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Nutritional iron deficiency (ID) causes not only anemia but also malfunction
of the entire human organism. Recently, a role of the gut microbiota has been
hypothesized, but limited data are available especially in infants. Here, we performed
a pilot study to explore the gut microbiota in 10 patients with iron deficiency anemia
(IDA) and 10 healthy controls aged 6–34 months. Fresh stool samples were collected
from diapers, and the fecal microbiota was profiled by next-generation sequencing of
the V3–V4 hypervariable region of the 16S rRNA gene. Except for diet diversity, the
breastfeeding status at the enrollment, the exclusive breastfeeding duration, and
the introduction of complementary foods did not differ between groups. Distinct
microbial signatures were found in IDA patients, with increased relative abundance of
Enterobacteriaceae (mean relative abundance, patients vs. controls, 4.4% vs. 3.0%)
and Veillonellaceae (13.7% vs. 3.6%), and reduced abundance of Coriobacteriaceae
(3.5% vs. 8.8%) compared to healthy controls. A decreased Bifidobacteriaceae/
Enterobacteriaceae ratio was observed in IDA patients. Notwithstanding the low
sample size, our data highlight microbiota dysbalance in IDA worth for further
investigations, aimed at unraveling the ID impact on the microbiome trajectory in early
life, and the possible long-term consequences.
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Introduction

Anemia is a common disease found all over the world [1]. Half of the
anemia cases are caused by iron deficiency (ID), and children are most
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vulnerable to this disease due to high iron needs [1, 2]. According to the World
Health Organization, anemia is a moderate public health problem in Lithuania.
The disease prevalence was 26% in children aged 6–59 months in 2011 [1].
Moreover, previous study suggests that almost 50% of children in the first 2
years of life may experience ID [3]. These figures are of particular concern, as ID
significantly disturbs functions of the brain, heart, and skeletal muscles even in
non-anemic stages [4]. The long-lasting health consequences are associated with
delayed cognitive and social–emotional development [5–7].

Based on recent evidence [8–13], ID and ID anemia (IDA) may also be
featured by unfavourable changes of the gut microbiota. Two studies addressing
the effect of iron fortification on the intestinal microbiota in African children
showed higher levels of potentially pathogenic enterobacteria than bifidobacteria
and lactobacilli at the baseline [14, 15]. These findings are particularly relevant, as
the gut microbiota is a key regulator of the host metabolic homeostasis [16], an
integral component of the immune system [17–19], and essential for central
nervous system development [20, 21]. Unbalanced microbial configurations
have been found to result in lifelong consequences, including increased risk of
metabolic and immunological diseases [16, 17, 20, 22].

We performed a pilot study in a homogenous cohort of 10 infants and young
children with nutritional IDA compared to 10 healthy controls (HCs) to provide
insights into the early-life alterations in the intestinal microbial ecosystem.

Methods

Subjects enrollment and sample collection

Ten infants and young children were recruited at a tertiary university
hospital (Vilnius, Lithuania) with diagnosis of nutritional IDA (serum hemoglobin
<110 g/L, ferritin <12 μg/L, and/or reticulocyte-hemoglobin equivalent <28 pg)
meeting the following criteria: (1) anemia diagnosed for the first time in life,
(2) otherwise healthy and not taking medicines for at least 4 weeks, (3) singleton
pregnancy, and (4) vaginally delivered. Ten healthy children (HC) meeting the
same (2–4) criteria served as controls. The study was approved by the Vilnius
Regional Committee for Biomedical Research Ethics. Informed consent was
obtained from the parents of all individual participants included in the study.

The parents of the subjects filled a questionnaire survey and provided
information on their child’s nutrition. Fresh stool samples were collected from
diapers and immediately frozen at −20 °C. Samples were delivered to the
laboratory (Bologna, Italy), where they were stored at −80 °C until processing.
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Microbial DNA extraction

Microbial DNA was extracted from feces using the repeated bead-beating
plus column method, as previously described [23]. Briefly, 250 mg of sample were
suspended in 1 ml of lysis buffer (500 mM NaCl, 50 mM Tris-HCl, pH 8, 50 mM
EDTA, and 4% sodium dodecyl sulfate) and bead-beaten thrice in a FastPrep
instrument (MP Biomedicals, Irvine, CA) at 5.5 movements/s for 1 min, in the
presence of four 3-mm glass beads and 0.5 g of 0.1-mm zirconia beads (BioSpec
Products, Bartlesville, OK). Samples were heated at 95 °C for 15 min and
then centrifuged at 13,000 rpm for 5 min. Two hundred and sixty microliters
of 10 M ammonium acetate were added to the supernatant, followed by 5-min
incubation in ice and 10-min centrifugation at 13,000 rpm. One volume of
isopropanol was added to each sample and incubated in ice for 30 min. Precipi-
tated nucleic acids were washed with 70% ethanol, resuspended in 100 μl of TE
buffer, and treated with 2 μl of 10 mg/ml DNase-free RNase at 37 °C for 15 min.
Proteinase K treatment and DNA purification were performed using the QIAamp
DNA Stool Mini Kit (QIAGEN, Hilden, Germany). DNA concentration and
quality were evaluated using NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE).

16S rRNA gene sequencing

The V3–V4 hypervariable region of the 16S rRNA gene was amplified using
the 341F and 805R primers with added Illumina adapter overhang sequences, as
previously described [24]. Polymerase chain reaction (PCR) products were
cleaned up with Agencourt AMPure XP magnetic beads (Beckman Coulter,
Brea, CA). Indexed libraries were prepared by limited-cycle PCR using Nextera
technology, further cleaned up as described above, and pooled at equimolar
concentrations. The sample pool was denatured with 0.2 N NaOH and diluted to
6 pM with 20% PhiX control. Sequencing was performed on Illumina MiSeq
(Illumina, San Diego, CA) platform using a 2 × 250 bp paired-end protocol,
according to the manufacturer’s instructions.

Bioinformatics and statistics

Raw sequences were processed using a pipeline combining PANDAseq [25]
and QIIME [26]. High-quality reads were clustered into operational taxonomic
units (OTUs) at 97% similarity using UCLUST [27]. Taxonomy was assigned
using the Ribosomal Database Project classifier against Greengenes database
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(released on May 2013). Singleton OTUs were discarded to exclude chimera
sequences. Alpha rarefaction was performed using the Faith’s phylogenetic
diversity, observed OTUs, and Shannon index metrics. Beta diversity was
estimated by computing weighted and unweighted UniFrac distances.

All statistical analysis was performed using R software version 3.3.2.
UniFrac distances were plotted using the vegan package, and data separation in
the principal coordinates analysis (PCoA) was tested using a permutation test with
pseudo-F ratios (function adonis). Significant differences in alpha or beta diversity
as well as in taxon-relative abundances were assessed by Wilcoxon rank-sum test.
Continuous clinical variables are provided as mean and standard deviation (SD).
They were compared using Student’s t-test or Wilcoxon rank-sum test based on
normality. Categorical variables are provided as absolute numbers and compared
using the Pearson’s χ2 test. A p value <0.05 was considered as statistically
significant.

Results

Ten infants and young children suffering from nutritional IDA (7 females,
aged 6–32 months) and 10 HCs (2 females, aged 7–34 months) were recruited.
No significant differences in baseline characteristics were found between the two
study groups, except for hemoglobin levels and birth weight, which are both
higher in the control group (Student’s t-test, p< 0.05). With regard to diet, less
diversity is observed for IDA patients compared to HC, with a significantly lower
proportion of subjects consuming fish (5 IDA infants vs. 10 HC; Pearson’s χ2 test,
p= 0.0098) and a tendency toward a lower number of individuals fed with meat,
cereals, and eggs (Table I).

For the gut microbiota analysis, fecal samples were analyzed by
next-generation sequencing of the 16S rDNA V3–V4 hypervariable region. The
sequencing generated 1,234,956 high-quality reads (mean= 61,748; SD= 9,362)
that were clustered into 4,610 OTUs at 97% identity. According to common alpha
diversity metrics (i.e., the phylogenetic diversity – PD_whole_tree, the Shannon
index for biodiversity and observed OTUs), no difference was found between IDA
and HC infants (Supplementary Figure 1). On the other hand, the PCoA of both
weighted and unweighted UniFrac distances reveals a significant segregation
between the two sample groups (permutational multivariate ANOVA, p= 0.02)
(Figure 1).

The most abundant phyla are Firmicutes (mean relative abundance,
54.0%), Actinobacteria (23.4%), and Bacteroidetes (14.2%). Even if statistical
significance is not achieved (Wilcoxon rank-sum test, p > 0.05), it is worth
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noting that, compared to HC, IDA patients show an enrichment of
Bacteroidetes (IDA vs. HC, 18.8% vs. 9.4%) and Proteobacteria (5.2% vs.
3.9%), with a corresponding reduction of Actinobacteria (19.3% vs. 27.5%)
and Verrucomicrobia (0.7% vs. 3.0%) (Figure 2A). At family level, Lachnos-
piraceae (17.4%), Bifidobacteriaceae (17.2%), Ruminococcaceae (13.3%),
and Bacteroidaceae (11.9%) are the most represented taxa in the gut micro-
biota of the entire cohort. The gut microbial community of IDA patients
appears significantly depleted in Coriobacteriaceae (3.5% vs. 8.8%;
p = 0.004) and enriched in Veillonellaceae (13.7% vs. 3.6%; p = 0.009) and
Enterobacteriaceae (4.4% vs. 3.0%; p = 0.04) compared to HC (Figure 2B).
Accordingly, we found a significantly decreased Bifidobacteriaceae to
Enterobacteriaceae ratio, which is a recently proposed index of gut health
[15] in IDA patients (19.5 vs. HC, 93.3; p = 0.02). At the genus level, the
differences in the microbiota profiles are mainly attributable to an over-
representation of Veillonella (mostly the Veillonella dispar and Veillonella
parvula species) and diminished proportions of Collinsella, Bifidobacterium
(B. bifidum), Dialister, and Dorea in IDA patients compared to HC (Figures 2C
and 3). Although largely subdominant, the species Clostridium neonatale was
identified only in IDA patients (Figure 3).

Table I. Baseline characteristics of study participants

IDA (n= 10) HC (n= 10) p value

Clinical data
Hemoglobin (g/L)a 102 (5) 123 (8) <0.0001
Age (months)b 13 (8) 16 (8) 0.1281
Gestational age (weeks)b 38 (2) 40 (1) 0.0631
Birth weight (g)a 3,252 (613) 3,808 (309) 0.0271
Exclusive breastfeeding duration (months)b 4 (2) 4 (2) 0.6696
Plant-based food introduction (months)b 5 (0) 5 (1) 1.0000
Animal-based food introduction (months)b 6 (1) 6 (1) 0.5267

Dietary data at the enrollment
Breast milkc 8 7 0.6056
Vegetables and fruitsc 10 10 1.0000
Cerealsc 8 10 0.1360
Meatc 7 10 0.0603
Fishc 5 10 0.0098
Eggsc 4 7 0.3613
Dairy productsc 7 9 0.2636

Note: Baseline characteristics of iron deficiency anemia (IDA) group and healthy controls (HCs). Data are
expressed as mean (standard deviation) or numbers.
aNormal distribution, Student’s t-test applied.
bNon-normal distribution, Wilcoxon rank-sum test applied.
cPearson’s χ2 test applied.
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Discussion

To date, only a few studies have investigated the impact of ID and IDA on
the intestinal microbiota, in animal experiments [9, 10], in vitro colonic fermen-
tation models [11, 12], Indian women [13], and African infants, and school-aged
children [14, 15]. Unlike these, this study included infants and young children
living in a European town and aged 6–34 months, thus representing the most
vulnerable age group, i.e., when a child exhausts endogenous iron stores and
becomes dependent on iron-containing foods [28]. It is well established that this is
a crucial time window for the child’s long-term health, characterized by a peculiar
developmental trajectory of the gut microbiota, which undergoes distinctive
compositional shifts, as solid foods are progressively introduced in the diet
[29]. Microbiota alterations during this critical developmental window may impair
the programing of the infant’s physiological systems, with long-term host
metabolic and immunological effects [16, 17, 20, 22].

Figure 1. Gut microbiota community structure in infants suffering from iron deficiency anemia
(IDA) and healthy controls (HCs). PCoA of Unweighted (A) and weighted (B) UniFrac distances
shows significant segregation between infants with IDA (red) and HC (black). Permutational

multivariate ANOVA based on distance matrices (adonis), p= 0.02
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In line with the literature, the gut microbiota of the infants in this study
cohort (all receiving complementary foods but the majority of them still breastfed)
mainly consists of Firmicutes (with Ruminococcaceae, Lachnospiraceae, and
Streptococcaceae as the most abundant families), Actinobacteria (dominated by

Figure 2. Taxonomic composition of intestinal bacterial communities in iron deficiency anemia
(IDA) infants and healthy controls (HCs). Relative abundance of the most abundant phyla (A),
families (B), and genera (C) in the gut microbiota of IDA infants and HCs. Only taxa with relative

abundance >0.02% in at least 15 samples were included
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Figure 3. Discriminant species-level taxa between iron deficiency anemia (IDA) infants and healthy
controls (HCs). Box plots showing the distribution of relative abundance values of discriminant
species between IDA infants and HCs. Only taxa with relative abundance >0.02% in at least

15 samples were included. Wilcoxon rank-sum test, p< 0.05
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Bifidobacteriaceae), and Bacteroidetes (represented by Bacteroidaceae). Interest-
ingly, distinctive microbial signatures were identified in IDA patients compared to
HC, especially an increase in Enterobacteriaceae and Veillonella, and a reduction
in Collinsella, Dialister, Bifidobacterium, and Dorea. Such compositional traits
could be partly accounted for by different iron needs for bacterial growth and
metabolism.

Iron-low conditions are recognized to cause major shifts in micro-
bial composition, leading to increased growth of bacteria, which are good
iron scavengers (e.g., the health-promoting bifidobacteria and mainly
Enterobacteriaceae, a family that includes known enteropathogens) or have no
need for iron at all (e.g., Lactobacillaceae) [30]. Recently, these data have been
confirmed in in vitro colonic fermentation models inoculated with immobilized
fecal microbiota from children aged 2.5 [11] and 6–10 years [12]. Specifically, ID
conditions were found to result in decreased relative abundance of short-chain
fatty acid producers (Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae),
and increased proportions of Bifidobacteriaceae, Enterobacteriaceae, and
Lactobacillaceae [11, 12].

On the contrary, experiments in animal models showed that the gut
microbiota composition depends not only on the dietary iron but also on the
host iron homeostasis. In particular, a work with iron-replete rats receiving an iron-
deficient diet revealed only minimal changes in the microbiota (i.e., decreased
relative abundance of Bilophila spp., Eubacterium hallii, and Coprococcus spp.)
[10]. The authors speculated that the fecal iron content was also determined by
iron degradation from sloughed enterocytes, thus explaining the stable microbiota
composition observed in low-dietary iron conditions. These results are in agree-
ment with findings that genetic modifications of iron metabolism in mice affect the
gut microbial community [31]. Researchers concluded that higher iron avail-
ability in the intestinal lumen increased the relative abundance of Lactobacillus
murinus and Lactobacillus intestinalis. Nevertheless, they could not exclude
positive effects on Lactobacillaceae expansion of other metals and minerals
(e.g., manganese) that were increased in feces along with iron. In light of this,
it is doubtful whether the decreased relative abundance of Lactobacillus
acidophilus in IDA women in South India is actually related to host ID [13].
Similar results were obtained in African populations with high prevalence of
anemia (non-IDA in most cases) and systemic inflammation. In fact, school-aged
Ivorian children had higher relative abundance of enterobacteria (including
Shigella spp., enteroinvasive E. coli, and/or Salmonella spp.) than bifidobacteria
and lactobacilli [14]. Six-month-old Kenyan infants also had high prevalence
of enteropathogens, and the anemic group showed decreased abundance of
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Actinomycetales and Streptococcus [15]. These findings could be associated
with poor sanitation and hygiene. Conversely, our study included iron-deficient
anemic, but otherwise healthy children from middle-class families; nevertheless,
it showed a similar dysbiotic profile, with increased relative abundance of
Enterobacteriaceae and altered Bifidobacteriaceae/Enterobacteriaceae ratio
compared to HC. Such alterations (i.e., the expansion of enterobacteria) could
reflect an altered intestinal environment created by host inflammatory responses
[32]. Indeed, ID negatively affects cell-mediated and humoral immunity in
children [33, 34]. An impaired functioning of the host immune system may result
in dysbiosis of the gut microbiota, as that observed in our IDA infant cohort,
which, in turn, may further impair immunological responses, nurturing the
inflammatory process and contributing to disease development [35].

An expansion of Enterobacteriaceae is typically found in inflammatory
bowel disease (IBD), likely representing a hallmark of inflammation in the
global population [36, 37]. Interestingly, IBD patients also usually have
increased levels of Veillonellaceae [37] and lower relative abundances of
Coriobacteriaceae [38], as we observed in IDA infants. Veillonella spp. are
lactate-utilizing bacteria normally present in human microbiomes, especially in
those of breast-fed infants [39], which may aid the immune system development
in the first few months of life [40]. However, the abundances found in our work
(mainly of V. dispar, mean relative abundance in IDA is 9.0%) are far greater
than those recently reported in a Swedish cohort of about 100 infants (1.5% in
1-year-old vaginally delivered infants) [39], suggesting an unusual succession of
gut microbial communities in IDA. Further supporting these observations, other
typical signatures of the infant microbiota, such as Bifidobacterium (mainly
B. bifidum) and Collinsella, were found to be differentially represented between
IDA infants and HC. IDA infants were also highly depleted in the short-chain
fatty acid producer Dorea, as well as in Dialister. The latter was found to be
negatively correlated with infant morbidity in the first weeks after birth [41], and
completely absent in the infant gut microbiota prior to the onset of type-I
diabetes [42]. C. neonatale, a recently described lactose-utilizing lactate-
producing species, isolated from the microbiota of neonates [43], was only
detected in IDA infants.

Although the analysis was conducted at a single time point and on a small
sample size, our data highlight a significant dysbalance of the gut microbiota in
IDA infants. These findings pave the way for further, possibly longitudinal
investigations, aimed at unravelling how the ID status may affect the microbiome
developmental trajectory in early life, and the possible long-term consequences on
the child’s health.
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