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Abstract. Some inequalities of Ostrowski type for MT-convex functions via fractional integrals
are obtained. These results not only generalize those of [25], but also provide new estimates on
these types of Ostrowski inequalities for fractional integrals.
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1. INTRODUCTION

The following result is known in the literature as the Ostrowski inequality (see
[17, page 468] or [18]), which gives an upper bound for the approximation of the

integral average ﬁ /i ab f(t)dt by the value f(x) at point x € [a,b].

Theorem 1. Ler f : I — R, where I C R is an interval, be a mapping differen-
tiable in the interior 1° of I, and let a,b € I° witha <b. If | f'(x)| < M for all
x € [a,b], then

<M ((b—a) 1+(X;%b)2

1T a2 | Vxela,b]. (1.1)

1 b
'f(x 502 | rwar

In recent years, various generalizations, extensions and variants of such inequalit-
ies have been obtained (see [1,4,5,8, 10-15,20,24] and the references cited therein).
In [23] (see also [25, 26]), Tun¢ and Yidirim defined the following so-called MT-
convex function:

Definition 1. A function: / € R — R is said to belong to the class of MT(/), if it
is nonnegative and for all x,y € I and ¢ € (0, 1) satisfies the following inequality:

- Jt V11—t
f(tx+(1—l)y)_ﬁf(x)‘i‘z—\/;f()’) (1.2)
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In [25], Tung derived some inequalities of Ostrowski type for MT-convex func-
tions.

Theorem 2. Let f : [a,b] C [0,00) — R be a differentiable mapping on (a,b)
with a < b such that f’ € Ly[a,b]. If | f'| is MT-convex on [a,b] and | f'(x)| < M,
x € [a,b], then we have

Mn [(x —a)’>+ (b —x)z]
= (1.3)
4(b—a)

1 b
-5 [ roa

for each x € [a,b].

Theorem 3. Let f :[a,b] C[0,00) — R be a differentiable mapping on (a,b) with
a <bsuchthat f' € Ly[a,b].If| f'|? is MT-convex on [a,b], ¢ > 1, p~ 1 4+q7 1 =1
and | f'(x)| < M, x € [a,b], then we have

- M <%)}, (x—a)®>+ (b—x)?

1 b
f(x)_ﬁfa SOt = G e b—a)

1.4)

for each x € [a,b].

Theorem 4. Let f :[a,b] C [0,00) — R be a differentiable mapping on (a,b) with
a <bsuchthat f' € Ly[a,b].If| f'|? is MT-convex on [a,b), ¢ > 1 and | f'(x)| < M,
x € [a,b], then we have

T N 1 (x—a)?+ (b—x)?
- Hdt| <M | = a 1.5
1w =5 [ pwar < (5) Tt 15)
for each x € [a, b].
Fractional calculus [7, 16, 19] was introduced at the end of the nineteenth cen-

tury by Liouville and Riemann, the subject of which has become a rapidly growing
area and has found applications in diverse fields ranging from physical sciences and
engineering to biological sciences and economics. We recall definitions and pre-
liminary facts of fractional calculus theory which will be used in this paper.

Definition 2. Let /' € Ly[a,b]. The Riemann-Liouville integrals J;*, f and J;*_ f
of order o > 0 with a > 0 are defined by

JE f(x) = ﬁfa (x—0)*"1 f(t)dt, x>a

and

o 1 b a—1
Jb_f(x)zm/x (t—x)""" f(t)dt, x <b,

respectively, where I'(a) = [~ e “u®"'du. Here, J?, f(x) = J)_f(x) = f(x).
In the case of o = 1, the fractional integral reduces to the classical integral.
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Due to the wide application of fractional integrals, some authors extended to study
fractional integral inequalities, we refer the reader to the papers [2,3,6,9,21] and the
reference cited therein.

Motivated by these results, in the present paper, we establish some Ostrowski type
inequalities for MT-convex functions via Riemann-Liouville fractional integrals. So,
new estimates on these types of Ostrowski inequalities via fractional integrals are
provided and the results of [25] are generalized.

2. OSTROWSKI TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR MT-CONVEX
FUNCTIONS

In this section, we apply the following fractional integral identity from Set [22]
to derive some new Ostrowski type fractional integral inequalities for MT-convex
functions.

Lemma 1. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If
f’ € Ly[a,b], then for all x € [a,b] and o > 0, one has

— @) 4 (b—x)" r+1
= R L @+ I )
atl 1 @+l
:%/0 [af,(tﬁ(l_,)a)d[_%/o 1 £ (tx + (1= 1)b) dt.

2.1

Using this lemma, we can obtain the following Ostrowski type fractional integral
inequalities for MT-convex functions.

Theorem 5. Let f :[a,b] C [0,00) — R be a differentiable mapping on (a,b)
with a < b such that f’ € Ly[a,b]. If | f'| is MT-convex on [a,b] and | f'(x)| < M,
x € [a,b], then the following inequalities for fractional integrals with a > 0 and
x € [a,b] hold:

—a)*+(b—x)% r 1
(x Cl)b'i‘c(l X) f()C) Za_'i‘ )[Ja f( )+ a_'_f(b)]‘
Fe+3)IG) @—a)* + (-
- 2N (a+1) b—a (22)
Proof. From (2.1) and since | f| is MT-convex, we have
—a)*+ (b—x)* e+
a+1
%/ (| £ (tx + (1= 0)a)| dt

(b _x)OH—l

+ /O | f (tx + (1—1)b)| dt
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<(x_a)(x+1 1 “ \/; , o 1—1t ,
_?/O |:t 2m}f(x)}+l i |f(a)|:|dt

(b_x)a+1 1 o ﬁ , o 1—¢ ,
O [r el <f<b>|}dt

M(x—a)*tt U Vi o V11—t
ST/O |:l‘ 2m+t 2\/;:|dt

+M(b_x)a+1/-1|:ta \/; “Vl_t}dt
0

+t
b—a 21—t 2./t

_ M[(x—a)zz-bl +a()b—x)a+1] /1 [t‘”%(l —t)_1/2 —i—ta_%(l _t)l/Z] d
— 0

_ M(x—a)* T+ (b—x)*T1] 31 13
- 2(b—a) #(er53) 8 (e 53)]
_ M[(x—a)*t + (b—x)*T T+ 31 (3)

N 2(b—a) Fla+1)

where we have used the Beta function of Euler type, which is defined as

b - I'(x)I" (y)
_ x—1 _ 1 _
ﬁ(x,y)—/ol (1—=1)""dt = TR vV x,y>0.

The proof is completed. U
Remark 1. In Theorem 5, if we choose o = 1, we get the inequality in Theorem 2.

Theorem 6. Let f :[a,b] C[0,00) — R be a differentiable mapping on (a,b) with
a <b suchthat f' € Ly[a,b]. If| f'|? is MT-convex on [a,b], ¢ > 1, p~ 1 4+q7 1 =1
and | f'(x)| < M, x € [a,b], then the following inequalities for fractional integrals
with « > 0 and x € [a,b] hold:

(x—a)*+ (b—x)* Fla+1), 4 o
= - D @+ a2 o))

- M (E)III (x_a)Ol+1 +(b_x)06+1
~ (1+ pa)l/r \2 b—a ‘

Proof. From Lemma 1 and using the well-known Hélder’s inequality, we have

(2.3)

(x—a)* +(b—x)* M+, , .
h—a f@) == [ f@+ T2, f(0)]
(x _a)OH—l
<

1
< W/o | f (tx + (1—1t)a)|dt
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(b_x)Ol+1
+ b—a

_ e+l 1 % 1 %
< % (/0 zl’“dt) (/0 |/ (ex+(1 —t)a)\qdz)
a+1 % é
+%([1t1’“dt) ([1|f’(tx+(1—t)b)\th) )
- 0 0

Since | f/|? is MT-convex and | f(x)| < M, we get
! / _ q ! \/? / q vi-t, q
/0 | (tx+(1—1)a)| sz/O 2m|f )|+ Wi | (@] |dt

- 1 Jt 11—t T
_Mq/O [2 _1_t+ Wi }dt_EM‘l

1
/ 1| f (tx + (1—1)b)| dt
0

and similarly

1 T
/ |f tx+ 1 —1)b)|"dt < EM".
0

By simple computation, we have

1 1
/ tPedr = )
0 pa+1

Using these results, we complete the proof of (2.3). O

Remark 2. In Theorem 6, if we choose o = 1, we get the inequality in Theorem 3.

Theorem 7. Let f :[a,b] C [0,00) — R be a differentiable mapping on (a,b) with
a <bsuchthat ' € Ly[a,b].If| f'|? is MT-convex on [a,b], g > 1 and | f'(x)| < M,
x € [a,b], then the following inequalities for fractional integrals with a > 0 and
x € [a,b] hold:

(x—a)*+(b—x)* Fla+1) , o

0= - TR @+ a2 o))
.M T+ 3)I(3) é(x—a)"‘“+(b—x)°‘+1 2.4)
- (1+O{)1_$ 2N (e +1) b—a ) '

Proof. From Lemma 1 and using the well-known power mean inequality, we have

(x—a)*+(b—x)* Fla+1) , .
[ - — [ f@ + I (b))

_ e+l 1
<%/0 | (tx + (1—1)a)| dt
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(b _X)O(-‘rl

1
+—/ 1| f (tx + (1=1)b)|dt
0

b—a
(x_a)a-l-l ! a é ! ol o/ q %
5W(/0 t dt) (/ot |/ (tx+ (1=1)a)| dt)

(b_x)a+1 la % la , q q
+ﬁ(/o t dt) (/Ot |/ (tx + (1=1)b)| dt) :

Since | f’|? is MT-convex on [a,b] and | f/(x)| < M, we get

1_

1—

/lr“\f/(mr(l—t)a)\qdz

0

< ! o \/; ’ q o 1—1t ’ q
<[ el e @) ar

1 1\ (1
S [y PAREACES AL e
0 24/ 1—t 2./t 2l (a+1)

and similarly

1 1
I'(a+ E)F(E)Mq.
2N (ax+1)
Using these inequalities, we complete the proof of (2.4). g

1
/z“|f’(zx+(1—z)b)\qdz5
0

Remark 3. In Theorem 7, if we choose o = 1, we get the inequality in Theorem 4.
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