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Abstract. We consider a system which arises in Neural Network Theory with distributed delays
involving Holder continuous activation functions. We prove some results on global exponential
stability of the system. This extends the previous works where activation functions were assumed
to be Lipschitz continuous.
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1. INTRODUCTION

In this work we investigate the following system

m t
xi(t) = —ai(t)x; (1) + Zbij/ Kij(t—s8)fi (xj(s))ds+ci(t), i =1,..m
j=1 7
(1.1
fort > 0, with x; () = x0,(¢), t € (—00,0] where x¢; (¢) are given continuous func-
tions and b;; are real constants. The functions a; (f) (nonnegative), ¢;(t),i =1,....m
are continuous functions and f; are the activation functions. The functions K;; (¢)
are assumed to be continuous and integrable.
This system arises in (Artificial) Neural Network theory [7, 8] in which there is
a growing interest these last two decades. Unlike the conventional machines (based
on von Neumann architecture) which use a single processor, the Neural Network
consists of a large number of processors (arranged in layers) and in general a lar-
ger number of interconnections between them. A processor receives inputs from the
preceding layer, process it and then pass it to the subsequent layer. There are various
applications in: engineering, science, biology, finance, medicine and geology. Neural
Networks are used to understand (complex) phenomena in these fields. They are able
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to classify and recognize patterns. They are also used to solve mathematical pro-
gramming problems. Their advantages over the traditional computers are the ability
to perform huge parallel computations, to classify certain products and materials and
to predict certain phenomena.

There are many papers in the literature dealing with the local or global asymptotic
stability of the system. In particular, we are witnessing a lot of interest in exponential
stability of the (unique) equilibrium of the system for this problem and other similar
ones [2,3, 15-18,21,23,25,26,28] to cite but a few. A lot of efforts are devoted in
improving the set of conditions on the different coefficients involved in the system as
well as the class of activation functions. For the coefficients the main conditions turn
around a kind of dominance of the “dissipation” coefficients a; on the other coeffi-
cients. As for the activation functions the first researchers have dealt with specific
explicit ones. Then they moved to the assumptions: monotonicity, differentiability
and boundedness. These conditions were later weakened to a Lipschitz condition.
After that not much has been done for continuous but not Lipschitz continuous activ-
ation functions compared to the Lipschitz case or even the discontinuous case. Non-
Lipschitz continuous activation functions arise in many fields [10], see also [0] for an
application involving Holder continuous functions. For a slightly weaker condition
or partial Lipschitz condition we refer the reader to [3,4,23,25].

Holder continuous activation functions were studied by Forti et al. in [4] for the
problem

x'=Bx+Tg(x)+1.

The authors assumed that each component of g is bounded and is a non-decreasing
piecewise continuous function. The matrix —7 is assumed Lyapunov Diagonally
Stable. An exponential stability result and a finite time convergence result is proved
there and extended to a larger class of non-Lipschitz continuous activation functions
under a stronger condition. In addition to that the authors investigated discontinuous
activation functions using the theory of Filippov. In fact discontinuous activation
functions have been treated in several other papers (see [1,5,9,12-14,19,20,22,247])
first under some boundedness and monotonicity conditions. Later these condition
were dropped under some other conditions.

Here we consider variable coefficients and activation functions f; that are Holder
continuous i.e.

i) =fi|<Ljlx=y|* . 0<a; <1 (1.2)
for some positive constants L;, j = 1,...,m. Clearly, Holder continuous functions
are not necessarily Lipschitz continuous. We prove global exponential stability of
the system. This is achieved with the help of a Gronwall-type inequality due to E. H.
Yang [27], some appropriate estimates and some Lyapunov-type functionals.

The local existence is standard whereas the global existence may be derived using
(2.2) and the Gronwall-type Lemma 1 below.
In the next section we state and prove our results.
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2. EXPONENTIAL STABILITY

In this section it is proved that the system is globally asymptotically stable in an
exponential manner when the activation functions (all or some of them) are only
Holder continuous.

Definition 1. We say that the system (1.1) is globally asymptotically stable if for
any two solutions x; (¢) and X; (#) we have

m
lim " Jxi(6) =% (0)] =0.

t—>00 1
It is said to be exponentially asymptotically stable if there exist two positive constants
M and n such that

m _ —
E _ i@ —=%i(0)] < Me Mot > 0.
1=

In case the coefficients in problem (1.1) are constant and there exists a unique
equilibrium x;" ,i =1,...,m, that is a solution of

m 00
0=—a;x; +Zbijfj (x}")/ Kij(s)ds+ci,i=1,...,m. 2.1
, 0
Jj=1
then we obtain exponential stability of this equilibrium.

We denote by y; (1) = x; (1) = Xi (1), y(t) = i i @)1, a(t) := miny < <m {a; (1)},

1=

o~ L bij] > 4 a(0)d
moi=aw - 3 0 [ Kyl @ as 1= 0
ij=1 Pi 0
and .
L;|bij| ! —a:/p;
x1(t) = Z M/ ‘Kij(t—s)}ujqf/p’(s)ds,tzO
ij=1 9 %

for some positive continuous functions w;(¢), p; = 1/aj andg; = 1/(1 —a;), j =
1,....,m.

Theorem 1. Assume that f;, j = 1,....m are Holder continuous and Ki;;(t),
i,j =1,...,m are continuous and integrable functions. Assume further that a;(t),
bij(t), L;j, i,j = 1,...m and the continuous functions w;(t) > 0 are such that
¢1(t) = 0 (not identically zero), f(; ¢1(0)do — coast — oo and

t .
| niee@ioa;
0

is at most of polynomial growth P(t). Then, the system (1.1) globally asymptotically
ot
stable at the rate P(t)e_fo 1S that s

Y1) < P(t)e fo91®ds 1~ ¢
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Proof. From the system (1.1), the assumptions (1.2), (2.2) and the adopted nota-
tion we get

D 130 < —ar®) yi 01+ 3 Ly by \/ Ky (1= 9)| [y, 9)]* ds. 1 > 0,
j=1
fori = 1,...,m, where DT denotes the right Dini derivative. Therefore,

m t
DFy(r) <— min {a;(t)}y(t)+ Z L, |bij|/ |Kij(t —5)| |y ()[* ds. 1 >0
1<i<m =1 —00
Hence, as we denote a(¢) := minj<j <, {a; (¢)}, we get

m

t
DT y(t) < —a(t)y(t) + Z L; |b,-j|/ |Kij(t—5)| |y ()| ds, t >0. (2.2)
i,j=1 >

We estimate |y(£)|*,0 <a; <1,i =1,...,m using Young’s inequality as follows

QJ/PJ
M (¢ 1 1
|y ()] + T,/Lj(f)>0,—.+—.=1,j=1,...,m,120
J

pj  4j
(2.3)
with p; = 1/aj and g; = 1/(1 —«;), j = 1,...,m. Plugging these relations (2.3) in
(2.2) we find

DFy(r) = —a(t)y(t)

/M()

v )] <

—q;/pj
J J()
*ZLJ"’”‘/ =) | 22 3y 9]+ e | s

1

i,j=1

<—a()y()+ Z Lo ”‘/ |Kij(t =5)| 11 (5) | (5)| ds

L,j=1
L;b
+ Z 1 ”‘/ \K,J(z—s)\ujqf/pf(s)ds t>0. (2.4)
i,j=1
Now we introduce the following functional
Vi(t) == y(t)+@1(1), t =0 (2.5)

where

@1([) =

~Jads / Ky (5)] / 5 a @ (0) [y (o) deds.
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This functional @, (¢) will help us get rid of the delayed terms. Indeed, by differen-
tiation it is easy to see that

D1(t) :=—a(t)P1(t) + Z Me—féa(s)ds

i,j=1 J

[ 0 [0y 0] =By =)0 =) s

——a(r)q>1<z)+2[2 Ly]b ”‘ f Kij(s)] e ““’)d“ds}mz)}y,(r)}

=1Li=1

L; |b, i
— Z |Kl](s)}u](t—s)}y](t—s)‘ds t>0 (2.6)
7.] =1
where the last term is equal to the second term in the right hand side of (2.4) with an
opposite sign. So summing up (2.4) and (2.6) we get

DTVi(t) < —a(t)y(t)—a(t)®1 (1)

L |b;
e 5 B sl ol

i,j=1
m ‘bl‘ t _j/ j
+.’jz=1]q—jj/;oo|K[j(l—s)|qu D (s)ds
L |b;
+Z|:Z /} J}[ }K (s)‘ 5T a(c)dcds:|uj([)‘yj([)‘
—1Li=1

L; |b;
-3 E Tl -y

i,j=1

b
<—|a- Z % wi(0) / [Kij ()] e/ 4@ g5 | v o)
ij=1

2

ij=1

R .. t
e / [Kij (¢ =9)| ;717 (5)ds. 1> 0. @7
q; —00

With our notation we can rewrite (2.7) as
DTVi(1) < —g1()V1 () + x1(2). t > 0.
We derive that
+ {V1 (z)efé ¢1(S)dS} < Xl(t)efé $1(9ds ;5 ¢,
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A standard comparison theorem (see Theorem 1.4.1 in [11]) implies that

t S
Vi()elo®1@ds <y, (o) 4 f y1(s)elo®1@dogs 4~ ¢
0
or
t S
Vi(t) <" (O)e_fé $1(s)ds —I—e_f(; ‘m(s)dS/ y1(s)elo 1@dogs 4~ ¢,
0

The assumption that

t S
| xiwelse@doas
0

is at most of polynomial growth implies that V; (¢) that and therefore y(¢) is decaying
exponentially to zero. O]

The following lemma due to E. H. Yang [27] will be needed in our next result.

Lemma 1. Let u(t) and f; (t) i = 1,...,n be non-negative continuous functions
on an interval J =[0,T), 0 < T <0 and a(t) a non-decreasing function such that
a(ty>=1forte J.If

u(t)Sa(t)—i—Z/Otfi(s)(u(s))” ds,telJ,0<ri<l1

i=1
then
n
u@) <a®[]_ Gi).1eJ

where
1

i— d =7
Gi(t):= [1 +(1—r,~)1_[k=11 Gk(t)/o fi (s)dsi| Li=1,...n
and [10_,Gi(t) = 1,1 € J.

In our present situation we will use

1

Gi(t):= -1 +(l—ai)l_[;__ll G (1) /tIS,- (s)ds] o ,i=1,...m
L = 0

where

- m -
~ s+t ot
bi(t):=|>_L; |b,~j|/ |Kij(s)] elo “(")d"dsi| e~ Joa(@da
. 0
Li=1

Theorem 2. Assume that f; are Holder continuous i.e. satisfy the relations (1.2),
Jj =1..m, K@), i,j = 1,...,m are continuous and integrable functions,
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[T/, Gi(t) grows at most as a polynomial and fot a(s)ds — oo as t — oco. Then,
we have

y(t) <[1+ y(0)] H;nzl Gi(t)exp (—/0 a(s)ds), t>0.

Proof. We start from the inequality (see (2.2))

m

t
D+y(t) <—a(t)y()+ Z L; |bl'j|/ ‘Kij(l‘ —S)‘ ‘yj(s)rxj ds,t >0. (2.8)
i,j=1 >

Consider the new functional

Va(t) :=y(t) + P2(t), 1 =0 (2.9)
where
" ‘ oo t s+t )
Dr(0):= Y Lj\bij\e—fo“(s)“/ |1<l~j(s)}/ elo " al@)da |y, ()% gz,
ij=1 0 t—s
(2.10)

A differentiation of @, (¢) in (2.10) gives

<Dé(t) = —a(t)P2(1) + Z L; ’bij’e—féa(s)ds/ |Kij (s)| ef§+fa(cr)dods }yj (t)|aj

ij=1 0

m 00 .
- L |b,-,»|/ |Kij ()| |y (t =9)| ds. t >0 2.11)
ij=1 0

and from (2.8)-(2.11) we see that

D*Va(t) < —a()y(0) —a®®a(0) + Y Ly [by] /_ Kot —5)| [ )| ds

i,j=1

m o0 . )
#00 Lyyleie [y ()8 e |y 0]

ij=1 0

m o0 )
- L |b,~,~|/ |Kiy ()] |yt =9)[* ds
ij=1 0
<—a)V>(t)

+2 [ZLJ |bij|€’_jé”(s)dS/

o0 s+t d o
|Kij(s)| o a@do g | v (1), 1 > 0.
j=1Li=1 0

Thus

Dt |:V2(t)exp/
0

t

a(s)ds]
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b - i+ a@do g, | o
DL }bij}/o |Kij(s)]eo ds | V3 (1)

| i=1 .

ZLJ }bij}/oo}Kl.j(s)‘efgﬂa(o)d“ds [exp (—ozj /ta(s)ds):|
0 0

1Li=1
t &

X [Vz(t)exp/ a(s)ds:| ,t>0
0

and by comparison and integration

Vz(t)exp/0 a(s)ds < V,(0) +/0 Z |:

Jj=1

s

<
Il
-

NE

.
Il

" b T+s
> Li|bi| / |Kij(v)]eloal@og r]
i=1 0

N o

e~ Joalo)do |:V2(s)exp[ a(a)do] } ds, t > 0.
0

In short

m t 5 B o
Va(t) < V»2(0) + Z/o bj(s) [Vz(s)] ‘ds, t >0
j=1
where V() := Vz(t)expfga(s)ds and

m 00
~ s+t t
bit) = DL [bij| / [Kij (0)] oo™ a@o g | emorfoa@)da =y,
i=1 0
Therefore we can apply Lemma 1 to obtain

) <1+ O Gi(0)

where
1

j-1 e e
Gj(1) := [1+(1—aj)]_[k=16k(z)/0 bj (s)ds] L ji=1,..m
and ]_[?=1 Gi(t) =1,t = 0. The proof is complete.

Remark 1. The coefficients b;; being assumed constants is only a technical as-
sumption to avoid duplication of an undesirable term in the derivative of @, (¢).
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