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1. INTRODUCTION

One of the central problems in the theory of ordered algebras is to find neces-
sary and sufficient conditions for the existence of a compatible linear extension of
r in a partially ordered algebraic structure .A;F;�r/. If F D ¿, then Szpilrajn
proved that any partial order r ( �r ) on a set A can always be extended to a linear
order R and any partial order is the intersection of its linear extensions (see [5]).
In the present paper we consider a partial order r on the set A and an order en-
domorphism f W A �! A with the natural compatibility property: x �r y implies
f .x/ �r f .y/ for all x;y 2 A. Clearly, the pair .A;f / is a unary algebra and the
above f -compatibility condition allows us to view the triple .A;f;�r/ as a partially
ordered unary algebra. For F D ff g (f W A! A is a unary operation) the above
mentioned extension problem has been thoroughly investigated. Szigeti and Nagy
proved that the partial order r of a unary algebra .A;f;�r/ has an f -compatible
linear extension if and only if the function f W A �! A is acyclic (see [3]). For an
acyclic .A;f;�r/ the intersection of the f -compatible linear extensions of r is de-
termined in [2]. For an arbitrary .A;f;�r/ the maximal f -compatible partial order
extensions of r and the intersection are investigated in [1] and [4]. The aim of the
present paper is to determine the intersection of the f -compatible linear extensions
of Of , where the f -compatible partial order Of on A can be defined in a natural way
starting from an acyclic function f W A �! A.
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2. PRELIMINARIES

Let .A;f / be a (mono-)unary algebra. A partial order r onA is called f -compatible
if the function (unary operation) f WA�!A is an order endomorphism with respect
to r . We shall make use of the following notation

L.A;f;�r/D fR j r �R � A�A is an f -compatible linear order on Ag:

The intersection
rf D cl.A;f;�r/D

\
R2L.A;f;�r /

R

is called the closure of r with respect to f . Indeed, the above definition gives a
closure operator (with the monotone, idempotent and extensive properties) on the set
of the f -compatible partial orders of A.

Definition 1 (see [3]). Let A ¤ ¿ be a set and N � 0 be an integer. A function
f W A! A takes N steps on the element x 2 A, if

x;f .x/;f 2.x/; :::;f N .x/

are different elements in A, and

f NC1.x/D f N .x/

(by convention f 0.x/D x). Take N D1 if

f m.x/¤ f n.x/

for all integers 0�m< n.

Definition 2 (see [3]). The function f W A! A is called acyclic, if for each ele-
ment x 2 A there is an integer 0 � N D N.x/ � 1 such that f takes N D N.x/
steps on x.

A partially ordered unary algebra .A;f;�r/ is called acyclic, if f W A! A is
acyclic. It is easy to see that any linearly ordered unary algebra is acyclic. If .A;f;�r

/ is acyclic, then rf is an f -compatible partial order on A.

Lemma 1 (see [2]). Let .A;f;�r/ be an acyclic partially ordered unary algebra.
If a;b 2 A and a �r f .a/ or f .a/ �r a, then .a;b/ 2 rf implies that a D b or
f m.a/�r f

m.b/ and f m.a/¤ f m.b/ for some integer m� 0.

3. THE ACYCLIC PARTIALLY ORDERED UNARY ALGEBRA .A;f; Of /

Let
hxif D fx;f .x/;f

2.x/; :::g

denote the f -orbit of x and define the following reflexive and transitive relation Of �
A�A as follows:

x Of y , hxif � hyif :
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Clearly, hxif � hyif if and only if x 2 hyif , i.e. we can find an integer k � 0 such
that x D f k.y/.

Proposition 1. If .A;f / is a unary algebra, then the following are equivalent.
(1) f is an acyclic function.
(2) Of is antisymmetric.

Proof. (1))(2): Suppose that x Of y and y Of x for x;y 2 A. Then hxif D hyif
imply that x D f m.y/ and y D f n.x/ for some m� 0 and n� 0. Thus

x D f m.f n.x//D f mCn.x/;

whence
x D f .x/D :::D f n.x/D :::D f nCm.x/

follows from the acyclic property of f . Obviously,

x D f n.x/D y:

(2))(1): Suppose that f m.x/ D f n.x/ for some integers 0 � m < n. Clearly,
hf mC1.x/if � hf

m.x/if and hf m.x/if � hf
mC1.x/if is a consequence of

f m.x/D f n�m�1.f mC1.x//:

Thus we have

f m.x/ Of f mC1.x/ and f mC1.x/ Of f m.x/:

Since Of is antisymmetric, we get f m.x/D f mC1.x/ and

f m.x/D f mC1.x/D :::D f n.x/:

�

Proposition 2. Let .A;f / be an acyclic unary algebra. Then the partial order Of
is f -compatible.

Proof. If the function f is acyclic, then Of is a partial order by Proposition 1. If
x Of y for x;y 2 A, then we can find an integer m� 0 such that

x D f m.y/;

whence f .x/D f m.f .y// and f .x/ Of f .y/ follows. �

4. THE INTERSECTION

Proposition 3. If .A;f / is an acyclic unary algebra and hxif \ hyif ¤ ¿ for
x;y 2 A, then there exists a unique ´ 2 A such that

hxif \hyif D h´if :

This element ´D x4y is called the f -intersection of x and y.
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Proof. Since hxif \hyif ¤¿, we can define an integer n as follows:

nDminfk � 0 j f k.x/ 2 hyif g:

We claim that hxif \hyif D h´if for ´D f n.x/. Obviously,

h´if � hxif \hyif :

On the other hand if u 2 hxif \hyif then uD f k.x/ 2 hyif for some k � 0. Thus
k � n and u D f k�n.f n.x// D f k�n.´/ 2 h´if . The fact that there is only one
´ 2 A with

hxif \hyif D h´if

is a consequence of Proposition 1. �

Definition 3. Let .A;f / be an acyclic unary algebra. If hxif \ hyif ¤ ¿ for
x;y 2 A, then define the distance of x and y as follows:

ı.x;y/D j.hxif n hyif /[ .hyif n hxif /j D jhxif n hyif jC jhyif n hxif j:

We note that

ı.x;y/D jhxif n hx4yif jC jhyif n hx4yif j:

immediately follows from

hxif n hyif D hxif n .hxif \hyif /D hxif n hx4yif

and
hyif n hxif D hyif n hx4yif :

Proposition 4. If .A;f / is an acyclic unary algebra and hxif \ hyif ¤ ¿ for
x;y 2 A, then

jhxif n hyif j D jhxif n hx4yif j Dminfk � 0 j f k.x/ 2 hyif g �N.x/;

where the integer N.x/ is the number of f -steps on x.

Proof. If nDminfk � 0 j f k.x/ 2 hyif g, then we have

x4y D f n.x/

(see the proof of Proposition 3). We distinguish two cases.
Case 1 If N.x/D1, then n < N.x/ and

hxif n hf
n.x/if D ff

k.x/jk � 0g n ff k.x/jk � ng:

Thus
jhxif n hf

n.x/if j D jfx;f .x/; :::;f
n�1.x/gj D n:

Case 2 If N DN.x/ <1 and N < n, then

hxif \hyif D fx;f .x/; :::;f
N .x/g\hyif D¿;
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a contradiction. Thus n�N and

hxif n hf
n.x/if D fx;f .x/; :::;f

N .x/g n ff n.x/; :::;f N .x/g;

i.e.
jhxif n hf

n.x/if j D jfx;f .x/; :::;f
n�1.x/gj D n:

�

The next theorem gives a complete description of the intersection of the f -compatible
linear extensions of the partial order Of .

Theorem 1. If .A;f / is an acyclic unary algebra and x;y 2 A, then:

.x;y/ 2 . Of /f , x D y; or hxif \hyif ¤¿ and ı.x;x4y/ < ı.y;x4y/:

Proof. Since hf .x/if � hxif (i.e. f .x/ � Of x) for all x 2 A, the application of
Lemma 1 gives that

. Of /f Df.x;y/2A�Aj.9m/0�m;f
m.x/ Of f m.y/;f m.x/¤f m.y/g[f.x;x/jx 2Ag:

If .x;y/ 2 . Of /f and x ¤ y, then hf m.x/if � hf
m.y/if and f m.x/¤ f m.y/ for

some integer m� 0. Suppose that

k D ı.x;x4y/� ı.y;x4y/D l:

Since f m.x/ 2 hyif , we have m� k (see Proposition 4). Now

f m.x/D f m�k.f k.x//D f m�k.x4y/

and
f m.y/D f m�l.f l.y//D f m�l.x4y/

imply that
f m.y/D f k�l.f m.x//:

It follows that hf m.y/if � hf
m.x/if . The antisymmetric property of Of gives that

f m.x/D f m.y/, a contradiction.
If hxif \hyif ¤¿ and

mD ı.x;x4y/ < ı.y;x4y/D l;

then
f m.x/D x4y D f l.y/D f l�m.f m.y//

ensures that hf m.x/if � hf
m.y/if . On the other hand, using Proposition 4,

m< l �N.y/

implies that
f m.y/¤ f l.y/D f m.x/:

Thus we have .x;y/ 2 . Of /f . �
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