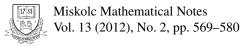


Miskolc Mathematical Notes Vol. 13 (2012), No 2, pp. 569-580 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2012.397

Characterizations of Rad-supplemented modules

Ergül Türkmen and Ali Pancar



CHARACTERIZATIONS OFRad-SUPPLEMENTED MODULES

ERGÜL TÜRKMEN AND ALİ PANCAR

Received 15 September, 2011

Abstract. We prove that a commutative ring R is an artinian principal ideal ring if and only if the ring is semilocal and every Rad-supplemented R-module is a direct sum of w-local R-modules. Moreover, we study of extensions of Rad-supplemented modules over commutative noetherian rings, and we show that if $\frac{M}{N}$ is reduced, M is Rad-supplemented if and only if N and $\frac{M}{N}$ are Rad-supplemented. We also prove that over a dedekind domain an indecomposable, amply Rad-supplemented radical module is hollow radical.

2000 Mathematics Subject Classification: 16G10; 16D10; 16D99

Keywords: Rad-supplement, Rad-supplemented module, extension, semilocal ring, artinian principal ideal ring

1. INTRODUCTION

In this note R will be an associative ring with identity. Unless otherwise mentioned, all modules will be unital left R-modules. Let R be such a ring and M be an R-module. The notation $N \subseteq M$ means that N is a submodule of M. A submodule S of M is called *small* in M, denoted by S << M, if $S + N \neq M$ for every proper submodule N of M. We denote by Rad(M) the radical of M. A non-zero module M is called *hollow* if every proper submodule of M is small in M, and it is called *local* if it is hollow and Rad(M) is a maximal submodule of M. Let M be a module. M is called *supplemented* if every submodule N of M has a *supplement*, that is a submodule K of M minimal with respect to N + K = M. Equivalently, N + K = Mand $N \cap K << K$ ([12]). Following [12], M is called *amply supplemented* if, for any two submodules U and V of M with U + V = M, V contains a supplement of Uin M. Clearly, hollow modules are amply supplemented and amply supplemented modules are supplemented.

Recall from Lomp [7] that a module M is said to be *semilocal* if $\frac{M}{\text{Rad}(M)}$ is semisimple, and a ring R is said to be *semilocal* if it is semilocal as a left (right) module over itself. It is shown in [7, Teorem 3.5] that a ring R is semilocal if and only if every left R-module is semilocal.

As a proper generalization of supplemented modules, the notion of Rad-supplemented modules, which has been introduced by Xue [13], has been studied recently

© 2012 Miskolc University Press

(see [1,4,5]). Let M be a module and N be a submodule of M. A submodule K of M is called a Rad-supplement of N in M (according to [13], generalized supplement) if N + K = M and $N \cap K \subseteq \text{Rad}(K)$. Since Rad(K) is the sum of all small submodules of K, every supplement submodule is a Rad-supplement in M. A module M is called Rad-supplemented (according to [13], generalized supplemented) if every submodule N of M has a Rad-supplement K in M, and it is called amply Rad-supplemented (according to [13], generalized amply supplemented) if every submodule N of M has an maple Rad-supplements in M, i. e., N + L = M implies that N has a Rad-supplement $K \subseteq L$. In [5], the various properties of Rad-supplemented modules are extensively studied. In addition, it is shown in [1, 2.2.(2) and 2.3.(3)] that factor modules of a Rad-supplemented. It is of obvious interest to investigate extensions and characterizations of Rad-supplemented modules. This is the focus of our investigations in this paper.

Let Γ be a class of modules and let $0 \to N \to M \to K \to 0$ be any short exact sequence. Here M is an *extension* of N by K and Γ is called *closed under extensions* if $N, K \in \Gamma$ implies $M \in \Gamma$. It is clear that, for modules $N \subseteq M, M$ is an extension of N.

In this article, we prove that a commutative ring R is an artinian principal ideal ring if and only if the ring is semilocal and every Rad-supplemented R-module is a direct sum of w-local R-modules if and only if every left R-module is a direct sum of w-local R-modules. We give a characterization of semisimple rings via Radsupplements. We show that a semilocal ring R is left perfect if and only if every Rad-supplemented module is (generalized) semiperfect. Some examples are given in order to show that the class of Rad-supplemented modules is not generally closed under extensions. Let R be a commutative noetherian ring and M be an R-module with $N \subseteq M$. If $\frac{M}{N}$ is reduced, M is Rad-supplemented if and only if N and $\frac{M}{N}$ are Rad-supplemented. It follows that a ring R is semilocal if and only if every left R-module with Rad-supplemented radical is Rad-supplemented. Over a dedekind domain a radical module is amply Rad-supplemented and indecomposable if and only if the module is hollow radical. Every indecomposable, w-local and amply Rad-supplemented module over a dedekind domain is local.

2. Rad-supplemented modules over any rings

Let *R* be any ring and *M* be an *R*-module. A submodule *N* of *M* is called *radical* if *N* has no maximal submodules, i.e. N = Rad(N). Note that radical modules are Rad-supplemented. This fact plays a key role in our study. By P(M) we denote the sum of all radical submodule of a module *M*. It is clear that, for any module *M*, P(M) is the largest radical submodule and so P(M) is Rad-supplemented. Using the mentioned facts, we give examples of a module, which is Rad-supplemented but not supplemented. We see, for example, the left \mathbb{Z} -module $M = \mathbb{Z} \mathbb{Q}$.

Firstly we have the following lemma.

Lemma 1. Let M be a module and $N \subseteq U \subseteq M$. Then U is Rad-supplemented if and only if $\frac{U}{P(N)}$ is Rad-supplemented.

Proof. (\Rightarrow) Let U be Rad-supplemented. By [1, 2.2 (2)], $\frac{U}{P(N)}$ is Rad-supplemented as a factor module of U.

(⇐) Let U' be any submodule of U. By the assumption, there exists a submodule $\frac{V}{P(N)}$ of $\frac{U}{P(N)}$ such that $\frac{U' + P(N)}{P(N)} + \frac{V}{P(N)} = \frac{U}{P(N)}$ and

$$\left(\frac{U'+P(N)}{P(N)}\right) \bigcap \left(\frac{V}{P(N)}\right) \subseteq \operatorname{Rad}\left(\frac{V}{P(N)}\right).$$

Then (U' + P(N)) + V = U and hence U' + V = U. Since $P(N) = \operatorname{Rad}(P(N)) \subseteq$ Rad (V), it follows that $\frac{U' \cap V + P(N)}{P(N)} = \frac{(U' + P(N)) \cap V}{P(N)} = (\frac{U' + P(N)}{P(N)}) \cap (\frac{V}{P(N)}) \subseteq$ Rad $(\frac{V}{P(N)}) = \frac{\operatorname{Rad}(V)}{P(N)}$, which means that $U' \cap V \subseteq \operatorname{Rad}(V)$. So V is a Rad-supplement of U' in U. Hence U is Rad-supplemented.

Corollary 1. Let M be a module and N be a submodule of M. M is Rad-supplemented if and only if $\frac{M}{P(N)}$ is Rad-supplemented. In particular, M is Rad-supplemented if and only if $\frac{M}{P(M)}$ is Rad-supplemented.

Proof. It follows from Lemma 1.

Recall from [5, Corollary 4.2] that if a submodule V of a module M is a Radsupplement in M, then $\text{Rad}(V) = V \cap \text{Rad}(M)$.

Now we shall show that the rings whose modules are Rad-supplement submodules in every extension are semisimple in the following theorem.

Theorem 1. Let *R* be any ring. Then the following statements are equivalent.

- (1) R is semisimple.
- (2) Every left R-module is a Rad-supplement in every extension.

(3) Every left R-module is a Rad-supplement in every injective extension.

(4) Every left ideal of R is a Rad-supplement in every injective extension.

Proof. (1) \Rightarrow (2) Let N be an R-module and M be any extension of N. By the hypothesis and [6, Corollary 8.2.2 (a)], M is semisimple, and so N is a direct summand of M. It follows that N is a Rad-supplement in M.

 $(2) \Rightarrow (3) \Rightarrow (4)$ Clear.

 $(4) \Rightarrow (1)$ Let *I* be any left ideal of *R*. By the hypothesis, *I* is a Rad-supplement in its injective hull E(I). Then we have I + J = E(I) and $I \cap J \subseteq \text{Rad}(I)$ for some submodule $J \subseteq E(I)$. If $m \in I \cap J$, then $Rm \subseteq \text{Rad}(I) \subseteq \text{Rad}(E(I))$. By (4), Rm is a Rad-supplement in E(I) and so $\text{Rad}(Rm) = Rm \cap \text{Rad}(E(I)) = Rm$. Therefore m = 0. This means that $I \oplus J = E(I)$ and so I is injective, and hence a direct summand of R. By [6, Corollary 8.2.2 (a)], R is semisimple.

A ring R is Rad-supplemented if $_{R}R$ (or R_{R}) is a Rad-supplemented module. It is clear that semiperfect (i.e., supplemented) rings are Rad-supplemented. Characterizations of semiperfect rings have been studied extensively by many authors recently. Now we shall give a characterization of Rad-supplemented rings. Firstly, we need the following simple lemmas.

Lemma 2. Let *R* be any ring with identity. Then *R* is Rad-supplemented if and only if every cyclic *R*-module is Rad-supplemented.

Proof. Let R be a Rad-supplemented ring. Suppose that M is any cyclic R-module. Then there exists an element m of M such that M = Rm. Note that $\frac{R}{Ann(m)} \cong Rm$, where Ann(m) is the set of all elements r of R such that rm = 0. From [1, 2.2.(2)] the hypothesis implies that $\frac{R}{Ann(m)}$ is Rad-supplemented and so Rm is Rad-supplemented. The converse is clear.

Lemma 3. Let M be a module with U + V = M for submodules U, V of M. If V contains a Rad-supplement of U in M, then $U \cap V$ has a Rad-supplement in V.

Proof. Suppose that a submodule K of V is a Rad-supplement of U in M. Then, we have U + K = M and $U \cap K \subseteq \text{Rad}(K)$. From the modular law, $U \cap V + K = V$. Since $K \subseteq V$, then $(U \cap V) \cap K = U \cap K \subseteq \text{Rad}(K)$. So K is a Rad-supplement of $U \cap V$ in V.

Theorem 2. The following statements are equivalent for any ring R.

- (1) *R* is Rad-supplemented.
- (2) *R* has ample Rad-supplements in every finitely generated extension.
- (3) Every cyclic R-module has ample Rad-supplements in every finitely generated extension.

Proof. (1) \Rightarrow (3) Let *N* be any cyclic *R*-module and *M* be any finitely generated extension of *N*. Since *R* is Rad-supplemented, by Lemma 2, every cyclic submodule of *M* is Rad-supplemented and so *M* is amply Rad-supplemented by [11, Corollary 3.6]. Therefore *N* has ample Rad-supplements in *M*.

 $(3) \Rightarrow (2)$ It is obvious.

(2) \Rightarrow (1) For any left ideal *I* of *R*, consider the finitely generated pushout *R*-module $N = \frac{R \oplus R}{K}$, where *K* is the set of all elements *k* of $R \oplus R$ such that k = (r, -r) for all $r \in I$. Then there exist monomorphisms $f, g : R \to N$ such that N = f(R) + g(R). The hypothesis implies that f(R) has a Rad-supplement *V* in *N* with $V \subseteq g(R)$. So, by Lemma 3, *V* is a Rad-supplement of $f(R) \cap g(R)$ in g(R). Note that $I = g^{-1}(f(R) \cap g(R))$. It follows that $R = I + g^{-1}(V)$ and $I \cap g^{-1}(V) \subseteq$ Rad $(g^{-1}(V))$. Hence *R* is Rad-supplemented.

We say that a module M w-local if Rad(M) is a maximal submodule of M as in [4]. Every local module is w-local. It is well known that a commutative ring R has the property that every R-module is a direct sum of local R-modules if and only if R is an artinian principal ideal ring. Now, we prove that if R is a commutative ring and every R-module is a direct sum of w-local R-modules, then R is an artinian principal ideal ring in the following theorem.

Theorem 3. The following are equivalent for a commutative ring R.

- (1) Every left R-module is a direct sum of w-local R-modules.
- (2) *R* is semilocal and every Rad-supplemented left *R*-module is a direct sum of *w*-local *R*-modules.
- (3) *R* is an artinian principal ideal ring.

Proof. (1) \Rightarrow (2) Write $\frac{R}{\text{Rad}(R)} = \bigoplus_{i \in I} N_i$, where each N_i is w-local. Since $\text{Rad}(\frac{R}{\text{Rad}(R)}) = 0$, for all $i \in I$, $\text{Rad}(N_i) = 0$. So N_i is simple. Thus $\frac{R}{\text{Rad}(R)}$ is semisimple and so R is semilocal. The rest of the proof is clear.

(2) \Rightarrow (3) Let $F = R^{(\Lambda)}$ any index set Λ . Suppose that $\operatorname{Rad}(\frac{F}{N}) = \frac{F}{N}$ for some submodule N of F. By the assumption, we can write $\frac{F}{N} = \bigoplus_{i \in I} M_i$ where M_i is w-local for all $i \in I$. By [12, 21.6.(5)], $\operatorname{Rad}(\frac{F}{N}) = \bigoplus_{i \in I} \operatorname{Rad}(M_i)$ and so each M_i is radical as a direct summand of $\frac{F}{N}$. Since M_i is w-local, we obtain that, for all $i \in I$, $M_i = 0$. Therefore $\frac{F}{N} = 0$. This means that $\operatorname{Rad}(F) << F$. It follows from [12, 43.9] that R is left perfect. Applying [12, 43.9] again, we deduce that every left R-module is Rad-supplemented and so every left R-module is a direct sum of w-local k is left perfect. Hence every left R-module is a direct sum of cyclic R-modules. By [9, Theorem 6.7], R is an artinian principal ideal ring.

 $(3) \Rightarrow (1)$ is clear.

The following corollary is an immediate consequence of Theorem 3.

Corollary 2. Let R be a commutative semilocal ring. Then, R is an artinian principal ideal ring if and only if every Rad-supplemented left R-module is a direct sum of w-local R-modules.

Let $f : P \to M$ be an epimorphism. Xue [13] calls f a (generalized) cover if (Ker $(f) \subseteq \text{Rad}(P)$) Ker(f) << P, and calls a (generalized) cover f a (generalized) projective cover if P is a projective module. In the spirit of [13], a module M is said to be (generalized) semiperfect if every factor module of M has a (generalized) projective cover. He [13, Theorem 2.2] proved that every generalized semiperfect module is Rad-supplemented. Now, we obtain the following result.

Proposition 1. Let R be a semilocal ring. Every Rad-supplemented left R-module is (generalized) semiperfect if and only if R is left perfect.

Proof. (\Rightarrow) Let M = Rad(M). Since M is Rad-supplemented, it follows from the hypothesis that M is generalized semiperfect. Then, there exists a generalized cover $f: F \to M$ with a projective module F. Since $\text{Ker}(f) \subseteq \text{Rad}(F) \neq F$, it follows that M = 0. By [12, 43.9], R is left perfect.

 (\Leftarrow) This is immediate.

3. Rad-supplemented modules over commutative Noetherian rings

Throughout this section, unless otherwise stated, we shall consider commutative noetherian rings.

An *R*-module *M* is called *coatomic* if every proper submodule of *M* is contained in a maximal submodule of *M*, and it is called *reduced* if every submodule of *M* contains a maximal submodule, that is, P(M) = 0. Note that Rad(M) is small in *M* for every coatomic *R*-module *M*.

Lemma 4. The following statements are equivalent for a Rad-supplemented module M.

(1) M is coatomic.

(2) *M* is reduced.

(3) $\operatorname{Rad}(M)$ is small in M.

If the module M satisfies one of the equivalent conditions, then M is supplemented.

Proof. (1) \Rightarrow (2) Let *M* be a coatomic module. By [15, Lemma 1.1], every submodule of *M* is coatomic and so P(M) = 0, which means that *M* is reduced.

(2) \Rightarrow (3) Suppose that M = Rad(M) + N for some submodule N of M. Then we can write $\text{Rad}(\frac{M}{N}) = \frac{M}{N}$. Since M is Rad-supplemented, N has a Rad-supplement V in M. From (2) it follows that V has a maximal submodule K. So $\frac{K}{N \cap V}$ is a maximal submodule of $\frac{V}{N \cap V}$. Note that

$$\frac{M}{N} \cong \frac{V}{N \cap V}$$

contains a maximal submodule and thus $\frac{M}{N} = 0$. Therefore M = N. This proves (3).

 $(3) \Rightarrow (1)$ The assumption implies that, for any proper submodule $U \subseteq M$, there exists a submodule V of M such that U + V = M and $U \cap V \subseteq \text{Rad}(V)$. Since Rad(M) << M, V is not contained in a maximal submodule K of M. Then the submodule $U + V \cap K$ of M is maximal. Thus M is coatomic.

Suppose that Rad-supplemented module M satisfies one of these conditions. Then M is supplemented by [5, Proposition 7.3].

The following result follows from [5, Proposition 7.3]. We give this result as a consequence of Lemma 4.

Corollary 3. For a module M, M is Rad-supplemented if and only if $\frac{M}{P(M)}$ is supplemented.

A submodule of a Rad-supplemented module need not be Rad-supplemented, in general. To see this actuality, we shall consider the left \mathbb{Z} -module $M =_{\mathbb{Z}} \mathbb{Q}$. It is well known that M is Rad-supplemented. On the other hand, the submodule $_{\mathbb{Z}}\mathbb{Z}$ of M is not semisimple.

Now, we show that a submodule of a Rad-supplemented module is Rad-supplement ed under a certain condition.

Proposition 2. Let M be a module and $N \subseteq M$. Suppose that $\frac{M}{N}$ is reduced. If M is Rad-supplemented, then N is Rad-supplemented.

Proof. According to [1, 2.2.(2)], $\frac{M}{N}$ is Rad-supplemented as a factor module of M. Since $\frac{M}{N}$ is reduced, $P(\frac{M}{N}) = 0$. Therefore $\frac{M}{N}$ is supplemented by Lemma 4. Since M is Rad-supplemented, $\frac{M}{P(N)}$ is Rad-supplemented by Corollary 1. Note that

$$\frac{\frac{M}{P(N)}}{\frac{N}{P(N)}} \cong \frac{M}{N}$$

is reduced and thus $\frac{M}{P(N)}$ is reduced by [14, Lemma 1.5 (a)]. It follows from Lemma 4 that $\frac{M}{P(N)}$ is supplemented. Thus $\frac{N}{P(N)}$ is supplemented by [8, Proposition 2.6]. So $\frac{N}{P(N)}$ is Rad-supplemented. Hence N is Rad-supplemented by Lemma 1.

Using Proposition 2, we obtain the following result.

Corollary 4. The following statements are equivalent for any module M.

- (1) *M* is Rad-supplemented.
- (2) Every maximal submodule of M is Rad-supplemented.
- (3) Every cofinite submodule of M is Rad-supplemented.

Proof. (1) \Rightarrow (3) If N is a cofinite submodule of M, then $\frac{M}{N}$ is finitely generated and so $\frac{M}{N}$ is reduced. From Proposition 2, the proof follows.

 $(3) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (1)$ Let $M = M_1 + M_2$, where M_1 and M_2 are maximal submodules of M. Since M_1 and M_2 are Rad-supplemented modules, M is Rad-supplemented according to [1, 2.3.(3)]. If M is w-local, Rad(M) is maximal and so M = Rad(M) + U for every proper submodule U of M with $U \not\subseteq \text{Rad}(M)$. By [1, 2.3.(1)], U has a Rad-supplement in M since Rad(M) is Rad-supplemented. Hence M is Rad-supplemented.

The following example shows that the class of Rad-supplemented modules is not closed under extensions, in general.

Example 1. Let Λ be a collection of maximal ideals of the noetherian commutative ring \mathbb{Z} . Suppose that M is the left \mathbb{Z} -module $\prod_{\mathfrak{p}\in\Lambda}(\frac{\mathbb{Z}}{\mathfrak{p}})$. Then $\operatorname{Rad}(M) = 0$. By [3, Lemma 2.9], for some submodule N of M, we have $\frac{N}{T} \cong \mathbb{Q}$, where T is the

direct sum of simple \mathbb{Z} -modules $\frac{\mathbb{Z}}{p}$. Then N is an extension of T by Q. Since T is semisimple, it is Rad-supplemented. On the other hand, the submodule N is not Rad-supplemented.

Later we shall give another example of such modules (see Example 2).

Theorem 4. Let $0 \rightarrow N \rightarrow M \rightarrow K \rightarrow 0$ be a short exact sequence. Suppose that K is reduced. Then M is Rad-supplemented if and only if N and K are Rad-supplemented.

Proof. (\Rightarrow) It follows from Proposition 2 and [1, 2.2.(2)].

(\Leftarrow) By Lemma 4, K is supplemented. Since N is Rad-supplemented, $\frac{N}{P(N)}$ is supplemented by Corollary 3. It follows from [8, Proposition 2.6] that $\frac{M}{P(N)}$ is Rad-supplemented. Hence M is Rad-supplemented by Corollary 1.

Corollary 5. A module M is Rad-supplemented if and only if it is an extension of a Rad-supplemented submodule by a reduced supplemented module.

Proof. If M has no maximal submodules, the result is obvious as $\frac{M}{P(M)} = 0$. Suppose that $M \neq P(M)$. Then this gives the existence of a reduced factor module of M. Therefore the assertion follows from Theorem 4.

Proposition 3. Let M be a module. M is Rad-supplemented if and only if M is semilocal and Rad(M) is Rad-supplemented.

Proof. If M is Rad-supplemented, then M is semilocal. Thus $\frac{M}{\text{Rad}(M)}$ is reduced. By Proposition 2, Rad(M) is Rad-supplemented. Conversely, suppose that M is semilocal and Rad(M) is Rad-supplemented. From Theorem 4 the assumption implies that M is Rad-supplemented.

Using the above proposition we obtain the following characterization of semilocal rings.

Corollary 6. The following conditions on a ring R is equivalent:

(1) *R* is semilocal.

(2) Every left R-module with Rad-supplemented radical is Rad-supplemented.

Proof. (1) \Rightarrow (2) If *R* is semilocal, then every left *R*-module is semilocal by [7, Theorem 3.5]. The result follows from Proposition 3.

(2) \Rightarrow (1) Since Rad $(\frac{R}{\text{Rad}(R)}) = 0$, it follows from the hypothesis that $\frac{R}{\text{Rad}(R)}$ is Rad-supplemented. So $\frac{R}{\text{Rad}(R)}$ is semisimple, i.e. *R* is semilocal.

In [5], a module M is said to be *totally* Rad-*supplemented* if every submodule of M is Rad-supplemented. Every semisimple module is totally Rad-supplemented. It is easy to check that the class of totally Rad-supplemented modules is closed under factor modules and submodules. The following fact is a modification of Theorem 4.

Theorem 5. Let M be a module and $\frac{M}{N}$ be reduced for some submodule N of M. Then M is totally Rad-supplemented if and only if N and $\frac{M}{N}$ are totally Rad-supplemented.

Proof. Suppose that N and $\frac{M}{N}$ are totally Rad-supplemented. Let U be any submodule of M. By the hypothesis, $U \cap N$ and $\frac{U+N}{N}$ are Rad-supplemented. Note that

$$\frac{U+N}{N} \cong \frac{U}{U \cap N}$$

is reduced because $\frac{M}{N}$ is reduced. By Theorem 4, U is Rad-supplemented. Hence M is totally Rad-supplemented.

Corollary 7. Let M be a Rad-supplemented module. Then, M is totally Rad-supplemented if and only if P(M) is totally Rad-supplemented.

Proof. Suppose that P(M) is totally Rad-supplemented. By the hypothes is and Corollary 3, $\frac{M}{P(M)}$ is supplemented. Applying [8, Proposition 2.6], we deduce that $\frac{M}{P(M)}$ is totally supplemented. Therefore M is totally Rad-supplemented by Theorem 5.

4. Rad-supplemented modules over commutative domains

In this section a ring R will be a commutative domain. Let R be such a ring and M be an R-module. We denote by T(M) the set of all elements m of M for which there exists a non-zero element r of R such that rm = 0, i.,e., $Ann(m) \neq 0$. Then T(M), which is a submodule of M, called the torsion submodule of M. If M = T(M), then M is called a torsion module and M is called torsion-free provided T(M) = 0.

Proposition 4. Let R be a non-semilocal commutative domain and M be an R-module. If M is totally Rad-supplemented, M is a torsion module.

Proof. Let $0 \neq m \in M$. Suppose that Ann(m) = 0, i.e. $R \cong Rm$. Since M is totally Rad-supplemented, the left R-submodule Rm of M is Rad-supplemented. So $_{R}R$ is Rad-supplemented. Therefore $\frac{R}{Rad(R)}$ is semisimple, i.e. R is semilocal. This contradicts the assumption. Hence $Ann(m) \neq 0$, this implies that M is torsion. \Box

Corollary 8. Let R be a non-semilocal dedekind domain and M be a totally Radsupplement ed R-module. Then M is torsion.

Let *R* be a dedekind domain and *M* be an *R*-module. We denote by Ω the set of all maximal (i.e., prime) ideals of *R*. Suppose that p is any element of Ω . We denote by $T_p(M)$, which is a submodule of *M*, the set of all elements *m* of *M* for which there exists a positive integer *n* such that $p^n m = 0$. Then $T_p(M)$ is called the p-primary part of *M*. For a torsion module *M* over a dedekind domain, we have the decomposition $M = \bigoplus_{p \in \Omega} T_p(M)$.

Lemma 5. Let R be a non-local dedekind domain and M be an R-module. Then M is Rad-supplemented if and only if $\frac{M}{P(M)}$ is torsion and every p-primary part of $\frac{M}{P(M)}$ is (Rad-)supplemented.

Proof. According to [14, Theorem 3.1] and [5, Theorem 7.4], the proof of the lemma is clear. \Box

Let *R* be a dedekind domain and *M* be an *R*-module. By [2, Lemma 4.4], P(M) is injective and so there exists a direct summand *N* of *M* such that $\frac{M}{P(M)} \cong N$. This fact and Lemma 5 give the following basic result for torsion-free modules.

Corollary 9. Let M be a torsion-free Rad-supplemented module over a non-local dedekind domain. Then M is radical.

Let M be a radical module. M is called *simply radical* if M has no proper radical submodules.

Proposition 5. Let R be a noetherian ring and M be a simply radical R-module. If M is amply Rad-supplemented, M is hollow radical. In particular, every Radsupplemented proper submodule of M is supplemented.

Proof. Let U be any proper submodule of M. Suppose that U + V = M for some submodule V of M. By the hypothesis, there exists a submodule V' of V such that U + V' = M and $U \cap V' \subseteq \operatorname{Rad}(V')$. Since M is simply radical, it follows that $\operatorname{Rad}(V') = V' \cap \operatorname{Rad}(M) = V' \cap M = V'$. So V' is radical. Therefore V' = M and so V = M. Then we deduce that U is small in M. Hence M is hollow radical. Suppose that a proper submodule N of M is Rad-supplemented. Since M is simply radical, every submodule of N contains a maximal submodule, i. e., P(N) = 0. By Lemma 4, N is supplemented.

Corollary 10. Let R be a dedekind domain and M be a radical R-module. Then M is amply Rad-supplemented and indecomposable if and only if the module is hollow radical.

Proof. Since indecomposable radical modules over dedekind domains is simply radical, M is hollow radical by Proposition 5. The converse is clear.

Proposition 6. Let M be a module over a Dedekind domain. Then the following statements are equivalent.

- (1) *M* is indecomposable, w-local and amply Rad-supplemented.
- (2) M is local.

Proof. (1) \Rightarrow (2) Let U be any proper submodule of M. Suppose that U is not contained Rad(M). Since M is w-local, Rad(M) is maximal and so U + Rad(M) = M. By the hypothesis, there exists a submodule V of Rad(M) such that U + V = M and $U \cap V \subseteq \text{Rad}(V)$. It follows that Rad(V) = $V \cap \text{Rad}(M) = V$, i.e. V is radical.

Then, by [2, Lemma 4.4], V is injective and so there exists a submodule L of M such that $M = V \oplus L$. Since M is indecomposable and w-local, we get V = 0. Thus, U = M, implying that M is local.

 $(2) \Rightarrow (1)$ is clear.

Now, we give an analogous characterization of [14, Theorem 3.1] for totally Radsupplemented modules.

Theorem 6. Let M be a non-semilocal dedekind domain and M be an R-module. Then M is totally Rad-supplemented if and only if M is torsion and every p-primary part of M is totally Rad-supplemented.

Proof. The necessity of the condition is obvious by Corollary 8. Conversely, suppose that M is torsion and every p-primary part of M is totally Rad-supplemented. Let $N \subseteq U \subseteq M$. Since $M = \bigoplus_{\mathfrak{p} \in \Omega} T_{\mathfrak{p}}(M)$, we have $U = \bigoplus_{\mathfrak{p} \in \Omega} (U \cap T_{\mathfrak{p}}(M))$ and $N = \bigoplus_{\mathfrak{p} \in \Omega} (N \cap T_{\mathfrak{p}}(M))$. By the hypothesis, $N \cap T_{\mathfrak{p}}(M)$ has a Rad-supplement $V_{\mathfrak{p}}$ in $U \cap T_{\mathfrak{p}}(M)$. So $U \cap T_{\mathfrak{p}}(M) = N \cap T_{\mathfrak{p}}(M) + V_{\mathfrak{p}}$ and $N \cap V_{\mathfrak{p}} \subseteq \operatorname{Rad}(V_{\mathfrak{p}})$. Let $V = \bigoplus_{\mathfrak{p} \in \Omega} V_{\mathfrak{p}}$. Then N + V = U. Since $N \cap V_{\mathfrak{p}} \subseteq \operatorname{Rad}(V_{\mathfrak{p}})$ for every $\mathfrak{p} \in \Omega$, by [6, Corollaries 9.1.5 (c)], $N \cap V = (\bigoplus_{\mathfrak{p} \in \Omega} (N \cap T_{\mathfrak{p}}(M))) \cap (\bigoplus_{\mathfrak{p} \in \Omega} V_{\mathfrak{p}}) \subseteq \operatorname{Rad}(V).$ Hence U is Rad-supplemented. This completes the proof. \square

Finally, we give an example showing the class of (totally) Rad-supplemented modules is not closed under extensions, in general. For a module M, Soc(M) will indicate the sum of all simple submodules of M.

Example 2. (see [10, Example 2.3]) Consider the non-Noetherian commutative ring which is the direct product $\prod_{i\geq 1}^{\infty} F_i$, where $F_i = F$ is any field. Suppose that R is the subring of the ring consisting of all sequences $(r_n)_{n \in \mathbb{N}}$ such that there exist $r \in F, m \in \mathbb{N}$ with $r_n = r$ for all $n \ge m$. Let $M =_R R$. Then M is a regular module which is not semisimple. Therefore Soc(M) is a maximal submodule of M. This means that Soc (M) and $\frac{M}{\text{Soc}(M)}$ are Rad-supplemented. On the other hand, M is not Rad-supplemented.

ACKNOWLEDGEMENT

We would like to thank the referee for the valuable suggestions and comments which improved the revision of the paper.

REFERENCES

- [1] K. Al-Takhman, C. Lomp, and R. Wisbauer, " τ -complemented and τ -supplemented modules," Algebra Discrete Math., vol. 2006, no. 3, pp. 1-15, 2006.
- [2] R. Alizade, G. Bilhan, and P. F. Smith, "Modules whose maximal submodules have supplements," Commun. Algebra, vol. 29, no. 6, pp. 2389-2405, 2001.
- [3] R. Alizade and E. Büyükaşik, "Extensions of weakly supplemented modules," Math. Scand., vol. 103, no. 2, pp. 161-168, 2008.

ERGÜL TÜRKMEN AND ALİ PANCAR

- [4] E. Büyükaşik and C. Lomp, "On a recent generalization of semiperfect rings," Bull. Aust. Math. Soc., vol. 78, no. 2, pp. 317–325, 2008.
- [5] E. Büyükasik, E. Mermut, and S. Özdemir, "Rad-supplemented modules," *Rend. Semin. Mat. Univ. Padova*, vol. 124, pp. 157–177, 2010.
- [6] F. Kasch, *Modules and rings*, ser. London Mathematical Society Monographs, D. A. R. Wallace, Ed. London - New York: Academic Press, 1982, vol. 17.
- [7] C. Lomp, "On semilocal modules and rings," *Commun. Algebra*, vol. 27, no. 4, pp. 1921–1935, 1999.
- [8] P. Rudlof, "On the structure of couniform and complemented modules," J. Pure Appl. Algebra, vol. 74, no. 3, pp. 281–305, 1991.
- [9] D. W. Sharpe and P. Vamos, *Injective modules*, ser. Cambridge Tracts in Mathematics and mathematical Physics. Cambridge: University Press, 1972, vol. 62.
- [10] P. F. Smith, "Finitely generated supplemented modules are amply supplemented," *The Arabian Journal for Science And Engineering*, vol. 25, no. 2C, pp. 69–79, 2000.
- [11] E. Türkmen and A. Pancar, "On cofinitely Rad-supplemented modules," Int. J. Pure Appl. Math., vol. 53, no. 2, pp. 153–162, 2009.
- [12] R. Wisbauer, Foundations of module and ring theory. A handbook for study and research, ser. Algebra, Logic and Applications. Philadelphia: Gordon and Breach Science Publishers, 1991, vol. 3.
- [13] W. Xue, "Characterizations of semiperfect and perfect rings," *Publ. Mat., Barc.*, vol. 40, no. 1, pp. 115–125, 1996.
- [14] H. Zöschinger, "Komplementierte moduln über Dedekindringen," J. Algebra, vol. 29, pp. 42–56, 1974.
- [15] H. Zöschinger, "Koatomare moduln," Math. Z., vol. 170, pp. 221–232, 1980.

Authors' addresses

Ergül Türkmen

Ondokuz Mayıs University, Faculty of Art and Science, Department of Mathematics, 55139, Samsun, Turkey

E-mail address: eturkmen@omu.edu.tr

Ali Pancar

Ondokuz Mayıs University, Faculty of Art and Science, Department of Mathematics, 55139, Samsun, Turkey

E-mail address: apancar@omu.edu.tr