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Abstract. In their paper [6] the authors posed the problem of the characterization of closed sub-
sets in the Euclidean plane that can be realized as the equidistant set of two connected disjoint
closed sets. We are going to solve the problem for a special class of equidistant sets. As a main
result we give necessary and sufficient conditions for a function to be a so-called equidistant
function. This means that its graph is the equidistant set of a line (the first coordinate axis) and
the (convex) epigraph of a positive valued convex function satisfying some regularity conditions.
In the first step we present a parametric expression for equidistant functions. The parametric
expression allows us to use the basic differential geometric tools. We also give a sufficient and
necessary condition for a function to be equidistant. In the conluding remarks section some per-
spectives and extensions of such a special approach will be presented together with some open
problems.
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1. INTRODUCTION: NOTATIONS AND PRELIMINARIES

Let K � R2 be a subset in the Euclidean coordinate plane. The distance between
a point .x;y/ and K is measured by the usual infimum formula:

d..x;y/;K/ WD inffd..x;y/; .a;b// j .a;b/ 2Kg:

Let us define the equidistant set of K and L� R2 as the set all of whose points have
the same distance from K and L:

fK D Lg WD f.x;y/ 2 R2 j d..x;y/;K/D d..x;y/;L/g:

The equidistant sets can be considered as a kind of the generalization of conics [6]:
K and L are called the focal sets. Equidistant sets are often called midsets too. Their
investigations have been started by Wilker’s and Loveland’s fundamental works [12]
and [4]. For another generalization of the classical conics and their applications see
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FIGURE 1. The 2D-version of Loveland’s example

e.g. [1,5] (polyellipses and their applications), [2,8,9] and [10]. ”We find equidistant
sets as conventionally defined frontiers in territorial domain controversies: for in-
stance, the United Nations Convention on the Law of the Sea (Article 15) estab-
lishes that, in absence of any previous agreement, the delimitation of the territorial
sea between countries occurs exactly on the median line every point of which is
equidistant of the nearest points to each country”; for the citation see [6]. The points
of an equidistant set are difficult to determine in general because there are no simple
formulas to compute the distance between a point and a set. On the other hand the
equidistant set can have strange and exotic properties even if it has relatively simple
focal sets (dimension, connectedness etc.). For some amusing examples see [12] and
[4]. Figure 1 shows the 2D-version of Loveland’s example in [4]. The equidistant
set forms a curve with self-intersection in the middle part of the figure. It consists
of two semicircles (left and right hand parts) and four congruent parabolic arcs (the
equidistant set of a point and a line). The focal setK contains two different points and
L is the boundary of a parallel body1 of the segment joining the points in K. There-
fore the investigation of special classes of equidistant sets seems to be as important
as the investigation of the general properties; see e.g. [11], where the authors charac-
terize the equidistant points of finite focal sets in terms of computable constants and
parametrization. The process is also implemented in MAPLE. Its motivation is a kind
of continuity property of equidistant sets; see Theorem 11 in [6]. Since any compact
subset can be approximated by finite subsets with respect to the Hausdorff metric
we can approximate the equidistant points of K and L with the equidistant points of
finite subsets Kn and Ln; for the details see [11]. In what follows we consider the
case of the focal sets

K WD f.t;0/ 2 R2 j t 2 Rg and L WD f.t;f .t// 2 R2 j t 2 Rg;

where f WR! R is a positive valued twice continuously differentiable convex func-
tion. For the sake of simplicity the equidistant set fK D Lg will be denoted by Ef .

1The parallel body of L with radius R means the union of the closed disks with radius R centered
at the points of L; see e.g. [3] and [7].
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Definition 1. A function GWR! R is an equidistant function if its graph is the
equidistant set ofK and L for some positive valued twice continuously differentiable
convex function f .

In the next section the equidistant funtions are given in terms of a special para-
metric expression (2.4). Theorem 1 contains the characterization of a parametric
expression to be the parametrization of the graph of an equidistant function. Some
applications of the basic differential geometric tools (arclength, inclination angle,
curvature) are also presented (Subsections 3.1 and 3.2). Theorem 2 contains a simple
relationship between the inclination angles of f and its equidistant function at the
corresponding positions by the parametric expression. We also give necessary and
sufficient conditions for a function GWR! R to be an equidistant function (Theorem
3). The results give the solution of the problem posed in [6] for a special class of
equidistant sets (equidistant functions): characterize all closed sets of the plane that
can be realized as the equidistant set of two connected disjoint closed sets. In the con-
luding remarks section some perspectives and extensions of such a special approach
will be presented together with some open problems.

2. THE PARAMETRIC EXPRESSION OF AN EQUIDISTANT FUNCTION

Since f is (twice) differentiable, the supporting line of its (convex) epigraph co-
incides with the tangent line of the function at any t 2 R. Using the outer unit normal
of the epigraph the equidistant points can be characterized by the formula

.x.t/;y.t//D .t;f .t//Cy.t/
1p

1Cf 02.t/
.f 0.t/;�1/; (2.1)

where y.t/ > 0 denotes the (common) distance of the point .x.t/;y.t// to the focal
sets. Therefore

x.t/D tC
y.t/f 0.t/p
1Cf 02.t/

and y.t/D f .t/�
y.t/p

1Cf 02.t/
; (2.2)

f .t/D y.t/ �

 
1C

1p
1Cf 02.t/

!
D y.t/

 
1C

p
1Cf 02.t/p

1Cf 02.t/

!
; (2.3)

i.e.

x.t/D tC
f .t/f 0.t/

1C
p
1Cf 02.t/

and y.t/D
f .t/

p
1Cf 02.t/

1C
p
1Cf 02.t/

: (2.4)

2.1. The geometric interpretation of equidistancy

Figure 2 shows the case of f .t/D
1C t2

3
(t 2 R) at t D 3. The equidistant point

at t D 3 (i.e. x.t/D 5) is given as the intersection of the normal line at the tangency
point and the bisector of the angle enclosed by the tangent line and the first coordinate
axis.
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FIGURE 2. Formula (2.1) and Theorem 2

3. THE CHARACTERIZATION OF THE PARAMETRIC EXPRESSION OF THE
EQUIDISTANT FUNCTIONS

Let
�f .t/ WD arctanf 0.t/

be the inclination angle of the function f ; note that ��=2 < �f .t/ < �=2. In terms
of the parametrization (2.4)

sin�f .t/D
f 0.t/p
1Cf 02.t/

D
x.t/� t

y.t/

cos�f .t/D
1p

1Cf 02.t/
D

s
1�

�
x.t/� t

y.t/

�2
D

p
y2.t/� .x.t/� t /2

y.t/

tan�f .t/D f
0.t/D

x.t/� tp
y2.t/� .x.t/� t /2

:

(3.1)

Using the auxiliary function2

'.t/ WD tan
�f .t/

2
(3.2)

it follows that

sin�f .t/D
2'.t/

1C'2.t/
; cos�f .t/D

1�'2.t/

1C'2.t/
; tan�f .t/D

2'.t/

1�'2.t/
;

'.t/D
sin�f .t/

1C cos�f .t/
;
1C'2.t/

2
D

1

1C cos�f .t/
I

(3.3)

2It is the usual substitution to transform trigonometric expressions into algebraic ones.
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note that �1 < '.t/ < 1. By (3.1) and (3.3), the parametrization (2.4) can be written
as follows:

x.t/D tCf .t/

f 0.t/p
1Cf 02.t/

1C 1p
1Cf 02.t/

D tCf .t/
sin�f .t/

1C cos�f .t/
D tCf .t/'.t/;

y.t/D f .t/
1

1C 1p
1Cf 02.t/

D f .t/
1

1C cos�f .t/
D
1

2
f .t/.1C'2.t//:

(3.4)

Excercise 1. Find a geometric argument to conclude (3.4). Hint: see Subsection
2.1 and Figure 2.

Lemma 1. For any t 2 R W y0.t/D x0.t/'.t/:

Proof. Using (3.1) and (3.4)

x0.t/D 1C tan�f .t/'.t/Cf .t/'
0.t/

(3.3)
D 1C

2'2.t/

1�'2.t/
Cf .t/'0.t/

D
1C'2.t/

1�'2.t/
Cf .t/'0.t/ (3.5)

y0.t/D
1

2

�
tan�f .t/.1C'

2.t//C2f .t/'.t/'0.t/
�

(3.3)
D

'.t/

1�'2.t/
.1C'2.t//Cf .t/'.t/'0.t/D '.t/

�
1C'2.t/

1�'2.t/
Cf .t/'0.t/

�
as was to be proved. �

Theorem 1. Let xWR! R and yWR! R be continuously differentiable functions.
They give the parametric expression of an equidistant function if and only if
(EF1) for any t 2 R W y.t/ > 0,
(EF2) for any t 2 R W �1 < x.t/�t

y.t/
< 1 and the function t 7! x.t/�t

y.t/
is monotone

increasing,
(EF3)

y0.t/

 
1C

y.t/p
y2.t/� .x.t/� t /2

!
�x0.t/

x.t/� tp
y2.t/� .x.t/� t /2

D 0:

Proof. The necessity of (EF1) is clear. (EF2) follows from (3.1) and the convexity
of the function f . (EF3) is an equivalent formulation of Lemma 1:

y0.t/�x0.t/'.t/D 0 ) y0.t/�x0.t/
sin�f .t/

1C cos�f .t/
D 0 (3.6)

because of (3.3). Therefore

y0.t/

�
1C

1

cos�f .t/

�
�x0.t/ tan�f .t/D 0 (3.7)
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and we have the necessity of (EF3) by (3.1). To see the converse statement suppose
that (EF1) - (EF3) are satisfied and let us define the function

f .t/D

Z t

0

x.s/� sp
y2.s/� .x.s/� s/2

dsCy.0/C

q
y2.0/�x2.0/: (3.8)

Using (EF3), a simple calculation shows that the derivative of the function

y.t/C

q
y2.t/� .x.t/� t /2�f .t/ (3.9)

is zero. By definition (3.8)

y.t/C

q
y2.t/� .x.t/� t /2�f .t/D y.0/C

q
y2.0/�x2.0/�f .0/D 0

for any t 2 R and, consequently,

y.t/C

q
y2.t/� .x.t/� t /2 D f .t/: (3.10)

Therefore f is a positively valued function with monotone increasing derivative:

f 0.t/D
x.t/� tp

y2.t/� .x.t/� t /2
D tan

�
arcsin

x.t/� t

y.t/

�
(3.11)

because of (3.1) and (EF2). Formula (3.11) implies that

1p
1Cf 02.t/

D

p
y2.t/� .x.t/� t /2

y.t/
(3.12)

and, by substituting in (3.10) and (3.11), it follows that

y.t/D
f .t/

p
1Cf 02.t/

1C
p
1Cf 02.t/

and x.t/D tC
f .t/f 0.t/

1C
p
1Cf 02.t/

; (3.13)

i.e. they are just the parametrization of Ef in the sense of (2.4). �

3.1. Inclination angle and curvature

Let �e.t/ be the inclination angle of the equidistant function at the parameter t 2R.
This means that �e.t/ is the inclination angle belonging to the point .x.t/;y.t//; it is
given by the polar coordinate expression of the tangent vector:

x0.t/D ve.t/cos�e.t/ and y0.t/D ve.t/sin�e.t/;

where ve.t/ WD
p
x02.t/Cy02.t/:

Theorem 2. For any t 2 R W �e.t/D
�f .t/

2

Proof. By Lemma 1

ve.t/sin�e.t/D y0.t/D x0.t/'.t/D ve.t/cos�e.t/'.t/

D ve.t/cos�e.t/ tan
�f .t/

2
:
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Therefore

'.t/D tan
�f .t/

2
D tan�e.t/ ) �e.t/D

�f .t/

2
as was to be proved. �

Lemma 2. The parametrization (2.4) is regular because there exists a positive
number " such that x0.t/� " > 0 for any t 2 R, i.e. x is strictly monotone increasing
and its range is the entire real line.

Proof. According to Theorem 2,

��=4 < �e.t/ < �=4:

Since x0.t/D ve.t/cos.�e.t//,
ve.t/
p
2
� x0.t/� ve.t/;

i.e. x0 is non-negative. If x0.t/D 0 then (EF3) implies that y0.t/D 0. Differentiating

f 0.t/p
1Cf 02.t/

D
x.t/� t

y.t/
(3.14)

we have

f 00.t/

�p
1Cf 02.t/� f 02.t/p

1Cf 02.t/

�
1Cf 02.t/

D
.x0.t/�1/y.t/� .x.t/� t /y0.t/

y2.t/

(3.15)

and, consequently,
f 00.t/p

.1Cf 02.t//3
D�

1

y.t/
< 0 (3.16)

provided that x0.t/D y0.t/D 0. This contradicts to the convexity of f . Since �1 <
'.t/ < 1, the absolute value of y0.t/ is dominated by x0.t/ in the sense of Lemma
1. On the other hand formula (3.15) gives a contradiction like (3.16) by a simple
continuity argument provided that x0.t/ is close enough to the zero for some t 2 R.
Therefore x0.t/ is uniformly bounded by 0, i.e. there exists a positive " such that
x0.t/� " > 0 for any t 2R and the range of the function is the entire real line because
of the uniform lower bound for the local rate of increasing of the function. �

For the computation of the curvature we use the following formulas:

�f .t/D
�
0

f
.t/

vf .t/
and �e.t/D

�
0

e.t/

ve.t/
: (3.17)

By the previous theorem,

�e.t/D
�
0

e.t/

ve.t/
D

�
0

f
.t/

2ve.t/
D
1

2

vf .t/

ve.t/
�f .t/; (3.18)
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where

vf .t/D

q
1Cf 02.t/D

1

cos�f .t/
D
1C'2.t/

1�'2.t/
; (3.19)

�f .t/D
�
0

f
.t/

vf .t/
D 2

.arctan'/0.t/
vf .t/

D 2
'0.t/

1C'2.t/

1

vf .t/

(3.19)
D 2'0.t/

1�'2.t/

.1C'2.t//2
; (3.20)

ve.t/D

q
x02.t/Cy02.t/D

q
x02.t/.1C'2.t//D x0.t/

q
1C'2.t/ (3.21)

because of Lemma 1 and Lemma 2. As formula (3.5) shows

ve.t/D

�
1C'2.t/

1�'2.t/
Cf .t/'0.t/

�q
1C'2.t/: (3.22)

Therefore

�e.t/D
1

2

1C'2.t/

1�'2.t/�
1C'2.t/

1�'2.t/
Cf .t/'0.t/

�p
1C'2.t/

2'0.t/
1�'2.t/

.1C'2.t//2
; (3.23)

i.e.

�e.t/D
'0.t/

.1C'2.t//3=2
�
1C'2.t/

1�'2.t/
Cf .t/'0.t/

� (3.24)

Table 1 contains the numerical values of the inclination angle, the magnitude of
the velocity and the curvature in case of the function

f .t/D t2C1 ) tan�f .t/D f
0.t/D 2t;

'.t/D tan
arctan.2t/

2
and '0.t/D

1

cos2 arctan.2t/
2

1

1C4t2
:

3.2. An estimation for the arclength between equidistant points

The arclength between the parameters a < b can be computed as

L.Ef /
b
a D

Z b

a

ve.t/dt I

note that it is the arclength between the equidistant points .x.a/;y.a// and
.x.b/;y.b//. Since �1 < '.t/ < 1Z b

a

1C'2.t/

1�'2.t/
Cf .t/'0.t/dt �L.Ef /

b
a �
p
2

Z b

a

1C'2.t/

1�'2.t/
Cf .t/'0.t/dt
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TABLE 1. Some numerical values

t D 0 t D 1 t D 2 t D 3 t D 4

x.t/ 0 2:2361 5:9039 11:4713 19:0073

y.t/ 1
2

1:3820 4:0240 8:5881 15:1241

�e.t/ 0 0:5536 0:6629 0:7028 0:7232

ve.t/ 2 3:2785 5:8316 8:5804 11:3750

�e.t/
1
2

0:0610 0:0101 0:0031 0:0014

because of (3.22). HereZ b

a

f .t/'0.t/dt D f .b/'.b/�f .a/'.a/�

Z b

a

f 0.t/'.t/dt;

Z b

a

f 0.t/'.t/dt D

Z b

a

'.t/ tan�f .t/dt
.3:3/
D

Z b

a

2'2.t/

1�'2.t/
dt

and, consequently,

b�aCf .b/'.b/�f .a/'.a/�L.Ef /
b
a �
p
2.b�aCf .b/'.b/�f .a/'.a// :

Example 1. If f .t/D 1C t2 then, by using the data of Table 1, we have that

4C17 tan
0:7232

2
� 10:4299�L.Ef /

4
0 � 14:7501�

p
2

�
4C17 tan

0:7232

2

�
:

4. THE CHARACTERIZATION OF THE EQUIDISTANT FUNCTIONS

In what follows we are looking for the equdistant function in the form

y.t/DG.x.t//; where G W R 7! R

Lemma 3. G is a positive valued, twice continuously differentiable convex func-
tion.
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Proof. Using Lemma 2, it follows that G.t/D y ıx�1.t/. Therefore

G0.t/D y0.x�1.t// �
1

x0.x�1/.t/
D ' ıx�1.t/

because of Lemma 1. Since f is twice continuously differentiable and

' D tan
arctanf 0

2
;

we have that � ıx�1 is continuously differentiable. The convexity ofG follows from
the curvature formula (3.18) with �f � 0 because of the convexity of the function
f . �

Excercise 2. By Lemma 3 we can take the sequence Gn, where G0 WD f and
GnC1WR! R is the equidistant function with respect to Gn. Prove that Gn.t/ tends
to zero at each t 2 R. Hint: see Theorem 2.

Using that
y0.t/DG0.x.t// �x0.t/

and x0.t/ > 0, condition (EF3) says that

G0.x.t// �

�
G.x.t//C

q
G2.x.t//� .x.t/� t /2

�
D x.t/� t; (4.1)

G0.x.t// �

q
G2.x.t//� .x.t/� t /2 D x.t/� t �G0.x.t// �G.x.t//: (4.2)

Taking the square of both sides

�G02.x.t// � .x.t/� t /2 D .x.t/� t /2�2.x.t/� t / �G0.x.t// �G.x.t// (4.3)

We have two possible cases: if x.t/¤ t then

�G02.x.t// � .x.t/� t /D .x.t/� t /�2G0.x.t// �G.x.t//: (4.4)

If x.t/D t then, by condition (EF3) in Theorem 1, y0.t/D 0. Since

y0.t/DG0.x.t//x0.t/

we have thatG0.x.t//D 0 because of Lemma 2. This means that equation (4.4) holds
in this exceptional case too. Therefore

x.t/� t D
2G0.x.t// �G.x.t//

1CG02.x.t//
) x.t/�

2G0.x.t// �G.x.t//

1CG02.x.t//
D t: (4.5)

Using the auxiliary function

H.x/ WD x�
2G0.x/ �G.x/

1CG02.x/
(4.6)

it follows that H.x.t// D t , i.e. H�1.t/ D x.t/; note that x0.t/ > 0 implies the
existence of the inverse function. In the sense of Lemma 2 the inverse of H must be
of the form H�1WR! R.
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Theorem 3. A twice continuously differentiable functionG WR!R is an equidistant
function if and only if

H.x/ WD x�
2G0.x/ �G.x/

1CG02.x/
(4.7)

has a strictly monotone increasing inverse function of the form H�1WR! R and the
parametric expression

x.t/ WDH�1.t/ and y.t/ WDG ıH�1.t/

of G satisfies conditions (EF1), (EF2) and (EF3) of Theorem 1.

Remark 1. The substitution t DH.x/ in (EF1) implies that G must be a positive
valued function. We also have thatG is convex and�1<G0.x/ < 1 for any x 2R be-

cause of the monotonicity property (EF2); see the behavior of the function
2x

1Cx2
on

the real line. Since the parametrization in Theorem 3 is based on condition (EF3), it
is automatically satisfied: a twice continuously differentiable, positive valued convex
function G W R! R is an equidistant function if and only if

H.x/ WD x�
2G0.x/ �G.x/

1CG02.x/
(4.8)

has a strictly monotone increasing inverse function of the form H�1WR! R and
�1 < G0.x/ < 1 for any x 2 R. Theorem 3 gives the solution of the problem posed
in [6] for a special class of equidistant sets (equidistant functions): characterize all
closed sets of the plane that can be realized as the equidistant set of two connected
disjoint closed sets.

5. CONCLUDING REMARKS

5.1. An open problem

It can be easily seen that conditions (EF1) - (EF3) are invariant under orientation
preserving transformations of the parameter. Can we generalize the characterization
of equidistant functions as plane curves in terms of conditions that are invariant under
(orientation preserving) Euclidean motions?

5.2. Generalizations and extensions of the process

As a simple conclusion of the geometric interpretation of equidistancy (see Sub-
section 2.1) we have that the equidistant function is the envelope of the family of
parabolas such that the first coordinate axis is the common directrix and the focal
point is running through the graph of the function f . Since the equidistant func-
tion takes exactly the form of a parabolic arc in the outer normal cone belonging to
any singularity on the graph, the singularities (if they exist at all) do not affect the
equidistant function. Moreover, any convex function can be approximated by con-
vex functions of class C2, i.e. the regularity conditions for the function f can be
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used without loss of generality; see also Theorem 11 in [6] (continuity property of
equidistant sets). Another technical simplification is to take the entire real line as
the domain of the function f . It can be easily seen that if the domain is bounded
from above (for example), i.e. f W.�1;b/! R then the equidistant function takes
the form of an infinite parabolic arc for any t > limt!b� x.t/. We can also take most
of unbounded closed convex set in the plane as the epigraph of a convex function
by choosing the first coordinate axis parallel to the orthogonal complement of a ray
contained in the set. Finally the process presented in the paper gives a local approx-
imation of the equidistant sets in some cases as follows. Consider two disjoint closed
convex sets K and L in the plane. For the sake of simplicity we suppose that their
boundaries are of class C2. If P is an equidistant point of K and L then there exist
uniquely determined closest points onK and L to P : A 2K and B 2L. The tangent
line k of K at the point A provides a linear approximation around A of K containing
the closest points of K to the equidistant points around P because of the continuity
of the orthogonal projection of the outer points onto the boundary of a closed convex
set. If the perpendicular line from B to k intersects the interior of L then we can use
the local version of the process to approximate the equidistant set of K and L by an
equidistant function around P . The previous argument motivates us to use the C2

boundary in a more effective way by substituting the coordinate axis k with the oscu-
lating circle to the boundary of K at the point A. This circle provides a higher order
contact than the tangent line. Therefore we propose the solution of the problem of
the characterization of equidistant sets belonging to the epigraph of a positive valued
convex function and the circle given by x2C .yCR/2 DR2.
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Márk Oláh, Univ. of Debrecen, BSC mathematics, H-4002 Debrecen, P.O.Box 400, Debrecen,

Hungary
E-mail address: olma4000@euromail.hu

L. Fórián
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