the sonic velocity (Anselmetti and Eberli

1993; Japsen 1994, 1999, 2000; Kenter et al. 1997; Poix 1998). Furthermore, Moos and

Zoback (1983) and Monsen (2001) demonstrated that the presence of microfractures can

also significantly influence (reduce) sonic velocity. In light of these results during inter-

pretation of anomalous interval velocities in this paper we used all available information

(e.g., borehole- and pressure conditions, local geological and sedimentological circum-

stances revealed by well logs) to identify and ignore such anomalies, which were suspected

to be the results of factors other than compaction and exhumation.

The second factor controlling the accuracy of the estimated erosion is the type and

characteristics of the investigated stratigraphic interval. Interval velocities are generally

calculated for lithostratigraphic groups or formations deposited in an open-water envi-

ronment, since they can be easily recognized and correlated over large distances (e.g.,

Bulat and Stoker 1987; Hillis 1991, 1993; Hillis et al. 1994; Japsen 1998, 2000). Conti-

nental or near-shore deposits are not ideal for the analysis, since rapid lateral facies- and

lithological changes often characterize them. This could result in a misleading interpre-

tation of the burial anomalies. Through a thick stratigraphic unit such as a formation or

group, however, lithology and consequently the sonic velocity pattern, is rarely uniform.

This could also lead to misinterpreted (i.e., lithology-rather than erosion-related) burial

anomalies, in cases when the formation is not complete. It is proposed therefore that the

interval velocities should be calculated using thinner intervals, in which the lithological

and sedimentological circumstances are more uniform. Wireline log patterns—if avail-

able—are ideal to define those intervals. The log pattern would also make it possible to

reliably correlate the selected intervals over the study area. Using this approach the impact

of lateral and vertical lithological/sedimentological variations on the burial anomalies and

on the erosion estimates can be minimized.

The third crucial factor in the burial anomaly analysis is the definition of the baseline

(i.e., normal compaction trend), since it has great impact on the amount of estimated

erosion. In case of a lithologically pure formation (e.g., shale, chalk) published baselines

can be used, which have been determined for the given lithology (e.g., Nyland et al. 1992;

Japsen 1998, 1999). These baselines are often based on data from different basins and are

represented by one or more analytical formulas (e.g., Magara 1976; Heasler and Khar-

itonova 1996; Japsen 1998). Other authors (Bulat and Stoker 1987; Hillis 1993; Hillis et al.

1994) used baselines fitting to the lowest interval velocity values observed in the given

region. Such baselines overestimate the erosion and provide only rough estimates. To

minimize baseline-related errors we propose that, when regional geology and available

data allows it, baselines should be determined from those wells of the study area (referred

to as reference wells/points), where no erosion is expected, or where the effect of erosion is
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overprinted by the post-erosional sedimentation. This way of baseline definition provides

the most accurate erosion estimates, since regional sedimentological and lithological cir-

cumstances affecting the sonic velocities are incorporated into the baseline and are taken

into account. It is to be emphasized that in an ideal case the reference points should align

along a smooth, quasi linear trend. A ‘‘noisy’’ reference data set suggests that not uniform

lithology/diagenesis, borehole conditions or post-depositional impacts such as overpressure

or hydrocarbons rather than extent of erosion are affecting the signal. In these cases the

general reliability of the estimated erosion should be considered being lower. As the

reference points never align perfectly along a trend, only those deviations that are clearly

separated from the cloud of reference points are considered to be true anomalies.

2 Burial anomaly analysis: application to the West Netherlands Basin

Below, the interval velocity analysis of nine stratigraphic units from six Jurassic-Creta-

ceous formations are presented. The analyzed formations belong to the Late Cretaceous

Chalk Group (Houthem and Ommelanden Fm.), the Early Cretaceous Rijnland Group

(Holland and Vlieland Claystone Fm.) and the Early Jurassic Altena Group (Aalburg and

Sleen Fm.) (Figure 1; Van Adrichem Boogaert and Kouwe 1997). Following the principles

discussed above thin subintervals rather than complete sequences were used for the

analysis. These intervals have thickness up to *100–150 m and correspond to well sec-

tions of uniform log characteristics. In some cases the log pattern of the formations made it

possible to reliably correlate these intervals across the basin.

The average sonic velocities of the selected intervals were calculated using the inte-

grated travel time (ITT) derived from sonic well-logs and the thickness of the interval. In

cases where the ITT peaks were not displayed along the sonic log, manually averaged

slowness values were obtained, which later were converted into interval velocity. The true

vertical depth of the midpoint of the interval represents the reference depth for every

interval velocity value.

On the southern flank of the WNB only a small amount of Late Cretaceous erosion

occurred, which was followed by significant Tertiary subsidence (Fig. 1; Voorne Trough).

In this part of the basin Mesozoic sediments presently are buried to their maximum (i.e.,

any erosion-related burial anomaly is destroyed by the Cenozoic sedimentation). There-

fore, interval velocity data from wells located in this part of the basin (referred to as

reference wells/points) are used to constrain the normal depth trends.

2.1 Chalk (Houthem and Ommelanden formations)

As demonstrated by Anselmetti and Eberli (1993) sonic velocity of limestones depends on

the porosity and diagenesis of the rock rather than on its depth, which make them less ideal

for the burial anomaly analysis. Chalks however, though chemically identical to lime-

stones, usually show a clearly depth controlled compaction trend (e.g., Mallon and

Swarbrick 2002; Fabricius 2003), which makes them suitable for this kind of analysis

(Hillis 1991; Japsen 1998). It should be noted however, that syn-sedimentary features such

as chalk slumps are often associated with zones of significant overpressure and anomalous

porosity/sonic velocity. The early entry of hydrocarbons into the pore space of these

zones—which form excellent reservoirs in the North Sea region—can further enhance the

porosity anomaly (e.g., Cornford 1994).
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Within the Late Cretaceous-Early Paleocene Chalk Group, which is preserved only on

the flanks of the basin (Fig. 3b), three intervals were investigated: two intervals from the

Ommelanden Formation (referred to as Lower- and Upper Chalk interval, respectively) and

a *20 m thin interval from the Houthem Formation (referred to as Houthem Chalk).

These intervals were defined and correlated using wireline log patterns in 32 wells

(Fig. 3a). It is important to note that the deposition of the chalk in the WNB is coeval with

the early phases of basin inversion and that the lowest interval pre-dates, while the upper

intervals post-date the Late Santonian-Mid Campanian inversion phase. Probably this is the

reason why the syn-inversion chalk interval between them has a non-uniform sonic- and

resistivity-log response (syn-tectonic features?), which makes the correlation of this

interval over large distances not possible.

The interval velocity-depth pairs for the three chalk intervals are shown in Fig. 3c, d.

The log suites of six wells contain not only sonic- but also density logs, which made it

possible to calculate average bulk densities for the Lower Chalk interval. Using the

average density versus sonic velocity plot a conversion formula was calculated, which was
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Fig. 3 a Litho-chronostratigraphy and characteristic log pattern of the Chalk Group. The investigated
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Group. Boreholes indicated by black circles represent the reference wells that were used to constrain the
baselines. c Interval velocity-depth pairs for the Houthem Chalk interval. d Interval velocity-depth pairs for
the Lower and Upper Chalk intervals
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used to convert the measured average bulk density of wells RKK-10-S1 and IJS-65 into a

sonic velocity. In these wells sonic velocity data are not available.

2.1.1 Houthem chalk

Except for three data points (EHV-1, GAG-1 and RTD-12) the reference velocity-depth

pairs of the Houthem Chalk (Fig. 3c) follow a quasi-linear trend. The observed anomalies

are not erosion-related, since in these wells minor erosion is thought to have taken place

and the post-chalk sedimentation is significant. It is important to note that well CAP-1 also

fits into the trend, although has only 86 m of preserved chalk, suggesting that the burial

anomaly signal is masked by the Cenozoic subsidence.

2.1.2 Lower and upper chalk intervals

The interval velocity of the Lower and the Upper Chalk intervals for the reference wells

behaves similarly with depth (Fig. 3d). The trends align along a clean line, which repre-

sents the baseline. Data points shallower than *700 m belong to wells that are located

along the axis of an uplifted/folded half-graben (only 50–100 m of preserved chalk). In

these wells (CAP-1, BRK-4, BRK-5, IJS-64, IJS-65, RKK-10-S1; marked by open circles

on Fig. 3b) a certain amount of burial anomaly would be expected, but none was found,

suggesting that presently the Cretaceous chalk in these wells is buried at its maximum. In

case of well KDZ-2–250 m of burial anomaly is observed. Considering that this well has

similar tectonic position and preserved chalk thickness than the wells mentioned above, it

is unlikely that this anomaly is erosion-related. A clear explanation for this anomaly has

not yet been found.

2.1.3 Comparison with published baselines

The uniform lithology of the chalk makes it possible to compare the results of this study

with compaction trend lines obtained from other Cretaceous– or present day oceanic basins

(Fig. 4; Scholle 1977; Sclater and Christie 1980; Japsen 2000; Mallon and Swarbrick

2002). In order to convert the porosity-depth baselines of Scholle (1977) and Sclater and

Christie (1980) into sonic velocity-depth lines the conversion formula of Japsen (1998) and

of Mallon and Swarbrick (2002) were used.

Comparison of the various baselines reveals that the impact of the porosity-sonic

velocity conversion formulas on the resulting baselines is significant. The baseline of

Mallon and Swarbrick (2002) is based on interval velocity measurements of non-reservoir

North Sea chalk as well as carefully selected DSDP wells, in which the composition of the

sediments is comparable with that of the chalk in the WNB. Above 1000 m this curve as

wells as the porosity-depth curves converted by Mallon and Swarbrick’s (2002) formula fit

particularly good with the data presented in this study. The curve of Japsen’s (2000) and

the porosity-depth curves converted by Japsen’s (1998) formula seems to fit better to the

Houthem Chalk at shallow depth. At greater depth, almost all of the curves fit reasonably

well taking into account the estimated accuracy of the method (±200 m Skagen 1992).

To summarise, it is concluded that the baseline determined for the Cretaceous chalk in

the WNB is consistent with published compaction trend curves. This implies that the Late

Cretaceous-mid Paleocene chalks in the southern part of the WNB presently are all at

maximum depth of burial.
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2.2 Holland formation

The Early Cretaceous Holland Formation (Upper Rijnland Group; Fig. 1) was deposited in

an open marine environment. The three marl and claystone members defined within the

formation have consistent lithology in the entire basin (Van Adrichem Boogaert and

Kouwe 1997). The upper part of the formation in a large part of the basin is missing due to

erosion (see Fig. 1).

Two intervals were selected for the analysis. The first interval consists of the lower-

most *80–100 m of the Lower Holland Marl Member (see Fig. 5a; referred to as Lower

Holland interval). In the marginal part of the basin, where the Lower Holland Marl

Member is thin, the entire sequence was used for the analysis. The other interval used in

the analysis is represented by the uppermost part of the Middle Holland Claystone Member

(*50 m thick; referred to as Middle Holland interval). Both intervals could be easily

correlated in the basin using the characteristic log pattern.

To reliably define the baselines for the Lower- and Middle Holland intervals, reference

data points with shallow depth are needed. The group of reference wells for the Holland

Formation therefore was extended by wells where only a thin chalk layer is preserved, but

no chalk anomaly was observed (see Fig. 5b).

The cloud of reference data points for the Middle Holland interval shows little scatter

and defines a very reliable baseline (Fig. 5d). For the Lower Holland interval the quality is

also good, although there is some scatter between 1800 and 2100 m caused by wells

located at the margin of the basin (Fig. 5c). Probably the thin preservation and/or a slightly

different lithology cause this. It is important to note that for both intervals the increase of

velocity with depth is smaller than for the chalk (the baseline is steeper). Consequently,
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smaller burial anomalies are more difficult to recognise in the case of the Holland

Formation.

For the Lower Holland interval two anomalies clearly separated from the reference

points are observed (NWK-2 and ARV-1; Table 1). For the Middle Holland interval also

two positive anomalies were found (NWK-2 and LED-3). Considering the tectonic position

of the NWK-2, LED-3 and ARV-1 wells in the basin it is possible that these anomalies are

caused by exhumation.

2.3 Vlieland claystone formation

The Vlieland Claystone Formation of Early Cretaceous age belongs to the Vlieland Sub-

group of the Rijnland Group (see Fig. 1). The group was deposited in a shallow marine,

near-shore environment (e.g., Den Hartog Jager 1996) and has a complex, laterally

inhomogeneous structure with interfingered clay and sand bodies (Fig. 6a). Because of this

it is difficult to find such a stratigraphic unit of uniform lithology, which can be easily

correlated in the entire study area.
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Fig. 5 a Lithostratigraphy and characteristic log pattern of the Holland Formation. The investigated Lower-
and Upper Holland intervals are indicated in grey. b Preserved thickness of the Early Cretaceous Rijnland
Group. Boreholes indicated by black circles represent the reference wells, which were used to constrain the
baselines. c Interval velocity-depth pairs for the Lower Holland interval. d Interval velocity-depth pairs for
the Upper Holland interval
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Table 1 Results of the burial anomaly analysis and the geometrical approach (for map-view see Fig. 10)

NWK-2* indicates the autochton part of the NWK-2 well below a major thrust fault

BA amount of burial anomaly, HOUT Houthem Chalk, OMM Ommelanden Fm., MH middle Holland
interval, LH lower Holland interval, VL upper Vlieland interval, AAL Aalburg Fm., SL Sleen Fm., Cons.
consistency among the studied intervals regarding burial anomaly, Geom. Appr. geometrical approach, Dir.
Obs. direct observation, WCRP within cloud of reference points (i.e., no burial anomaly), REF reference
well used to constrain the baseline, MDB maximum depth of burial (i.e., no burial anomaly). Values are in
meters
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For the present analysis the thick sandy clay deposits succeeding the Berkel Member of

the Vlieland Sandstone Formation were used (referred to as Upper Vlieland; Fig. 6a). This

interval is characterised by a relatively ‘‘calm’’ sonic log response compared to the suc-

cession below the Berkel Member. The lack of characteristic log patterns, however, did not

allow for further subdivision. For the analysis therefore, one or more *50–100 m thick

intervals were selected, whose sonic log indicated consistent seismic velocities. For wells

located in a marginal position the Eemhaven member of the formation was used (Fig. 6a).

Below 1300 m the reference data points show some scatter, which is partly due to the

thin Eemhaven member (Fig. 6c). The figure reveals on the other hand that the linear trend

determined by the reference points coincides remarkably well with the shallow data points,

where a burial anomaly would be expected. None of these wells shows a clear separation

from the reference cloud.

(a)

(b)

(c)

Fig. 6 a Lithostratigraphy and characteristic log pattern of the Vlieland Subgroup of the Rijnland Group.
The investigated interval is indicated in grey. b Preserved thickness of the Early Cretaceous Rijnland Group.
Boreholes indicated by black circles represent the reference wells, which were used to constrain the
baseline. c Interval velocity-depth pairs for the Upper Vlieland interval
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2.4 Lower Jurassic clays (Sleen and Aalburg formations)

In the Early Jurassic open marine environments dominated the area of the WNB, in which

a thick clay succession with occasional limestone beds was deposited. The Sleen and the

Aalburg Formations represent the lowermost part of this succession, which displays pro-

nounced differences in thickness as a result of syn-sedimentary faulting (e.g., Worum et al.

2004; Fig. 7b). Both of these formations are widespread in the WNB, but they are missing,

or significantly reduced in thickness outside the basin centre. Three intervals, defined in 41

wells, were selected for the analysis: the entire Sleen Formation (only *30–50 m thick)

and two intervals from the Aalburg formation (referred to as Lower- and Upper Aalburg

intervals; Fig. 7a). The log characteristics of the Lower Aalburg interval do not suggest

uniform, homogeneous lithology. The definition of this interval, however, was necessary,

since without it there would not have been enough data points to constrain the amount of

erosion in the eastern part of the basin. In wells where the formation is very thick, an

additional 100–150 m thick interval from the upper part of the Aalburg Formation was also

studied. The lack of characteristic log patterns however, did not allow correlating these

intervals precisely between the wells.

Compared to the reference points of the younger formations discussed above, the refer-

ence points for the lower Jurassic intervals do not cover a large depth range. This makes the

(a)

(b)

(c)

(d)

Fig. 7 a Lithostratigraphy and characteristic log pattern of the Early Jurassic Altena Group. The
investigated intervals (Sleen, Lower- and Upper Aalburg) are indicated in grey. b Preserved thickness of the
Altena Group. Boreholes indicated by black circles represent the reference wells, which were used to
constrain the baselines. c Interval velocity-depth pairs for the Sleen Formation. d Interval velocity-depth
pairs for the Aalburg Formation
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definition of the baseline difficult. For this reason additional wells located north of the basin

(Zandvoort Ridge (WRV-1 well) and in the NW part of the Central Netherlands Basin

(BAC-1 and MID-wells)) were added to the reference wells (Fig. 7b). In these wells erosion

is suggested to be either small and/or masked by the significant Cenozoic sedimentation.

2.4.1 Sleen formation

For the Sleen Formation the RZB-1, the LIR-40 and the KDZ-2 wells show significantly

lower interval velocity than the rest of the reference wells (Fig. 7c; see Sect. 4 at the Aalburg

Formation below), while well MID-201—despite being a reference well—shows anoma-

lously high interval velocity. These four wells were excluded from the definition of the

baseline. Outside the cloud of reference points nine anomalies were found (see Table 1), the

locations of which coincide with a major hiatus in the sedimentary record. It is suggested

therefore that these deviations represent true burial anomalies related to erosion.

2.4.2 Aalburg formation

The reference points for the Lower and Upper Aalburg intervals define almost the same

baseline, so it was decided to merge the two data sets (Fig. 7d). This has two major

advantages: (1) the definition of the baseline is based on a larger, combined data set; (2)

each well contains more (two or three) data points, consistency of which provides con-

straints on the quality and reliability of the burial anomaly. In an ideal case the line

connecting the data points of a given well (intra-well compaction trend) should be parallel

to the baseline defined by the reference wells (‘‘global’’ compaction trend). This kind of

consistency of the data points allows identifying those true burial anomalies, which do not

separate unequivocally from the cloud of reference points.

As for the Sleen Formation the baseline for the Aalburg formation is also very steep.

In addition, the cloud of reference points is wider than for the other studied intervals

(i.e., the reference data set is ‘‘noisier’’). Inconsistencies are most significant below

2300 m, which is also manifested in the intra-well compaction trends in this depth

being not parallel to the ‘‘global’’ baseline. Presently, the pressure of the pore fluid in

the Aalburg formation, which contains several hydrocarbon-prone bituminous layers

(Bodenhausen and Ott 1981), is hydrostatic. In the past however, during for example

the Late Jurassic-Early Cretaceous period of strong subsidence or during the expulsion

of hydrocarbons, overpressure might have developed within the thick clayey succession.

This could have caused abnormal compaction of the formation. In addition, Beekman

et al. (2000) showed that mechanically weak clay layers tend to experience significant

plastic deformation during inversion. Considering that the formation is relatively uni-

form lithologically, it is suggested that external factors such as those mentioned above

could play an important role in the scatter of the sonic velocities of the reference wells.

Clear burial anomalies are identified in ten wells, which are located in the significantly

eroded northern and north-eastern part of the basin (Figs. 1, 7b). These anomalies are

suggested to be erosion-related. The anomalies for wells MRK-1 and WSP-1 do not separate

clearly from reference points. The position of these wells however suggests that these

anomalies although being small (*200–300 m) are related to erosion. When determining

the burial anomaly in well MKP-14 the shallowest data point was not taken into account,

since it is not consistent with the other two data points and with the baseline. For well

NWK-2 the uppermost interval investigated within the Aalburg Formation is separated by a
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major thrust fault from the two other intervals. The interval velocity-depth points from the

deeper intervals (footwall) are located within the cloud of reference points, while the third

data point (hangingwall) shows a clear anomaly (Table 1). This suggests that uplift and

erosion in this well is related to a local phenomenon (uplift of the hanging-wall block of a

reverse fault) rather than to the regional uplift of the area (see further discussion later).

3 Geometric reconstruction of the amount of erosion

Before discussing the results of the burial anomaly analysis another approach is presented,

which aims to determine the pattern of erosion using the geometry of interpreted 3-D

seismic horizons. This approach is complementary to the burial anomaly analysis and on a

local scale should provide comparable results. The combination of these methods provides

better constraints on the erosion pattern in the basin. The geometric restoration of the

erosion was performed only in the western part of the basin where from a lithostratigraphic

point of view only few units are missing (i.e., the Chalk Group and the upper part of the

Rijnland Group; Fig. 1), and where good quality 3-D seismic surveys are present. The

reconstruction is performed in four steps (Fig. 8a).

Step 1 The first step is to restore the base Chalk Group horizon in areas of the basin

where it is not preserved (Fig. 8a). This restored horizon is referred to as

fictional base Chalk Group horizon (FBCG). Where 3-D seismic surveys are

available (central part of the basin) the FBCG horizon was interpreted on

seismic sections using the geometrical characteristics of preserved reflectors

within the Rijnland Group as guides (Fig. 8b). The principle behind this

interpretation is the assumption that the pattern of the FBCG horizon is similar

to the pattern of preserved reflectors within the Rijnland Group. This

homogeneous character of deposition in the Rijnland Group was also described

by DeVault and Jeremiah (2002) and Jeremiah et al. (2010). In other words, the

position of the FBCG horizon—and therefore also the thickness pattern of the

Rijnland Group—is estimated using the thickness pattern of preserved subunits

observed on the seismic sections. The applicability of this procedure is justified

by the excellent correlation observed between the total thickness of the un-

eroded Rijnland Group and the thickness of the Vlieland subgroup within it

(Fig. 8a). Interpretation of the FBCG horizon commenced from preserved

patches of the Chalk Group, allowing for reliable interpretation across faults

Step 2 The second step of the reconstruction was the depth conversion of the FBCG

horizon. For this a linear velocity model (v ¼ v0 þ K � z) was used with v0 and K

parameters determined for the Rijnland Group (TNO-NITG 2002). As a quality

control the depth converted FBCG horizon was compared with values calculated

in the constraining wells (wells shown by open circles; Fig. 8a) using the

estimated thickness of the Rijnland Group (constrained by the Rijnland Group-

Vlieland Subgroup cross-plot) subtracted from the depth of the mapped base

Rijnland Group horizon. The comparison revealed that the depth converted

FBCG horizon systematically overestimated the depth obtained from the cross-

plot method (*200 m in average). For this reason a depth correction map was

constructed, which has a value of zero where the chalk is preserved and gradually

increases towards the interior and eastern parts of the map. Correcting the depth

converted FBCG horizon with this map does not change the general pattern (i.e.,
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shape) of the FBCG horizon. The corrected horizon satisfies the well data within

the error range of the cross-plot. In the northern part of the map where there is no

3-D seismic coverage the FBCG horizon was determined using digitally available

3-D depth models and cross sections. The procedure is similar to that used in the

seismic interpretation. Note that because of the lack of suitable data, in this area

the FBCG horizon could not be constrained by the cross-plot method, therefore

more uncertainty should be considered. At the end of the second step the base

Chalk Group horizon was fully restored in the entire study area by merging the

FBCG horizon and the preserved patches of the base Chalk Group horizon

obtained using traditional mapping

(a)

(b)

(c)

Fig. 8 Geometric restoration of the amount of sediment eroded from the western part of the West
Netherlands Basin. a Cross-plot between the thickness of the Vlieland Subgroup and the Rijnland Group.
The map on the right shows the outline of the restored area. The colour scale shows the preserved thickness
of the Chalk Group. b Main steps of the erosion reconstruction (see text for discussion). c Deposited
thickness of the Texel Formation along sections A and B
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Step 3 The third and most critical step of the erosion reconstruction involves estimation

of the pre-erosion thickness of the Chalk Group: this consists of the determination

of the deposited thickness of the Houthem and Ommelanden Formations as well as

the thickness of the Texel Formation (lowermost Chalk Group). Regarding the

Texel Formation borehole data indicate a gradually increasing thickness towards

the N-NNE (Fig. 8c), based on which a thickness map was constructed

Estimation of the deposited thickness of the Ommelanden Formation is very

difficult, since its deposition was coeval with the first phase of basin inversion

(Late Santonian-Mid Campanian; Baldschuhn et al. 1991; Gras and Geluk 1999).

Indirect evidence from the WNB and neighbouring Roer Valley Graben (RVG)

was used to constrain the thickness of this formation. As demonstrated by the sonic

velocity data (see earlier), the chalk presently is at maximum depth of burial,

which indirectly indicates that the total deposited thickness of the Ommelanden

Formation in the central part of the basin was definitely less than *500 m (based

on BRK- and CAP-1 wells). This thickness is less than the amount preserved in the

marginal chalk depocentres north and south of the WNB and RVG (i.e., Voorne

Trough, South Limburg, Peel Block, Maasbommel High; Fig. 1). Gras and Geluk

(1999) showed that the thickest Late Cretaceous succession on the Maasbommel

High is coeval with the basin inversion and it is originated from the uplifting and

eroding RVG. In contrast to the Roer Valley area, the syn-inversion sediments on

the southern flanks of the WNB are not siliciclastic (TNO-NITG 2002), suggesting

that during the first phase of inversion erosion (if it occurred) was not large enough

to truncate down to the Early Cretaceous and older siliciclastic sediments. In fact,

considering the continuously rising sea level during the first phase of basin

inversion (Haq et al. 1987), it is speculated that in the WNB, the sea level rise

could keep up with the inversion-related tectonic uplift of the basin, therefore non-

deposition rather that erosion characterised the first phase of inversion. As Gras

and Geluk (1999) demonstrated in the RVG, sediment deposition in the central,

inverted part of the basin resumed only when the inversion movements abated at

the end of the Cretaceous. This is assumed to be valid also in the WNB

Following from the above it is suggested that the main erosional phase in the WNB

occurred during the second phase of inversion (Mid Paleocene), which was

accompanied by a major drop in global sea level (Haq et al. 1987). During the Late

Cretaceous inversion phase non-deposition was more likely. Consequently, the

amount of deposited chalk in the centre of the basin roughly can be estimated by

summing the thickness of the pre-Campanian chalk and Maastrichtian-Danian

chalk, which is *100 ? 200 = 300 m (based on Fig. 3a). Note that this amount

(1) is only a rough estimate, since precise chronostratigraphic markers are not

available and (2) is only valid in the centre of the basin. In the Voorne Trough and

in inversion-related synclines where sedimentation was most probably continuous

during the first phase of inversion the thickness of the deposited chalk is (much)

larger (see Fig. 3a)

Step 4 During the last step of the erosion reconstruction the amount of eroded sediments are

calculated. This is equal to the difference between the present-day base Tertiary

horizon and a horizon calculated by adding the estimated thickness of the Chalk

Group to the restored base Chalk Group horizon (Fig. 8b). The thickness of the Chalk

Group is estimated by the sum of the 2-D grid representing the Texel Formation and a

uniform thickness of 300 m representing the Ommelanden and Houthem Formations
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4 Discussion

In the following the map of the geometrically restored erosion (Fig. 9) and the results of

the burial anomaly analysis are evaluated. First the pattern and the magnitudes of erosion

are studied, followed by a discussion on the implications of the results for hydrocarbon

maturation.

4.1 Pattern of erosion

It is important to note that the pattern of erosion determined using the geometric approach

presented above greatly depends on the assumed thickness of the Ommelanden and

Houthem Formations. Syn-tectonic redeposition and mass transfer of chalk sediments on

the flanks of the basin likely occurred during the first phase of inversion, which provides an

obstacle for the correct 3-D erosion reconstruction. However, in the central, uplifting part

of the WNB, where redeposition-related excess chalk sediments were likely not present, it

is reasonable to assume that a chalk layer of relatively uniform thickness was deposited.

Therefore, in this part of the basin the pattern of removed sediments determined by the

geometrical approach is valid even if the magnitude of the deposited Late Cretaceous chalk

was estimated incorrectly. It should be emphasised however, that in the south-western part

of Fig. 9a (Voorne Trough) the amount of originally deposited chalk and consequently the

amount of erosion is underestimated.

Analysis of Fig. 9a reveals that the pattern of erosion varies significantly laterally and

has a high frequency local and a low frequency regional component. The regional com-

ponent shows a general increase of erosion towards the East. This is in agreement with the

observed subcrop pattern below the base Tertiary horizon (Fig. 1). The eastward increasing

erosion suggests a regional, dome-like uplift of the WNB, which reached its maximum in

the eastern part of the basin. The local, high frequency pattern of erosion is superimposed

onto the regional trend and is fault-related (Fig. 9). The maximum of local erosion is

associated either with strongly tilted fault blocks (e.g., northern boundary fault of the

WNB) or with the axis of fault-related anticlines (fault propagation folds and fault-drag

folds). The faults involved in the folding are steep normal faults, which were reactivated in

a reverse manner (Fig. 9c–d). The local minima of erosion are generally associated with

elongated ‘‘erosional shelters’’, which are bounded on both sides by uplifted and/or folded

areas. These elongated zones of minimum erosion generally form synclines deformed to

varying degrees (Fig. 9c, d), and likely are locations of syn-inversion sedimentation during

the Late Cretaceous.

4.2 Magnitude of erosion

The results of the burial anomaly analysis and the geometrical approach are summarised in

Table 1. The burial anomaly-based erosion was calculated using Eq. (1). Direct observa-

tions regarding the amount of uplift in five wells are also listed. These wells penetrate

duplications of part of the sedimentary succession separated by major thrust faults. The

depth difference between the same stratigraphic horizon below and above the thrust fault

estimates the minimum uplift of the hangingwall block in the given well. This process is

also described for well JUT-01 in Nelskamp et al. (2008) where similar erosion values

were estimated using maturity modelling calibrated to temperature and vitrinite

reflectance.
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(a)

(c)

(b)

Fig. 9 a Amount of erosion and b burial anomaly estimated using the geometrical approach. For outline of
the maps see Fig. 8a. Note that erosion is underestimated in the south-western part of the map (see text for
discussion) c, d Geological cross sections across the restored area
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The table reveals that except for four wells the burial anomalies of the various intervals

are consistent with each other (see the column ‘‘consistency’’). This indicates that the

calculated erosion is reliable. The results show that in all wells where the Chalk Group is

preserved, the measured sonic velocities of the studied intervals coincide with the normal

compaction trends determined by the reference wells. Furthermore, as shown earlier the

baseline determined for the Cretaceous chalk coincides also with published baselines.

These results imply that the Late Cretaceous-Mid Paleocene chalks as well as underlying

sediments in the south-western part of the WNB are presently at their maximum depth of

burial. The amount of erosion therefore cannot be determined precisely. It is estimated that

the line, south of which the formations presently are at their maximum depth of burial,

coincides approximately with the northern limit of the preserved Chalk Group (Fig. 10).

The results of the geometric approach approximate the same boundary (Fig. 9b).

Wells CAP-1, BRK-4, BRK-5, IJS-64, IJS-65, PNA-14 and RKK-10-S1, in which the

Chalk Group is significantly eroded bring important constraints on the Late Cretaceous

tectono-sedimentological setting of the WNB. On one hand in these wells—although they

do not show burial anomalies—the amount of erosion can be better constrained, since the

post-erosion sedimentation is smaller than in wells located in the Voorne Trough. The lack

of burial anomaly in these wells indicates a relatively small amount of erosion (smaller

than *450 m) compared to other parts of the basin. On the other hand, since a certain

amount of the Ommelanden chalk is still preserved in these wells, they imply that the

maximum thickness of Late Cretaceous chalk deposited in the centre of the basin is much

smaller than in the Voorne Trough. This suggests that continuous, syn-inversion sedi-

mentation took place in the Voorne Trough while non-deposition or slight erosion char-

acterised the central part of the WNB during the first phase of basin inversion in the Late

Cretaceous. In the centre of the basin large thickness of chalk deposition, which was later

removed by erosion, is not supported by the results of this study.

Fig. 10 General pattern of erosion in the West Netherlands Basin (for data see Table 1). Well numbers are
the same as in Table 1. Background map represents the pre-Tertiary outcrop pattern. White arrows indicate
the direction of increasing erosion
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The geometrical approach presented earlier is independent from the burial anomaly

analysis. The two approaches therefore should provide consistent results. Comparison of

the erosion estimates indicates reasonably good (WOB-1, MKP-14 and WAS-23-S2 wells)

and excellent (LED-3, NWK-2 and PNA-14) agreement between the two approaches

(Table 1). In case of NWK-2 and WAZ-1 wells the results of the geometrical approach are

in very good agreement also with direct observations, which estimate the minimum amount

of uplift due to thrust faulting. This excellent correlation between different methods

indicates that assuming 300 m of sedimentary cover during the Late Cretaceous-Mid

Paleocene in the central part of the basin was a reasonable assumption. A larger amount of

burial would lead to disagreement with the observed burial anomalies.

It is worthwhile to note that in wells JUT-1, BUM-1 and SPL-1 the observed burial

anomaly is smaller in the upper part than in the lower part of the succession (Aalburg and

Sleen Fm.). In addition in case of JUT-1 the erosion estimated using the amount of

observed burial anomaly is smaller than the uplift calculated from the duplicated sedi-

mentary succession. All of these wells are located close to the northern boundary fault of

the WNB (see Fig. 10), along which significant reverse faulting and block rotation

occurred during the inversion of the basin (Fig. 9c–d). It is suggested that in these wells the

observed differences between the burial anomaly of the lower and upper parts of the

Jurassic succession are the result of the syn-inversion rotation/deformation of the hang-

ingwall block. Namely, if the hanging wall block rotates during thrust faulting, then the

uplift of the lower part of the succession is larger than in the upper part, which is closer to

the pole of the rotation.

In the last column of Table 1 the results of the various approaches are compiled. In the

final estimated erosion not only the results of the various approaches but also local geo-

logical considerations, structural trends and results from nearby wells were taken into

account. In case of BAC-1, MID-, OTL-1, MOL-2 and KWK-1 wells the burial anomalies

were destroyed by the post-erosion sedimentation, and therefore the amount of erosion in

these wells could not be estimated.

The compiled results indicate that the amount of erosion increases towards the east and

northeast (Fig. 10). This can be seen also on the map of erosion constructed using the

geometrical approach (Fig. 9a) and is in agreement with the subcrop pattern below the base

Tertiary horizon. The erosion is highest in the eastern part of the basin especially along the

main, north-eastern boundary fault (1100–1700 m; EVD-1, JUT-1, WLK-1 and BUM-1

wells). In this sense the inversion of the WNB can be considered as being asymmetric. A

similar pattern was also observed in the Roer Valley Graben, the south-eastern continu-

ation of the West Netherlands Basin. Here studies suggest a maximum of 1200 m of

erosion along the north eastern boundary fault (Luijendijk et al. 2011). The amount of

estimated maximum erosion is smaller than that determined for the neighbouring Broad

Fourteens Basin, where 3000–3500 m of maximum erosion was suggested to have

occurred along the central anticline of the basin (Nalpas et al. 1995, Abdul Fattah et al.

2012). In the south-eastern part of the WNB (AND-6, WAA-1, KWK-1) larger amount of

erosion is expected than in the north-western part. This however, cannot be confirmed,

since the burial anomalies were destroyed by the large Oligocene-present day subsidence

of the Roer Valley Graben.

In the WNB, the Cretaceous and Tertiary is a major phase of maturation, expulsion and

migration of oil from the Early Jurassic Posidonia shale source rock (e.g., De Jager et al.

1996; Van Balen et al. 2000). Nelskamp et al. (2012) and more recent work of Bruns et al.

(2016), presents an extensive analysis of the thermal and maturity evolution for shale gas
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potential the Netherlands, including the WNB. The latter study incorporated the erosion

estimates presented in this paper.

4.3 Implications for geothermal exploration

Permeability of aquifers is a key parameter for geothermal doublet performance, as the

flow performance of geothermal doublets scales approximately linearly with the product of

aquifer permeability and thickness (e.g., Van Wees et al. 2012). In geothermal exploration

for clastic aquifers, generally a linear relation is used between porosity of aquifers and the

logarithm of permeability. Porosity has been determined in wells. In between wells,

porosity needs to be spatially interpolated (Pluymaekers et al. 2012). Maximum burial

depth should therefore be used in the spatial interpolation when adopting a porosity-depth

curve or cokriging with maximum burial depth. The effects of burial anomaly (cf. Fig. 9a)

result in a lowering of porosity up to 3%. Following the linear relationship between

porosity and the logarithm of permeability observed in the geothermal aquifers in the

Netherlands (Pluymaekers et al. 2012), Fig. 11 shows the effect of porosity anomalies of

the WNB basin taking into account results from this study complemented with burial

anomaly estimates from geometric reconstruction. The effects of porosity reduction clearly

demonstrate up to a factor 3–4 reduction in permeability in the strongly inverted zones in

the West Netherlands Basin. Consequently, the flow rates of geothermal doublets in these

areas would be a few times lower with correction for burial anomaly than without. These

findings clearly demonstrate the importance of taking burial anomalies into account and the

added value of the workflow presented here to assess them correctly.

Fig. 11 Predicted and permeability change taking into account burial anomalies (left) porosity change
(right) permeability change. Porosity and permeability are constrained by well data (after Pluymaekers et al.
2012)

264 Acta Geod Geophys (2017) 52:243–268

123



5 Conclusions

The study presented in this paper has shown that the pattern of exhumation in an inverted

sedimentary basin can be reliably estimated if various methods are combined. By analysing

the sonic log-based interval velocity patterns of properly defined stratigraphic intervals an

erosion accuracy of 100–200 m can be obtained. Using the multi-formation approach the

reliability of the estimated erosion can be further enhanced, provided consistency can be

shown to exist between the results. Analysis of well-log based burial anomalies provides

only local information about the amount of erosion, interpolation of which cannot provide

a map reflecting the true pattern of erosion. The study has demonstrated however, that the

geometrical approach involving the extrapolation of 3-D seismic reflectors constrained by

the statistical relationship between the thicknesses of various lithostratigraphic units is a

powerful tool to determine the detailed, high-resolution pattern of erosion in an inverted

basin. The detailed map of erosion not only provides useful constraints on the inversion

tectonics of the basin, but can also be used to better constrain its maturity history.

The results of this study indicate that in the West Netherlands Basin there are significant

lateral variations in the pattern of erosion, which has a local, high frequency and a

regional-, low frequency component. The regional component shows a general increase of

erosion towards the east, which reaches its maximum along the north-eastern border fault

of the basin. In a general sense this suggests asymmetric inversion of the West Netherlands

Basin. Evidence from seismic sections and the high frequency component of the erosion

suggest that reactivation of faults played a major role in the inversion and localised erosion

of the basin fill. Across major faults several hundreds of meters of difference can be

observed in the magnitude of erosion. The local maxima and minima of erosion are related

respectively to fault-related anticlines and synclines.

Indirectly the results provide important constraints on the tectono-sedimentological

aspects of the intra-chalk inversion phase (Late Santonian-Mid Campanian). This study

suggests that the maximum thickness of the Late Cretaceous chalk in the centre of the

basin at any moment during the Late Cretaceous is *300 m. This amount is much smaller

than the total preserved thickness of the Chalk in the Voorne Trough, indicating that

continuous syn-inversion sedimentation was taking place in the Voorne Trough, while non-

deposition or slight erosion characterised the centre of the inverting basin.

For geothermal exploration, burial anomalies can result in a pronounced reduction of

permability in clastic aquifers, which results in up to a factor 5 reduction in the predicted

flow performance of geothermal doublets.
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