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Abstract. By using the fractional derivative operator of Owa and Srivastava, we define a new
linear multiplier fractional differential operator. Some generalized classes of analytic functions
containing this multiplier are introduced. Basic properties of these classes are studied, such as
inclusion relations and coefficient bounds. Some well known subclasses are pointed out as new
special cases of our results. Moreover, the Cesdro partial sums oy, of functions f are considered,
and sharp lower bounds for the ratios of real part of f and oy, (and also of f’ and o,,) are
determined in the unit open disk.
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1. INTRODUCTION

Let J be the class of analytic functions in U := {z € C : |z| < 1} and J[a,n] be
the subclass of J# consisting of functions of the form f(z) =a+anz" +any12" 1 +
.... Let # be the class of functions of the form

f@) =2+ ani". (1.1)
n=2

which are analytic in the unit disk U.
Given two functions f,g € 4, f(2) =2+ oe,anz" and g(z) =2+ nerbnz”
their convolution or Hadamard product f(z) * g(z) is defined by

f)*xgz)=z+ Zanbnz”, (z €U).

n=2
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For several functions f1(z),..., fm(2) € A,

fl(Z)*"-*fm(Z):Z+Z(alnmamn)zn’ (Z EU)-

n=2
A function f € 4 is called starlike of order w if it satisfies the following inequality
/
SHZf(Z)
f(2)

for some 0 < < 1. We denoted this by by class (). A function f € A is called
convex of order p if it satisfies the following inequality

zf"(@)

1)
for some 0 < u < 1. We denoted this class €(u). Note that f € €(u) if and only if
z f € 8(w). The following definitions are required in our present investigation.

}>u, (zeU)

N{ +1y>u, (zeU)

Definition 1. (see [8] ) (Subordination Principal). For two functions f and g
analytic in U, we say that the function f(z) is subordinated to g(z) in U and write
f(z) < g(z)(z € U), if there exists a Schwarz function w(z) analytic in U with
w(0) = 0, and |w(z)| < 1, such that f(z) = g(w(z)),z € U. In particular, if the
function g(z) is univalent in U, the above subordination is equivalent to f(0) = g(0)
and f(U) C g(U).

Definition 2. (see [9]) (Differential subordination ) Let ¢ : C*> — C and let &
be univalent in U. If p is analytic in U and satisfies the differential subordination
¢(p(2)),zp'(z)) < h(z) then p is called a solution of the differential subordina-
tion. The univalent function g is called a dominant of the solutions of the differential
subordination, p < ¢. If p and ¢(p(z)),zp'(z)) are univalent in U and satisfy the
differential superordination /(z) < ¢(p(2)),zp'(z)), then p is called a solution of
the differential superordination. An analytic function ¢ is called subordinant of the
solution of the differential superordination if g < p.

Definition 3. (see [10]) The fractional derivative of order « is defined, for a func-

tion f(z), by
1 d [*
D= [ IO
r(l-a)dz Jo (2=0*
where the function f(z) is analytic in simply-connected region of the complex z-

plane C containing the origin and the multiplicity of (z —¢)™% is removed by requir-
ing log(z —¢) to be real when(z —¢) > 0.

d¢;, 0<a <1,

Definition 4. [15] A function f € S (the class of univalent functions in U) is said
to be in the class SH () if it satisfies

ﬁ%SL”Wﬁ—M<mN7ﬂ?}MM%LD
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for some u > 0 and forall z € U.

Remark 1. Geometric interpretation: Let £2(u) := {Z}[(/S), f € HS(i)} then

Q(M):{w=u+iv:v2<4,uu+u2;u>0}.

Note that £2 () is the interior of a hyperbola in the right half-plane which is symmet-
ric with respect to the real axis and has vertex at the origin.

Define the function @4 (a,c;z) by

o0
p(a,c;z) = Z (“)”z", (zeU;aeR, c e R\{0,—1,-2,...}),

n—0 (©)n
where (a), is the Pochhammer symbol defined by
(@) = I'a+n) |1, (n =0);
" I | ala+D(@+2)..(a+n—-1), (neN).

Corresponding to the function ¢y (a, c; z), Carlson and Shaffer [5] introduced a linear
operator L(a,c) by
L(a.c) f(z) :==g¢la.c:2) x f(2). [ €A

Note that L(a,a) is the identity operator.
In [11], Owa and Srivastava introduced the operator @% : A — 4, that is known
as an extension of fractional derivative and fractional integral, as follows

Q% f(z) :==I'2—)z*D? f(2)
. i rn+Hre—a)

n<

—~ TI'(ntl-a) ‘ (1.2)
=¢(2,2—a;2)* f(2)
=L2,2—a:2)f(2).

Note that ®° f(z) = f(z). We define the linear multiplier fractional differential op-
erator D’g’i as follows

D f(z) = f(2)

:Z+Zanzn,
n=2
D4 F() = (B=N)P* f(2) + Az(@* f(2) + (1 - B)z
A T+ DI 2—a) )
_Z+’;[ Tn+l-a) [[A(n—1) + Blanz

= DY, (f(2)).
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D2 f(2) = DY (D3 f(2)

SNCRRVACRT)
_HZ{ Fn+1-a)

JA(n —1) + Bl}*anz",

D5 /@) =Df A(D’,é‘;’“f(z))

_z+Z{ FOLDEC- D0 e

=2z + Z Wn,k(a,ﬁ,k)anzn,

n=2
f0r0<oz<1,3>1)L>Oandk€D\l0—INU{0}w1thD f(O)—O

Remark 2. (1) Whena =0, =1, we have Al-Oboudi’s differential operator

(see [3]).
(2) Whena = 0,8 =1 and A = 1, we get Sélagean’s differential operator (see

[16D).
(3) Whenk = 1,8 =1 and A = 0, we obtain the Owa-Srivastava fractional dif-

ferential operator (see [11]).

(4) When 8 = 1, we get the linear multiplier fractional differential operator Dlj’a
that introduced in [4].

Using the operator Dk 5 )w we define the following classes.

Definition 5. Let SHy o g 2 (1), k € N be the class of all functions f € A and
univalent in U satisfying

k+10t k+1a
—f( )—2/L(~/_—1)‘<‘h{\/_—’“ U )}+2u(~/§—1)
ﬂ,lf(z) Dﬂ Af( 2)

for some w, (1 > 0) and for all z € U.

Remark 3. Geometric interpretation: If we denote with p, the analytic and uni-
valent functions with the properties p; (0) =1, plg (0)>0and p,(U) = 2(n) (see
Remark 1), then f € SHy 4 g 2(u) if and only if

k+1 af(Z)

<pu(2), z€U,
lg’,xf(z)
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1+4pu—4u?

(-t and the branch of

such that p,(z) = (14 2p) % —2/, where b =
the square root /w is chosen so that /m./w > 0.

We can observe that

SHi,0,1,1(n) = SH (1)
where the class SHj (i) was introduced in [1]. Also we have

SHo,0,1,1(n) = SH(n),
where the class SH (i) was proposed in [15].

Definition 6. Let0 <a < 1,8>0,1 >0, and f € A, v € [0,00). We define the
class (v,k)q,pg,5 —& by requiring that f € & and

DS f(2) DS f(2)
B.A B, _
9?( @ )>v‘ © 1, (z€eU).

Note that
(v,k)o,1—8 = (v, k)-8,
where the class (v, k) — & is defined and studied in [2].

Remark 4. (Geometric interpretation): A function f € (v,k)q g2 — & if and only
if
D f(2)
B.AS
f(2)

where p, denoted the function which maps the unit disk conformally onto the region
£2,, such that 1 € £2,, and

02, ={u+iv:u®=viu—1)>2+v2v2.

< pu(2), (ve0,00), z€U)

The domain £2, is elliptic for v > 1, is hyperbolic when 0 < v < 1, parabolic for
v = 1, and is the right half-plane when v = 0.

Definition 7. Let 0 <a < 1,8>0,A >0, and f € A, v € [0,00). We define the
class (v,k)q,g,2 — €€ with respect to the function g € (v,k)q g, — 8
ko ko
Dy, f(2) Dy f(2)
m(L) > U|L—1  (zel).
g(2) g(2)

Note that
(l),k)()’l’l —€€ = (V,k) —ff,
where the class (v, k) — €€ is defined and studied in [1].
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Remark 5. (Geometric interpretation): A function f € (v,k)q g2 — €€ with re-
spect to g € (v,k)q,g,1 — 3 if and only if

DS f(2)
'Bg’AT) < pu(2), (ve0,0), z€U)

Dk,oz
where p, is defined in Remark 4. Or %f)@ take all values in the domain £2,,.
We need the following preliminaries in the sequel. The Libera-Pascu integral op-
erator L, : A — oA is defined by

f(z):=LaF(z) = IZ#/Z F()t* 'dt, a € C, R(a) > 0.
0

For a = 1 we obtain the Libera integral operator, for a = 0 we obtain the Alexan-
der integral operator and in the cases @ = 1,2, 3, ... we obtain the Bernardi integral
operator.

Lemma 1. ( see [7]) Let ¢ be convex in U with W{k¢(z) +v} > 0 for k,v € C,
also let p(z) € #(U) with p(0) = ¢(0) and assume that the Briot-Bouquet differen-
tial subordination ‘@)

zp'(z
)+ ———
r(2) @)+

is satisfied. These imply that

<¢(2), z€eU

p(2) <¢(2), z €U.

Lemma 2. ( see [7]) Let g be convex in U and ¢ : U — C with W{¢(z)} > 0. If
p(z) € #(U) and assume that the subordination

p(2)+¢(2).2p'(2) <q(2), z €U
is satisfied, then
p(2) <q(2), z €U.
2. THE CLASS SHy o,8,2(10)

In this section we study the inclusion property of functions in the class SHy 4 g 2 (14).
Further we show that if F' € SHy , g (1) implies that for the Libera integral oper-
ator Lo F(z) € SHk,agﬂ,A(;L).

Theorem 1. Let 4 >0,0<a < 1,8> 1,1 > 0. We have
SHi1,0,8.0 (1) CSHy o.p.2(11).
Proof. Let f € SHy1 48,4 (1t). Denote

Dk+1,af(z)
p(2) = % p(0) =1, (z ).
D'gzxf(z)
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Then we have
k+2 ) Dk+2 @ £(7) ijf(z) o k+2 ® r2) o
k+1“f(> gif@) DEMf) PR DQ%f@) '
Now, by using the definition of the operator (1.3), we verify
k+1 af(Z)
Dk“f@)]
. DS f(2).2(Dg 5 f(2)) — h““ftﬂchﬁif&Df
(DS £(2))?

pr@)+Azp'(z) = [

k+1 af(Z)
_[ zifa>]
o DS f(2).(Dg 5> f(2)— (B— MDk““f&D—U—ﬂk]
(D§S /(2))2
DgE F()(DEE F(2) = (B=M) DS () — (1= )z

- (DK< f(2)2 ]

k+1“f()ﬂ_% DES F(2)D 52 f(2) = (D5 £(2))?
(DK% £(2))? (DF5 £(2)?

k+2 af(Z)

ﬁjf&)

2.2)
Putting (2.2) in (2.1), we obtain

k+2a
f(@) /
’”Tf() P(z)+kzl‘f(g), (z €eU). (2.3)

Since f € SHy11,4,8,4(1t), then in view of Remark 3, we have

k+2 otf( ) Zp/( )

<
k+1af() =p@@)+A Q) < pu(2),

with p(0) = p;,(0) =1, >0, and R(p,(z)) > 0. Hence, from Lemma 1, we obtain

p(2) < pu(2), (z€U),
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or
———— < pu(2), (z€U).
5,)Lf(z)
Now Remark 3 gives f(z) € SHy o g5 (1). O

The next results can be found in [ 1, 2] respectively.
Corollary 1. Let u > 0. We have
SH(pn) C 8.
Proof. By letting k = 0 in Theorem 1. (]
Corollary 2. Let y > 0. We have
SHy1,0(1) C SHy ().
Proof. By assuming @ = 0 and 8 = 1 in Theorem 1. (]

Theorem 2. Let n>0,0<a <1,8>1,A>0.If F € SHy 4 g 5 () with A(1+
a) > B, then the Libera-Pascu integral operator f(z):= Lo F(2) isin SHy o g 3 (1).

Proof. Let F € SHy o g 5 (1). Denote

k+1 af( )
p(z) = —, p0)=1,(ze€U) (2.4)
ﬂ,xf(z)

and assume that 0 < R{p(z)} < 1. From the definition of the Libera-Pascu integral
operator we have

( +a)F(z) =af(z2)+zf'(2),
by using the linear operator D¥ 5. “1% we have
(1 —I—a)Dk+1 aF(Z) — aDk-H otf( )+ Dk+1 a(Zf/(Z))
=aDg 5 f(2) +2(Dg 3 £(2)

k+2 ©f(2)— (B — )&)DkJrl Y f2)—(1—-p)z
; ,

_ aDk—i—l af( )
or equivalently,
AM1+a)DEEF(z) = M1 +a) = BIDEE M £(2) + D2 (o) - (1-B)z.
Similarly, we obtain

M1+a)DESF(2) = [A(1+a)—BIDES £(2) + D1 f(2) = (1—P)z.
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Then by using (2.4) and (2.3) we have
Dt f(2) n D2 f(@) D@ (1-p)z
Dysf@) — Dpilf(2)" DEff)  Dg5/@
D 1@ _ _(-p)z

Dg§  Dgif@)
k+2.«
0 +0) = Blp(2) + St p() +9(2)

A1 +a)—pB]+ p(z) +¢(2)

_ M +a)-Blpz) + p*(2) + Azp'(2) + ¢(2)
- (1 +a)— B+ p(2) +¢(2)
_ @A +a) = Bl+ p(2) +¢(2)} +A2p"(2) +¢(2)(1 = p(2))

[A(1+a)—B]+ p(2) +¢(2)

0(z2)(A—p(z))
A+ zp'(2) )

= 1@+ G at O 190
= p@)+2p'(2)-9(2),
where R(¢(z)) >0asz — 1. From F ¢ H Sj q.8,4(1t), we have
p(2)+2p'(2).9(2) < pp(2).
thus in view of Lemma 2, we obtain

p(2) < pu(z), (z€U)

Dlﬂ‘jl’O‘F(z) [A(1+a)—B]

DySFE) A(1+a)—B]+

or
k+1,a
Dy f(2)
A
ﬂka— <pu(2), p(0)=1, (z€U).
D £(2)
Implies f € HSk 4 g, (). This completes the proof. =

The next results can be found in [2].

Corollary 3. Let > 0. If F € SHy, 5 (jt). Then the f € SHy ; () where f is
the Libera-Pascu integral operator.

Proof. Assume o = 0 and 8 = 1. Hence ¢(z) = in Theorem 2.

0

A
[A(Q+a)-1]+p(2)

3. THE CLASS (v,k)q, g2 —CC

In this section, we show that for any function F € » in the classes (v,k)q g3 —&
and (v,k)q,g,2 — €, the Libera-Pascu integral operator acting on F is also belongs
to these classes. Moreover, some well known subclasses are obtained as special cases
of our results.
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Theorem 3. If F € (v,k)q g r—38.v€[0,00) and 0 <a <1,>0,A >0, then
Libera-Pascu integral operator f(z) = LqF(2) € (v,k)q,g1—8.

Proof. Let F € (v,k)q g, —&. Consider

55/

p(2):=

From the definition of the Libera-Pascu integral operator we obtain
(1+a)F(2)=af(2)+zf(2). (3.2)

By using the linear operator D]/;% we have

(I1+a) Dy F(z) =aDgs f(2) + D5 (2f'(2))
—aD f(z)+z(D @)

DAL £(2) ~ (B MDA £ ()~ (1 P2
= D5 )+ .

=[a+ﬂw f@+3 D f)+

= ADgS f(2)+ BD’gjl “ f(z) +0(2).

(B - l)Z

3.3)
From (3.2) and (3.3) we obtain

DESF()  ADGSf(2)+BDgE f(2) +9(2)

F(z) af(@)+z/f'(2)
DESf@ | LD @ )
:f (Z)[A o T +f(z)] o
f@la+ 22 '

D5 /@) | p D" f@)
B B.A 9(2)
o tB " Tt

zf'(z)
a+t e

A

From (3.1) we have
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Zf@ﬂDﬁ%f@ﬂﬂ—D&jf@)f«o
12(z)

DRSSV DS zf)

T @ f@ fR

DZT”f@»%ﬂ—gbgiﬂn—u—ﬂn

z2p'(2) =

DRSS 2 f'(2)

7@ - f@ @

 BDGEMf() DGl @) e (2. 2@

TR @ e G

BD"“"‘f(z) go(z) 2@ (Z)
where C ;= (’3 %) Hence

BDk+1 © £(2) 2f'(2), 9@
R )[C + - TG
D 2p' @)+ p)IC + f(z)] @)

Substitute (3.6) in (3.4), then we obtain

DESFE) _ Ap@)-+ B2 1 53
F(Z ) a+ i
W@+ pEMA+CH Zf(g)]
a+ i
20 (@) + p@)a + 22
) a+ i
= p@)+ @Zﬂ(@-
From the hypothesis, we have
DkaF()
F&) < pv(z), (ve[0,00),z€U).

Consequently, we have

1
p(z) + 7zp’(z) < pu(2), (ve[0,00),z €U).
a+ % (z)
f(2)

177

3.5)

(3.6)

3.7
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Now in view of Lemma 2, we get

p(2) < pv(2), (v€[0,00),z €U).

Equivalently
ko
Dy f(2)
A pu(@) (v e[0.00).z € V),
f(@)
which implies f(z) = Lo F(z) € (v.k)a,g,1— 5. 0

The next result can be found in [2].

Corollary 4. If F € (v,n)—8,v € [0,00), then Libera-Pascu integral operator
f(2)=LgF(z) e (v,n)—34.

Proof. Leta =0,8 = A =1 in Theorem 3. O

Corollary 5. If F € (v,k); —&,v € [0,00), then Libera-Pascu integral operator
f(@)=LaF(z) € (v,k))— 5.

Proof. Puta =0, = 1 in Theorem 3. Note that in this case we have Al-Oboudi’s
differential operator. O

Theorem 4. If F € (v,k)g2—CC€,v €[0,00) and 0 <a <1, > 0,1 >0,
with respect to the function G(z) € (v,k)q g5 — 3, then the Libera-Pascu integral
operator f(z) = LaF(2) € (v,k)q g1 — €C with respect to the function g(z) =
LaG(z) € (V’k)a,ﬂ,)t —-3.

Proof. Let F € (v,k)q,p,2 — €€ and

DES SR

p):= , p(0)=1, (zeU). (3.8)
g(2)

Differentiating the Libera-Pascu integral operator f(z) = L, F(z) and operating by
DZ . we have

(14+a)DFSF(z) = ADgS £(2) + BDEH £(2) + 0(2), (3.9)
where A, B and ¢(z) are defined in Theorem 3. We also observe that

(14+a)G(z) =ag(z) +zg'(2). (3.10)
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By using (3.9) and (3.10) we get

DESF()  ADGSf(2)+BDGEM f(2) +9(2)

G(Z) B ag(z)+2¢'(2)
k.o z k+1.«
g (Z)[A DBéA(zJ;( '+ B Dﬁir(z)f( 24 58]
= e (3.11)
g(z)[a+ m]
DESf) |, DEX Y F (@)
_ Ao B +%.
S
From (3.8) we have
, gD f() = DES ()-8 (2)
zp' () =z : 5 :
g%(2)
_ADPRII@) DR ')
g(2) gz) g
_ Dei M f@-(B-MDEE - (=P DEifR) 2g')
Ag(z) gz) g2
_ BDk—i_1 “f(2) CD]E:‘;]{(Z) N go(z) 2. z2¢'(2)
' g(Z) g(2) g(z) g(2)
BDk+1 @ 8@ ¢()
=———————Cp(2)—p(2).
g(z) 2(2) g(z)
(3.12)
where C defined in Theorem 3. Hence
BDk-H o ,
BPp " 10 — 2p'(2)+ p)C + B R ¥ (3.13)
g(2) g(z) g
Substitute (3.13) in (3.11) we obtain
Dk aF(Z) ,
G( ) —p(z)+—a+%(z))zp (z) (3.14)
g8\Z
= p(@)+¢(2)zp'(2),

where f{¢} > 0, z € U. Thus in view of Lemma 2, we obtain

P(2) < py(z), (v€[0,00),z€U)
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or equivalently

k,a
Dy f(2)
BT pv(2), (ve[0,00),z€U).
g(2)
Hence f(z) = Lo F(2) € (v,k)q,p,2 — €€ withrespect to the function g(z) = L,G(2) €
(v, k)a,pp—3. 0

The next result can be found in [2].

Corollary 6. If F € (v,k) — €€, v € [0,00) with respect to the function G(z) €
(v,k) — & then Libera-Pascu integral operator f(z) = LaF(2) € (v,n) —€€ with
respect to the function g(z) = L,G(2) € (v,k)— 8.

Proof. Leta =0,8 =A =1 in Theorem 4. O

Corollary 7. If F € (v,k), —€€,v € [0,00) and A > 0, with respect to the
function G(z) € (v,k)) — &, then Libera-Pascu integral operator f(z) = Lo F(2) €
(v, k) — €€ with respect to the function g(z) = L,G(z) € (v,k); — 8.

Proof. Puta =0, 8 = 1in Theorem 4. Note that in this case we have Al-Oboudi’s
differential operator. O
4. THE CLASS (v,k)q, .1 —3

In this section, we determine coefficient bounds for functions of the form (1.1),
with positive and negative coefficients, in the class (v,k)q g2 — 8. This study is
required in the next section.

Theorem 5. A sufficient condition for a function f(z) of the form (1.1) to be in
class (v,k)g g0 —38 is

Y lanl[(nx (e, B, ) = DA +v) +1] < 1, 4.1
n=2

where v € [0,00) and 0 <a < 1,8 > 0,1 > 0.

Proof. It suffices to show that
DR 1) Dk £ (2)
pal @) Pea @)
e (Y =
‘We obtain
D2 £(2) DR £(2) DE% f(z)
IRA A gt (&)
o (g ) =ae g
_ (L4+0) Y02 lan| (P k(o B, A) = 1) |z
- =20 lanl 2]
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_ 00502, lan| (Wi (e B, = 1)
- 1— ZZO=2 |an|
This last expression is bounded above by 1 if

> lan| [ (@B 1) = DA +v) +1] < 1,
n=2

and the proof is complete. O

Now we prove that the condition (4.1) is also necessary for f with negative coef-
ficients. Let 7 be the class of all analytic functions of the form

o0
f@)=z2=) anZ", (an >0,z €U).
n=2

Then we have the following result.

Theorem 6. A sufficient and necessary condition for f € T to be in the class
(. k)gpp—T8=.k)qpr—8NT (herev €[0,00) and0 <a <1,8>0,1>0),
is that

> an[(W (. . 1) = DA +v) +1] < 1.
n=2

Proof. Inview of Theorem I, we need to prove only the necessity. If f € (v,k)q g2 —
T8 and z is real, then

DX £(2) DX% £(2)
B2 e B.A B
1>v‘ f(2) m( f(2) 1)
DX £(z)
B
. - ;ﬁzan(lpn,k(av ﬂ’A’) - I)Zn_l
——(+ v)ER( 2 e )

Letting z — 1 along the real axis, we obtain the desired inequality

> an[(Wn k(@ B 2) = D1 +v) +1] < 1.

n=2
O
Corollary 8. The extreme points of (v,k)q g1 — T 8 are the functions given by
1
fiR) =1, and f(2) =z— ",
! (@ g, B.2) = (1 +v) +1]

wheren = 2,3,...,v €[0,00) and 0 <a <1, > 0,1 > 0.
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5. CESARO SUM

Recently, Silverman [14] determined sharp lower bounds on the real part of the
quotients between the normalized starlike or convex functions and their sequences of
partial sums:

L S@) g INE) J'(z) (v (@)
W e ol = M)
In this section, we consider the Cesédro sum o3, of functions in the class (v,k)q g2 —

& and obtain sharp lower bounds for the ratios of real part of f(z) and o, and also
of f'(z) and o,,. Let us first construct the Cesédro sum 0, (z) of functions f € #4 by

1 m
om(z) = oy Z sn(2)
n=0

= ——[50(2) +51) + .+ 5m(2)]

3
—_ |-

= [ao+(ao+a1z)+..+(a0+...+amz’”)]

[(m+1)a0+ma1z+..+amzm] (CRY)

1

m—+
2 om—n+1 .
—Z(m—ﬂ)amz

= f(2)* gm(z)

where 59(z) = 0, 51(z) = z. Note that the classical Cesaro means play an important
role in geometric function theory (see [0, 12, 13]). In the sequel, we will make use of

the result that Sﬁ{ Sjﬁggg} >0, (zeU)ifandonlyif w(z) =) o, cnz” satisfies

the inequality |w(z)| < |z].

Theorem 7. Let the function f(z) of the form (1.1) satisfies condition (4.1), then
f(2) (Ym+1,k(a, B, A) —1)(1+v)

N{ , (zel),
om(z)” (U’m+1,k(a,ﬁ,l)—1)(1+V)+1
where 0, (2) defined in (5.1).
Proof. Assume that f € # and satisfies (4.1). By setting
m—n+1

dm = [(Umi(a,B,A)—1)(A+v)+1], Cn,m):= o



DIFFERENTIAL OPERATOR 183

and

vr=duf (1)

om(z) dm+1
dm1[Ypep an2" 1 =300, C(n.m)ayz" '

1+ >0, C(n,m)anz™ !

when C(n,m) — 1, we find that

w(z)—1 < dm+12;.zo=m+1 an|
w(z)+ 117 2_22:2;2 lan| —dm+1 Zzo:m+1 |an|

<1, (zelU)

if and only if
o0 m
2mir Y lan|<2-2) lan|
n=m+1 n=2

which is equivalent to

m o0

Y lanl+dmi1r Y lan| <1. (5.2)

n=2 n=m+1
In order to see that
Zm+1
f)=z+ , (zeU)
dm+1 )
gives sharp result, we observe that for z = rem
m
f(z):1+ ‘ —1- as z—>1".
om(2) dm+1 dm+1

Hence the proof is complete. (|

In the same manner of Theorem 7, we can verify the following result
Theorem 8. Let the function f(z) of the form (1.1) satisfies condition (4.1), then
'(z Y, BA)—-D(A +v)—
w /Dy U@ =Dt =m
(@) 7 g1 i, ) - D1 +v)+1
where 0, (2) defined in (5.1).
Proof. Assume that f € #A and satisfies (4.1). By letting
/(@) m+1
= 2917
"Mop @)\ de
Zntll Yo snapz" =Y, C(n,m)naz" ']
1+> 0, C(n,mna,z"~!

where d,, is defined in Theorem 7. O

’



184 RABHA W. IBRAHIM AND M. DARUS

REFERENCES

[1] M. Acu, “On a subclass of n-starlike functions associated with some hyperbola,” Gen. Math.,
vol. 13, no. 1, pp. 91-98, 2005.
[2] M. Acu, “On a subclass of n-uniformly close to convex functions,” Gen. Math., vol. 14, no. 1, pp.
55-64, 2006.
[3] E. M. Al-Oboudi, “On univalent functions defined by a generalized Sédldgean operator,” Int. J.
Math. Math. Sci., no. 25-28, pp. 1429-1436, 2004.
[4] E. M. Al-Oboudi and K. A. Al-Amoudi, “On classes of analytic functions related to conic do-
mains,” J. Math. Anal. Appl., vol. 339, no. 1, pp. 655-667, 2008.
[5] B. C. Carlson and D. B. Shaffer, “Starlike and prestarlike hypergeometric functions,” SIAM J.
Math. Anal., vol. 15, no. 4, pp. 737-745, 1984.
[6] M. Darus and R. W. Ibrahim, “On Cesdro means for Fox-Wright functions,” J. Math. Stat., vol. 4,
no. 3, pp. 156-160, 2008.
[7] S. S. Miller and P. T. Mocanu, “Differential subordinations and univalent functions,” Michigan
Math. J., vol. 28, no. 2, pp. 157-172, 1981.
[8] S. S. Miller and P. T. Mocanu, Differential subordinations. Theory and applications, ser. Mono-
graphs and Textbooks in Pure and Applied Mathematics. New York: Marcel Dekker, Inc., 2000,
vol. 225.
[9] S.S. Miller and P. T. Mocanu, “Subordinants of differential superordinations,” Complex Var. The-
ory Appl., vol. 48, no. 10, pp. 815-826, 2003.
[10] S. Owa, “On the distortion theorems. I,” Kyungpook Math. J., vol. 18, no. 1, pp. 53-59, 1978.
[11] S. Owa and H. M. Srivastava, “Univalent and starlike generalized hypergeometric functions,’
Canad. J. Math., vol. 39, no. 5, pp. 1057-1077, 1987.
[12] S. Ruscheweyh, “Geometric properties of the Cesaro means,” Results Math., vol. 22, no. 3-4, pp.
739-748, 1992.
[13] S. Ruscheweyh and L. C. Salinas, “Subordination by Cesaro means,” Complex Variables Theory
Appl., vol. 21, no. 3-4, pp. 279-285, 1993.
[14] H. Silverman, “Partial sums of starlike and convex functions,” J. Math. Anal. Appl., vol. 209, no. 1,
pp- 221-227, 1997.
[15] J. Stankiewicz and A. Wisniowska, “Starlike functions associated with some hyperbola,” Zeszyty
Nauk. Politech. Rzeszowskiej Mat., no. 19, pp. 117-126, 1996.
[16] G. c. Sdlagean, “Subclasses of univalent functions,” in Complex analysis—fifth Romanian-Finnish
seminar, Part 1(Bucharest, 1981), ser. Lecture Notes in Math., vol. 1013. Berlin: Springer, 1983,
pp- 362-372.

Authors’ addresses

Rabha W. Ibrahim
University Malaya, Institute of Mathematical Sciences, Kuala Lumpur, 50603, Malaysia
E-mail address: rabhaibrahim@yahoo.com

M. Darus
Universiti Kebangsaan Malaysia, School of Mathematical Sciences, Bangi 43600, Malaysia
E-mail address: maslina@ukm.my



