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Abstract 26 

Most photosynthetic organisms store and convert solar energy in an aerobic process and 27 

produce biomass for various uses. Utilization of biomass for the production of renewable 28 

energy carriers employs anaerobic conditions. This review focuses on microalgal biomass and 29 

its use for biological hydrogen and methane production. Microalgae offer several advantages 30 

compared to terrestrial plants. Strategies to maintain anaerobic environment for biohydrogen 31 

production are summarized. Efficient biogas production via anaerobic digestion is 32 

significantly affected by the biomass composition, pretreatment strategies and the parameters 33 

of the digestion process. Coupled biohydrogen and biogas production increases the efficiency 34 

and sustainability of renewable energy production.  35 

 36 

 37 

Key words: microalgae, biohydrogen, biogas, anaerobic fermentation, biomass conversion, 38 

renewable energy 39 

 40 
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 42 

Highlights: 43 

• Microalgal biomass is a promising source for carbon-neutral biofuels. 44 

• H2 production: autotrophic, heterotrophic and photoheterotrophic approaches are 45 

available. 46 

• The CH4 potential of algal biomass depends on the species and conditions. 47 

• Combination of anaerobic H2 and biogas production is recommended. 48 

  49 
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1. Introduction 50 

Nowadays, global climate change and world energy crisis are among the most 51 

concerned problems. These issues are mainly due to the fast industrialization, population 52 

growth and increased use of fossil fuels [1]. Replacement or supplementation of fossil fuels 53 

with alternative energy sources could help address this problem. For electricity production, 54 

wind turbines and photovoltaic technologies have grown rapidly in recent years. The 55 

requirements for liquid biofuels have been partially satisfied by mass production of first-56 

generation corn or sugarcane ethanol and biodiesel from soy, sunflower or rapeseed. To avoid 57 

the food versus fuel debate in the production of agricultural commodities, next generation 58 

biofuels from algal biomass, organic wastes and lignocellulose-rich materials have to replace 59 

energy plants [2–5]. Algal biomass cultivation has advantages against agricultural crops. This 60 

alternative biomass has fast growth rate, high contents of lipids, carbohydrates, and proteins, 61 

and do not contain recalcitrant lignin. Moreover, it can be cultivated on lands that are not 62 

suitable for traditional agriculture [6–8]. Interest in gaseous fuels, such as hydrogen (H2) and 63 

methane (CH4), has increased in recent years due to their zero, or even carbon dioxide 64 

negative production-and-use cycle [9–12]. Biohydrogen and biogas production from algal 65 

biomass is therefore intensively studied with a goal of reducing the nutrients, energy 66 

requirements and increasing the production efficiency [13–16]. In this review we summarized 67 

the recent developments in the utilization of algal biomass for the production of gaseous 68 

biofuels such as biohydrogen and biogas and the exploitation of anaerobic microbiology. 69 

Although macroalgae and cyanobacteria are also considered as promising biomass 70 

source for energy production [17-19], we restrict our discussion to microalgae.  71 
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2. Algal biohydrogen: Strategies for handling the oxygen sensitivity of 72 

algal hydrogenases 73 

The advantage of the application of eukaryotic green microalgae for hydrogen 74 

production is the remarkable efficiency of their [FeFe]-hydrogenases at ambient temperature 75 

and pressure [20]. However, the wild-type algal [FeFe]-hydrogenases function only in 76 

anaerobic environment [21] (Figure 1). The oxygen produced by photosynthesis rapidly and 77 

irreversibly inactivates the active center of algal [FeFe]-hydrogenases [22]. Various 78 

approaches have been proposed and tested to overcome this issue [23]. The task is to sustain 79 

the alga alive while aerobic photosynthesis is suppressed and H2 production takes place via 80 

anaerobic fermentation of storage materials. 81 

2.1. Depletion strategies 82 

A good portion of the approaches to achieve this goal are based on various nutrient 83 

depletion strategies [19,21,24,25] (Table 1). These strategies rely on the depletion of either 84 

sulfur [26–30], phosphate [31,32], nitrogen [33,34] or magnesium [34] from the growth 85 

medium. These nutrient stresses are accompanied with the decline of cell proliferation, 86 

photosynthetic activity and carbon fixation. A considerable drawback of the nutrient depletion 87 

methods is that the aerobic biomass generation phase must be temporally separated from the 88 

anaerobic hydrogen production phase, which represents costly technological difficulties and 89 

often leads to an irreversible decaying process of the algae cultures. 90 

2.1.1. Sulfur deprivation 91 

 Sulfur (S) deprivation is the most studied strategy to achieve sustainable H2 production 92 

in green algae [26,27,35–37]. The D1 protein in the reaction center of photosystem-II (PSII) 93 

undergoes a rapid degradation caused by the reactive oxygen radicals in response to S-94 

deprivation [30]. This results in an efficient but not complete inhibition of PSII activity (30-95 

75%) [28,38,39]. The PSII inhibition leads to a gradual decline of O2 evolution. In the 96 

presence of acetate the unaffected mitochondrial respiration consumes the residual O2 until 97 
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the cultures become fully anaerobic between days 1 and 3 following S-deprivation [21,39–98 

42]. The disadvantage of the PSII inactivation is the gradual inhibition of the electron flow 99 

towards the hydrogenases. Approximately 60-90% of the total electrons used for H2 evolution 100 

derive directly from PSII activity, only the remaining 20-30% of the electrons originate from 101 

the previously accumulated starch [29,40,43–45]. 102 

2.1.2. Nitrogen deprivation 103 

 Nitrogen (N) deprivation has also been tested for micro-algal H2 production 104 

[25,33,46]. There are clear similarities between the S- and N-deprivation approaches. 105 

Photosynthetic activity significantly decreases, while there is a general increase in the starch 106 

and lipid content of the algae cells, especially in the presence of acetate [47,48]. However, the 107 

aerobic phase in N-deprived cultures was conspicuously longer compared to that in S-108 

deprivation, which resulted in a delayed H2 production [33]. The accumulation of starch and 109 

lipids, and the degradation of proteins (e.g. cytochrome b6f complex) were more efficient in 110 

N-deprivation than in S-deprivation [49]. Moreover, ammonium production is observed 111 

during the H2 evolution period indicating significant protein degradation [50]. 112 

2.1.3. Phosphorus deprivation 113 

 Sulfur deprivation is impossible in seawater due to the high concentration of sulfates 114 

[31,32]. However, phosphorus (P) deprivation in seawater is possible. Similarly to S-115 

deprivation, the P deficiency results in decreased PSII activity, although the inactivation 116 

process is considerably slower due to the slower consumption of the stored P reserves 117 

compared to S-deprivation [38,51,52]. P-deprivation also created anaerobic environment in 118 

the presence of acetate, which was consumed in the aerobic phase and starch accumulated. In 119 

the anaerobic phase most of the starch was degraded resulting in fermentative H2 production, 120 

while acetate consumption slowed down but remained incessant. H2 production could be 121 

achieved by the inoculation of Chlamydomonas sp. or Chlorella sp. cultures into P-free 122 

medium, allowing the algae to efficiently deplete the intracellular P reserves [31]. 123 
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2.1.4. Magnesium deprivation 124 

The magnesium (Mg)-controlled algal H2 production is the most recent nutrient 125 

deprivation method [34,53]. Mg occupies an essential position in the photosynthetic apparatus 126 

as a constituent of the chlorophyll molecule. Mg-deprivation resulted in decreased 127 

photosynthetic activity by ~20% [34,54], which was accompanied by the slow-down of the 128 

electron transport and a concomitant reduction of the plastoquinon-pool [53-56]. H2 129 

production under Mg2+ deficiency is mainly linked to the PSII-dependent pathway [34]. The 130 

photosynthetic antenna size and the total amount of chlorophyll molecules also decreased by 131 

approximately 60%. The mitochondrial respiration was active and starch accumulation 132 

increased. These activities enhanced the establishment of anaerobiosis and the continuous 133 

flow of the electrons necessary for H2 evolution. H2 production lasted for approximately 7 134 

days. The disadvantage is the requirement of a preceding 7-day long Mg-depletion period 135 

under aerobic environment [34]. 136 

2.2. Acetate regulation 137 

 The majority of the studies on light dependent H2 production of Chlamydomonas spp. 138 

employed nutrient depleted algae cultures as summarized above [57,58]. These methods 139 

always require two temporary separated phases. The algal biomass must be first cultivated, 140 

followed by the replacement of the growth media to achieve the required nutrient shortage 141 

and to promote H2 production. Therefore these approaches are time- and energy-consuming 142 

and make the process economically unfeasible [26].  143 

H2 photoproduction could also be enhanced by acetate addition in nutrient-repleted 144 

media in some algal species adapted to light and anaerobiosis [21,59–61]. This way, the 145 

parallel production of H2 and substantial biomass was possible in a single step. The major 146 

shortcoming of this strategy was the significantly lower H2 production rate compared to the 147 

nutrient depletion methods. Nonetheless, the establishment of the anaerobic environment took 148 

place within a day as opposed to the 2-8 days under nutrient-depleted conditions [62]. 149 
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Moreover, in aerated fed-batch bioreactors, periodic supplementation of acetate and addition 150 

of O2 greatly enhanced H2 production and allowed semi-continuous H2 and biomass 151 

production [62]. 152 

2.3. Algal-bacterial co-cultures 153 

 The low H2 production efficiency of the axenic Chlamydomonas spp. cultures could be 154 

improved by the addition of bacterial partner(s) to the H2 producing algae [15,63]. This way, 155 

the net mitochondrial respiration of the algal cells becomes significantly elevated, allowing 156 

the efficient application of stronger light regimes during H2 production. The higher light flux 157 

prompted more active water splitting reaction in PSII, which generated more electrons for H2 158 

generation. The bacterial partner consumed the excess O2, which enabled the establishment of 159 

anaerobiosis in 2-12 hours allowing quick start of H2 evolution depending on the gas-to-liquid 160 

phase ratio [15,16,63]. H2 accumulation rates can be further elevated by lowering the 161 

competing bacterial H2-uptake activity, e.g. using uptake-hydrogenase deficient bacterial 162 

strains. Using both the bacterial partners and S-depleted algae cultures doubled the H2 yield 163 

by shortening the aerobic phase [63]. Increased volumetric hydrogen production rate was 164 

achieved by the application of a Chlorella sp. strain, which has remarkably smaller cell size 165 

than that of the commonly investigated Chlamydomonas spp. strains [16]. In addition to the 166 

rapid O2 consumption and early start of H2 production, the algal biomass grew more 167 

efficiently in symbiosis with its bacterial partner than in axenic cultures in complete media 168 

[64,65].  169 

The generated algal-bacterial biomass could be further utilized as feedstock for biogas 170 

production [15,66]. Another novel approach is offered by Ding et al. In this process the algal 171 

biomass is fermented in both hydrogen and methane production stages. Co-fermentation of 172 

carbon-rich macro-algae and nitrogen-rich micro-algae in two stages markedly increased the 173 

energy conversation efficiencies [67]. 174 
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3. Anaerobic digestion of microalgal biomass 175 

The decomposition of organic materials is carried out under anaerobic conditions and 176 

a great variety of diverse microbes participate in the microbial food chain gradually, which 177 

degrades the complex molecules essentially to a mixture of CH4 and CO2 [68–70]. The idea of 178 

using microalgal biomass substrate in anaerobic digestion (AD) dates back to the 1950s [71] 179 

(Figure 2), when a mixed culture of Chlorella sp. and Scenedesmus sp., grown in wastewater, 180 

was utilized. In the sporadic follow-up work, biogas composition and AD process stability of 181 

different microalgae species were investigated [72–81].  182 

3.1. Strain selection 183 

Biogas productivity from representatives of various microalgal groups were compared, 184 

including fresh- and seawater strains [82–85]. As a general feature in mesophilic conditions, 185 

the CH4 content of the biogas from the microalgae was ~7-13% higher than that from maize 186 

silage, the most widespread substrate in biogas industry [82]. Albeit the higher CH4 content, 187 

the overall biogas yields varied depending on the cell wall structure of the algae strains. 188 

Easily biodegradable species either lack cell wall, as in the case of Dunaliella salina 189 

halophilic microalgae [86], or their cell wall is rich in easily-biodegradable protein 190 

substances, as in the case of Chlamydomonas reinhardtii [87]. Other species such as Chlorella 191 

kessleri and Scenedesmus obliquus have hemicellulose-rich, more recalcitrant cell walls, 192 

making them difficult to hydrolyse [88-93]. 193 

3.2. Physico-chemical pre-treatments 194 

In addition to strain selection, biogas yield from algae can be improved by suitable 195 

pre-treatments, i.e. disruption or solubilisation of the cell wall. The possibilities have been 196 

recently reviewed [94]. The main pre-treatment strategies include mechanical, thermal, 197 

chemical and biological methods. The key limiting parameter determining large scale 198 

application of these technologies is their energy consumption. Mechanical pre-treatments, 199 

including sonication, are efficient to disrupt the cell wall, but the energy requirement render 200 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

them economically unfeasible [95]. Thermal treatment provided promising results in biogas 201 

production enhancement although concentrated biomass is needed to reach positive energy 202 

balance [80,96–99]. The heat induced polymerization of available reducing sugars and amino 203 

acids to complex molecules may explain this phenomenon [80,82,100]. Chemical 204 

solubilisation of microalgal biomass presented higher effectiveness compared to thermal 205 

treatment but biogas production did not increase accordingly [82,84,100,101].  206 

3.3. Biological pre-treatments 207 

Biological methods involve the application of various enzymes to decompose the cell 208 

wall polymers effectively. Protease pre-treatment of S. obliquus and C. vulgaris enhanced the 209 

CH4 yields 1.72-fold and 1.53-fold, respectively [103]. In a similar approach an enzyme 210 

cocktail, including ß-glucanase, xylanase, cellulase and hemicellulase, was efficient in 211 

facilitating AD of algal biomass [104,105]. The main restricting factor of the biological pre-212 

treatment methods is the cost of enzyme production. Therefore, in situ enzyme production has 213 

been suggested. This could be done by separating the hydrolytic-acidogenic stage from the 214 

methanogenesis stage in a two-stage AD design [67]. Bioaugmentation of biogas formation 215 

from algal biomass employing Clostridium thermocellum improved the degradation of 216 

Chlorella vulgaris biomass. In this two-step process C. thermocellum was added first and 217 

methanogenic sludge subsequently beneficially increased the bioenergy yield [106]. 218 

Significant improvements in the methane yield were observed through biological pre-219 

treatment of mixed microalgal cultures (mainly Oocystis sp.) using Trametes versicolor fungi 220 

and commercial laccase. The CH4 yield increased by 20% for commercial laccase and 74% 221 

for fungal broth in batch tests, as compared to non-pretreated biomass [82,106]. An 222 

interesting novel approach has been explored when genes of foreign lytic enzymes, involved 223 

in cell division and programmed cell death, were expressed in algae to enhance cell disruption 224 

[108]. A recent review summarized numerous studies on pretreatments [80].  225 
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3.4. Salt effects 226 

Alternatives to fresh water, algal strains habitating the saline seawater have been 227 

studied in order to preserve freshwater supplies. Alkaline earth metal salts are needed in very 228 

low concentration for bacteria and methanogenic archaea, while higher concentrations can be 229 

toxic for both of them [109]. In seawater, the sodium ions (Na+) are particularly inhibitory to 230 

AD [110]. Sodium concentrations of 5, 10 and 14 g L-1 caused 10, 50, and 100% inhibition of 231 

acetoclastic methanogens [111]. Moderate inhibition of AD was observed at sodium 232 

concentrations ranging from 3.5 to 5.5 g L-1. However, total AD inhibition was detected 233 

above 8 g L-1 of Na+ [109]. An adapted microbial community containing halophilic 234 

methanogens digested Dunaliella salina successfully at 35 g L-1 of salinity [112].  235 

3.5. C/N ratio 236 

The C/N ratio has a very significant impact on the methane yield and on productivity 237 

in all microalgae-based AD. The optimal C/N ratio of AD is between 20 and 30 [113]. AD of 238 

substrates having lower C/N results in increased free ammonia, which may become inhibitory 239 

[114]. Microalgal species usually contain higher proportion of proteins compared to terrestrial 240 

plants. The C/N ratio of green microalgae is generally low (C/N ~10), while terrestrial plants 241 

have higher ratios (depending on the plant species and season, C/N ~20-40) [115]. This has 242 

been corroborated in studies in microalgae from natural reservoir (mainly Chlorella sp. and 243 

Scenedesmus sp.), which had a C/N ratio of 6.7, C. vulgaris having a C/N ratio of 5, and S. 244 

obliquus possessing C/N of 8.9 [15,116,117]. Ammonia accumulation at low C/N ratio has 245 

been observed in various studies [71,118,119]. The use of ammonia-tolerant inoculum could 246 

be a promising solution to effectively digest the protein-rich microalgal biomass in a 247 

continuous biogas-producing process [120]. AD of algal biomass generated under N-248 

limitation showed efficient CH4 production due to the favourable C/N ratio of the substrate 249 

[84,85]. 250 
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3.6. Effects of OLR and HRT 251 

A proper organic loading rate (OLR) and hydraulic retention time (HRT) can diminish 252 

the negative effects of inhibitory conditions. HRT is the time allowed for any given substrate 253 

to be digested. OLR is the amount of volatile solids to be fed into the digester daily in a 254 

continuous AD process. The biogas yield rises  upon increasing the OLR, but above the 255 

optimal OLR the volatile solids degradation and biogas yield decrease due to overloading 256 

[121]. In order to reduce operation costs and achieve optimum performance, biogas reactors 257 

should be designed to operate at maximum methane production at lowest HRT and highest 258 

OLR [122]. An effective OLR of Chlorella biomass at mesophilic conditions was found at 5g 259 

VS L-1 d-1 [123]. Higher OLR increased the level of valeric and butyric acids resulting process 260 

inhibition. Other studies also confirmed that highest biogas yields were attained at the low 261 

OLR, i.e., 0.6g VS L-1 d-1 (mixed culture containing Chlamydomonas reinhardtii and 262 

Pseudokirchneriella subcapitata in mesophilic conditions) [124]. Typical OLRs are between 263 

1–6 g VS L-1 d-1 and HRT varies between 10 and 30 days [83,122,125].  264 

3.7. Co-digestion 265 

Co-digestion is a promising strategy to increase the performance of a digester by 266 

ensuring optimal substrate composition, which can enhance biogas productivity from 267 

microalgal biomass. Significant enhancement of methane production upon addition of waste 268 

paper to the algal sludge has been reported [116]. Long-term experiments using mixtures of 269 

maize silage and marine microalga Nannochloropsis salina were investigated under batch and 270 

semi-continuous conditions. The biogas yields were significantly increased and the semi-271 

continuous AD was stable for more than 200 days [126]. Increased CH4 production was 272 

observed in a mixture of Chlorella sp. microalgal biomass and food waste [127]. The elevated 273 

CH4 production was probably due to the multi-stage digestion of different substrates having 274 

different degrees of degradability. Co-digestion of algal biomass with sewage sludge or liquid 275 

manure has been shown to be advantageous in several cases [125,128]. In a laboratory scale 276 
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fed-batch co-fermentation experiment of algal-bacterial mix, the cumulative methane yield 277 

was ~350 mL CH4 g VS-1 (OLR: 1 g VS L-1 d-1; HRT: 1 d, mesophilic conditions) [15]. In 278 

another study from the same research group, microbiologically pure Scenedesmus obliquus 279 

and maize silage were subjected to co-fermentation (OLR: 1 g VS L-1 d-1; HRT: 1 d). The 280 

observed methane yield was ~280 mL CH4 g VS-1. It is noteworthy that co-digestion resulted 281 

in significantly higher methane productivity in both cases relative to the microalgal biomass 282 

mono-substrate [15,66]. The addition of used cooking oil, maize silage, and mill residue to 283 

AD of the microalga Chlorella vulgaris was studied in semi-continuous, laboratory-scale 284 

digestions by Rétfalvi et al. [117]. The volumetric methane yields were in the range of 300 to 285 

500 mL CH4 g VS-1 (OLR: 0.78-2.15 g VS L-1 d-1; HRT: 88-383 d). Triple co-digestion of oil-286 

extracted Chlorella vulgaris microalgal biomass, glycerol and chicken litter in various 287 

proportions was studied under mesophilic conditions  [129]. Oil-extracted microalgae in co-288 

digestion with chicken litter enhanced the biochemical methane potential. The highest CH4 289 

yield was 131 mL CH4 g VS-1 (HRT: 90 d). Based on these results, co-digestion may be the 290 

recommended approach to degrade microalgal biomass effectively and sustainably without 291 

pre-treatment. 292 

4. Conclusions and outlooks 293 

Utilization of solar energy stored in microalgal biomass is a promising source for 294 

anaerobic gaseous biofuel production. Despite the technological challenges the interest in 295 

microalgae-based biofuels increases [13,14,130,131]. Innovative developments in microalgal 296 

cultivation will reduce biomass production costs. Aqueous waste streams are inexpensive and 297 

efficient growth media for mixed algal-bacterial biomass production, which is a suitable 298 

substrate for biohydrogen and biological CH4 production via anaerobic fermentation [132–299 

137]. Natural habitat of microalgae may expand the limits of deprivation methods. The 300 

efficiency of AD using microalgal biomass depends on various factors, such as strain 301 
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selection, pre-treatment, OLR, HRT, reactor design, temperature and pH [79,80]. In 302 

microalgae-based biogas production the goal is to maintain effective and balanced operation. 303 

An emerging and effective strategy to improve technical and economic feasibility is co-304 

digestion with organic wastes or by-products to optimize process parameters. The coupling of 305 

biohydrogen and biogas production processes, using algal-bacterial co-cultures, is 306 

recommended.  307 
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Figure legends: 763 

Figure 1. Schematic link between oxygenic photosynthesis and hydrogen production. 764 

Abbreviations: PS II: Photosystem II; PS I: Photosystem I; Pheo: pheophytin; PQ: 765 

plastoquinon; Cytb/Cytf: Cytochrome bf complex; PC: Plastocyanin; FD: ferredoxin; 766 

H2ase: hydrogenase; NPQR: NADP quinone reductase; PFOR: pyruvate ferredoxin 767 

oxidoreductase; FDox: oxidized ferredoxin; FDred: reduced ferredoxin. 768 

Figure 2. The principle of alga-based biogas production. Abbreviations: OLR: organic loading 769 

rate, HRT: hydraulic retention time. 770 
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 772 

Table 1. Summary of depletion-induced photosynthetic biohydrogen strategies.  773 

 774 

Strategy Lag of H2 
production 

(hours) 

Accumulated H2 yield  
(ml H2 l

-1 culture h-1) 
Effects of treatment References 

 
 

Sulfur 
deprivation 

 
 

24-72  

 
 

1.6-3  

Down-regulated photosynthesis 
Elevated starch content 

Reduced amount of Rubisco and PSII 

Melis et al., 2000; 
Melis and Happe, 2001; 

Kruse et al., 2005; 
Toepel et al., 2013; 
Wijffels et al., 2013 

 
 

Nitrogen 
deprivation 

 
 

30-54  

 
 

0.5-4.25  

Chlorosis 
Loss of Cyt b6f complex; Inhibition of carbon 

fixation 
Reduced amount of Rubisco; Elevated starch 

content 

Philipps et al., 2012; 
Li et al., 2015; 

Saroussi et al., 2017 

Phosphorus 
deprivation 

120-288  0.18-0.43  Elevated starch content; Inactivation of PSII Batyrova et al., 2012, 2015 

Magnesium 
deprivation 

216  0.72  Decrease of Chl content Volgusheva et al., 2015, 2017 

Acetate 
regulation 

<24  0.29-0.39  none Fan et al., 2016; 
Jurado-Oller et al., 2015 

Alga-bacteria 
co-culture 

2-12  0.125-0.25  Elevated biomass production rate Lakatos et al., 2014; 
Wirth et al., 2015b 

 775 

 776 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

P680*

PS II

e-

PS I

PQ

e-

e-

2H2O

O2+4H+

Starch Pyruvate

ADP ATP

Glycolysis

NAD++H+ NADH

e-

P700*

FD H2ase

CO2

fixation

e-

e-

H2

2H+

Lipids

ΔE

Photosynthesis

NPQR

AcetylCoA+CO2

PFOR

Pheo

Cytb

Cytf PC

FDox FDred

DARK



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Strain selection Pretreatments

Physical Chemical Biological

Salt effect, OLR, HRT, co-digestion

No pretreatment

Biogas production



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Highlights: 

• Microalgae are promising source of alternative carbon neutral biofuels. 

• H2 production: autotrophic, heterotrophic and photoheterotrophic approaches. 

• The CH4 potential of algal biomass depends on the species and AD conditions. 

• Combination of anaerobic H2 and biogas production is recommended. 

 


