Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 19 (2018), No. 2, pp. 795-812 DOI: 10.18514/MMN.2018.2302

CONVERGENCE ANALYSIS OF FINITE DIFFERENCE METHOD
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Abstract. This study is concerned with a singularly perturbed three-point boundary-value prob-
lem with delay. Firstly, bounds on the solution and its derivative of the solution to be used later in
the paper are obtained. To solve it numerically, we use an exponentially fitted difference scheme
on an equidistant mesh which is established by the method of integral identities with the use of
exponential basis functions and interpolating quadrature rules with weight and remainder term
in integral form. Then, the stability and convergence analysis of difference scheme is given and
it is uniformly convergent in perturbation parameter. Furthermore, numerical results which show
the effectiveness of the method are presented.

2010 Mathematics Subject Classification: 34B10; 34K10; 65L11; 65L12; 65L.20

Keywords: singular perturbation, nonlocal condition, finite difference method, initial layer, uni-
form convergence

1. INTRODUCTION

If an ordinary differential equation contains both a perturbation parameter and a
delay term, it is called a singularly perturbed differential-difference equation. These
equations are a very important role in science and engineering field. For instance,
they occur in the study of human pupil light reflex [18], first-exit problems in neuro-
biology [22], models of physiological processes and diseases [20], optimal control
theory [13], optically bistable devices [9] and signal transmission [10], and other
models [11].

On the other hand, in recent years many methods have been developed for solving
singularly perturbed delay differential problems. In [8, 16] some asymptotic ana-
lysis of boundary value problems for second order singularly perturbed differential-
difference equations have been considered and some numerical techniques for solving
of this type of problems with large and small shifts were considered in [12, 17]. Par-
ticularly, reproducing kernel method [12], initial value technique [23], some special
finite element method [25] have been used for solving these problems.
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Motivated by the above works, we consider the following model problem:
Lu :=su”"(x) +a()u’(x) +b(x)u(x) +c(x)u(x—r) = f(x), x€ 2, (1.1)
subject to the interval and boundary conditions,
u(x) =px), x € 2o; yull))+u(l)=A4,11 € 2 (1.2)

where 2 = 21U 25, 21 =(0,r], 2, = (r,1), 2 =10,1], 20 =[-r,0] and 0 < ¢ < 1
is the perturbation parameter, y > 0 and A are given constants. a(x) = o > 0, b(x) <
0, c(x), f(x) and ¢(x) are given sufficiently smooth functions satisfying certain
regularity conditions to be specified and r is a constant delay, which is independent
of e.

The special case r = 0 and ¢(x) = B (B is a real constant) of the above prob-
lem so called nonlocal boundary value problem of ordinary differential equation, was
initiated by [14]. This kind of problems occur in mathematical models of a large
number of phenomena in catalytic processes in chemistry and biology, in problems
of semiconductors, in problems of hydromechanics, in studying heat transfer prob-
lems and some other physical phenomena [1]. In the survey paper [19], nonlocal
problems have been extensively studied many researchers. Nonetheless, the exist-
ence of positive solutions for the multipoint boundary value problem with delay is
studied in [5,7, 15, 24]. Recently, numerical study of the boundary value problem
for linear singularly perturbed differential difference equation with large delay and
first type condition is extensively investigated [12,23,25]. But, singularly perturbed
nonlocal problems with delay are not studied in literature so far.

It is well known that, for small values of ¢, standard numerical methods for solving
such problems are unstable and do not give accurate results. For that reason, it is
important to develop suitable numerical methods for solving these problems, whose
accuracy does not depend on the parameter value ¢, i.e., methods that are convergent
e-uniformly. These include fitted finite difference methods, finite element methods
using special elements such as exponential elements, and methods which use a priori
refined or special non-uniform grids which condense in the boundary layers in a
special manner. The various approaches to the design and analysis of appropriate
numerical methods for singularly perturbed differential equations can be found in
[2,6,21] and the references therein. The numerical method presented here comprises
a fitted difference scheme on a uniform mesh. We have derived this approach on
the basis of the method of integral identities with the use of interpolating quadrature
rules with the weight and remainder terms in integral form. This results in a local
truncation error containing only first order derivatives of exact solution and hence
facilitates examination of the convergence. The solution of a singularly perturbed
problem of the form (1.1)-(1.2) normally has a boundary layer at x = 0.

This paper is organized as follows. In Section 2, we state some important prop-
erties of the exact solution. The description of the finite difference discretization
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have been given in Section 3. In Section 4, we present the error analysis for the ap-
proximate solution. Uniform convergence is proved in the discrete maximum norm.
In Section 5, we formulate the iterative algorithm for solving the discrete problem
and present numerical results which validate the theoretical analysis computation-
ally. The paper ends with a summary of the main conclusions.

Notation. Throughout the paper, C denotes a generic positive constant independ-
ent of ¢ and the mesh parameter. Some specific, fixed constants of this kind are
indicated by subscripting C. For any continuous function g(x) denote norms which

I
= 5 = R = = d s
810 = ¢l = max 1e gl = gl = [ leo)ldx
0

lgllooe = ll8llo,, > gl =gl k=012

2. PROPERTIES OF EXACT SOLUTION

Here we give some properties of the solution of (1.1)-(1.2), which are needed in
later sections for the analysis of appropriate numerical solution.

Lemma 1. Let a(x), b(x), c(x), f(x) € C(2), p(x) € C(£2) and

Ai=aT BBl +llellyz) < 1. 2.1)
Then for the solution u(x) of the problem (1.1)-(1.2) the following estimates hold:
[ulloo < Co, (22)
1 ax =
' ()| <sCA+-e"%), xe R, (2.3)
e

where
Co = [lp(0) + 4]+ Ble©)| + e || fll; + o™ lcloo,1 o101 =),
B=1+ylyli+1)~".
Proof. Firstly, we prove (2.2). From (1.1) it follows that

—% a(mdn 1 ’ —é()fca(n)dﬂ
u'(x) =u'(0)e 0 —;/F(S)e £ d§ (2.4)
0

with
F(x) =—f(x)+b(x)u(x)+c(x)u(x—r).
Integrating the relation (2.4) over (0, x) we get
T

¢ —1 a(ndn 17 ~L Ja(madn
u(x):g0(0)+u'(0)/e 0 dt—g/dr/F(S)e € d§
0

0 0
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; —L fa(nd
=w(0)+u’(0>/ e r——/dms)/ =
0

Using now the condition yu (/1) +u(l) = A, we have
iy A= +1)90) +yq() +4q (1)
u'(0) =

yp(l) + p(l)
and so
_ A=(1+eO +yql) +q@)
u(x) = ¢(0) + oI+ o () p(x)—q(x),
where
~L and % ——fa( )
p) = / 0" e, qx) = / dEF(£) / "y

0

(2.5)

(2.6)

In order to prove (2.2), we will use appropriate Green function as an alternative to

(2.6).
Lyv:=¢ev"(x)+a(x)v'(x)= H(x), 0 <x </,
v(x) =9¢(x), -r<x<0;v(l)=4

can be also expressed the solution (2.7) as [3]

I
o) = (1= 2g0)+ L / G 5) H(s)ds

where
l T
1 —1Jatmd (md
G(x,s):—/e Sfan 7’der——T(x—s)/ far/ 77
& () e
N
To(t)=1,t = 0; To(z) =0, <O,

and
H(x) == f(x) +b(x)v(x) +c(x)v(x —r).
On the other hand, using transformation

u(x) =

we can rewrite for the solution of the problem (1.1)-(1.2), such that

l
u(x )—(1—%) © )+%A+/G(X,S)F(s)d

yXx
I+1
0

Q2.7)

(2.8)

(2.9)

l
/G(II,S)F(s)ds.
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Also in [3] the authors show that 0< G(x,s) < o~ ! for Green’s function (2.9), from
this point of view

! I
)
IM(X)I$|<p(0)|+|A|+/|G(x,S)||F(S)IdS+ ’ /|G(llvs)||F(S)|ds
0 0

vl +1

!
< @)+ |A[+ max [G(x,s)| | [F(s)|ds

X,S€2

0
l
+ max |G(l.5)—2 /|F(s)|ds
X ’
ll,sefz ! yll+lo
l

<o+ +a7p [ IF@)lds
0
<O+ A1+ Bl Al +a  Blbl oo
[
+a 1B | le(s)u(s—r)|ds.
/

After, by means of changing integral variable by # = s —r, we find that

()| < lp©)|+ A+ "Bl Sy +e ' BlIbI oo
I—r
+a_1,3/|c(r+t)u(t)|dt
<O+ A1+ "Bl f Iy +o ' BIbl ullo
0 I—r
+oz_1,3/|c(r+t)(p(t)|dz+a_1,3/ le(r +u(t)|dt
i 0
<lpO)|+14l+a "Bl I+ BlIbI 1l
[
+o ' Blclloor ||<0||1,o+a‘1ﬁllulloo/Ic(t)ldt

<le©@)+ A+ Bl Iy +e BlIbIL Tl
o Blelloo,t lello+o Bliel o
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from which (2.2) follows immediately. We have now to prove the estimate (2.3). If
we reconsider the terms in (2.5), we obtain the following relations:

[ T l T
* —La(mdn —1 [a(pdn
7wUﬂ+pU)=V/e 0 dr+/e 0 dt

0 0
I 1

_a*zc _a*z ) _atn _a*l
Z)//e sdt—i—/e sdr:a—*[y(l—e e )+1—e ¢ ]

0 0
& Lk R
> -+l = c1e. 0" = |lalloo),

and

- a( )d
Yl + g < [ds|F(s)|f "y

/ dE|F (&) / Howan,
/ds|F(s)|/ /ldsw(sn/ dr

0 0

al1—§)

= %/ dEIFE)| [ e(l—e 5 )
0

&)

l
4 [dgIF@Ite - )
0

l] l
ga—uy/}F@nds+/WF@Nd@-
0 0

For /1 <r we get

yigUDl+laDl <ty fly +Ot_1V||b||oo/|u(S)|ds



CONVERGENCE ANALYSIS OF FDM FOR SPNDDP 801

0 l—r
tal(147) ||c||oo[|so<s)|ds+or1 el / u(s)| ds
—r 0

<o 'y (£l + 18llee Colt) + o A+ 1) clloo l@ 10
+a 1 cllw Coll =1) = Cy

and when /; > r we have

I
y gD+ 1)) Sa—lynfnl+a—1y||b||oo/|u(s>|ds
0

0
fa (14 y) ||c||oof|w<s>|ds

Ii—r I—r
ra Yy leloe [ uo)lds+ o el [ helds
0 0
<a (1 f 1y + 1B lloo Colt) + &~ (14 1) leloo Il o
Lo elloo Colylh—r) + (I — 1)) = Co.
Thus, from (2.5) we are led to
A1+ (14 1) 0] + 7 lg )] + g (D]

! <
Ol < yp(0 + p()
< AL+ () lpO)] +max(C1.Ca) _ Gy
e e
Using the preceding in (2.4) and arguing as above we arrive at (2.3). g

3. DISCRETE PROBLEM
Henceforth, we denote by @ a uniform mesh on 2 :
w=4{x;=ih,i=12,..N—1;h=1/N}

and @ = wU{x = 0,/}. For simplicity, we will suppose that 7 N = Np and IT‘N =N
are integers, i.e., xn, = r and xy, = /1. Before describing our numerical method,
we introduce some notation for the mesh functions. For any mesh function g(x), we
use

gi=8(x;), gxi = (8 —&i-1)/h, gx,i =(gi+1—8i)/h.
8o = (gx,i +8x%,i)/2, gxx,i = (&x.i —8&x.,i)/h.
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N—-1
1€lloo = I1gloo = max gl gl = lgle=D_ klgil.

<i< :
i=1

The approach of generating difference method is through the integral identity

1 1
h_I/Lu(x)wi(x)dx =h_1/f(x)wi(x)dx,i =1,2,..,N—1 (3.1)
0 0

with basis functions

Wl-(l)(x), Xi—1 <X < Xj,
Vi(x) = wi(z)(x), Xi <X < Xit1,
0, x & (xi—1.Xi+1),

where wi(l)(x) and wi(z) (x) are the solutions of the following problems, respectively
e¥"(X)—a;i ¥’ (x) =0, xj—1 <x <x;, Y(xi—1) =0, ¥(x;) =1,
Y (x)—a; ¥ (x) =0, x; <x <xit1, ¥(x;) =1, ¥(xj+1)=0.

The functions wi(l)(x) and wl.(z) (x) can be explicitly expressed as

e%i(x—xi—1)/e _q 1 — @i (xig1—x)/e

wl.(l)(x) = T lﬂ,-(z) (x) = [oaihle
which, obviously, satisfy
Xi+41
h! f Vi (x)dx = 1.
Xi—1
Rearranging (3.1), it gives
Xi+1 Xi+1
—ch™! / Yl (ou' (x)dx +aih™! / Vi (' (x)dx+bju; + ciui—n, = fi — Ri,
Xi—1 Xi—1
i=12,.,.N—1
with
Ri=R® + R® + R + RW, (3.2)
Xi+1
RO =171 [ fa) —atel' (v,
Xi—1
Xi41

R® —p! / [b(x)u(x) —b(x;i )u(x;i)]yi(x)dx

Xi—1
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Xi+1 Xit1
d
_ / dx i (x) / () K (x.E)dE.
iy -
Rf3)=h_1 [ [c)u(x —r)—c(xi)u(x; —r)|¥; (x)dx
;;-H Xi+1

=51
X

d
axyi() [ (el =K, (x5,

Xi—1

Kg,;(x.6) =To(x—§)—To(x; —§), 1 <i <N -1,
Xi41
RO =it [ 76— folp eodx
i - 1 i .
Xi—1

To be consistent with [3], we present the following approach for exact solution

bu; = ebiuzx,; +a,~ug ; +biui +ciuj—nN,=fi—Ri,i=12,..,N—1.
where
a,-h
2e
Herefrom, we propose the following difference scheme for approximating (1.1)-(1.2)

6; = pi coth(p;), pi = (3.3)

tyi = e0iyzxi +aiyo +biyi+ciyi-ng = fi . 0<i <N, (3.4)

Yi=¢i, —No<i<O0;yyn +ynN =4, (3.5)
where 6 is given by (3.3).

4. STABILITY BOUND AND CONVERGENCE

In this section, we show the convergence of our method. Note that the error func-
tion z; = y; —u; is the solution of the discrete problem

lz; =R;, 0<i <N, “.1)

zi=0, =No<i<0; yzy, +2n =0. “4.2)
where the truncation error R; is given by (3.2).

Lemma 2. If a(x),b(x),c(x), f(x) € C1(2) and ¢(x) € C' (), then for the

truncation error R; we have

IR|l, < Ch. 4.3)
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Proof. Using the mean value theorem, we get
la(x)—a(xi)| = |a'@)|lx —xi| < Ch. x.§ € [xi—1.xi +1].

Hence
Xi+41

Rfl)‘sCh(h_l / [’ ()| ¥ (x)dx)

and taking also into account that 0 < v; (x) < 1, we have

xl-’rl

[RO| <cn Z / ' (x)| dx <2Chf\u ()] dx.
xl 1
We now use the estimate (2.3) to establish that
l

HR(I)HI <Ch( +§/ —Fdx) < Ch(1+a" (1—e~%)) = O(h).
0

For RZ(Z), in view of b € C1(£2) and using Lemma 1, we obtain

Xit1 Yitl
d
&2 < [ [peuei|@as<ca+ [ pelas.
Hence _ _
1 ritl

HR<2)H <Ch(1+Z / o/ (g)|dg)<€h(1+/\u ()| d).

Using the (2.3), we get
l
@) 1 [ _at )
|R?| <ch+- [ Fag <chi+al1-e%) = 0.
e
0
For Rl(?’), in virtue of ¢ € C!(£2) and using Lemma 1, we get
Xi+1 i1

d
< / ‘a[c(x)m—r)] (§)ds < C(1+ / W' & =n)|d§).

Xi—1

Hence
N—1 Xi41

HR(3>H <Ch(1+z / o/ (g—r)|dg)<Ch(1+[\u (E—r)|dE)
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and, after replacing s = & —r this reduces to

I—r 0 I—r
HR(”HIsCh(H_/r [u'(s)| ds) =Ch(1 +_[\¢/(s)}ds+0[|u/(s)}ds)

which yields

o(l

[RO| <ch+ o], o+o7 (1= = 0.

The same estimate is obtained for RIG) in the similar manner as above. O
Lemma 3. Let z; be the solution (4.1)-(4.2) and (2.1) holds true. Then
2 lo0,0 < 1R ]l1,0- (4.4)

Proof. We here will use the discrete Green’s function G (x;, s ) for the operator
LiZi = —e0iZexi—aiZy . 1<I<N—1,
Zo=0, zZy=0.
As a function of x; for fixed s; this function is being defined as
LZGh(xi,Sj) = Sh(xi,Sj), Xi €w, 5j €Ew,
Gh(O,Sj) = Gh(l,Sj), Sj €w,

where §" (xi,85) = h=1§; ; and §;; is the Kronecker delta. Using Green’s function
and below transformation

2i =7Zi —LZM,
YXN, +xn
we can write down the following relation for solution of problem (4.1)-(4.2)
N-1
Zi = Z hGh(x,',Sj)(ijj +c¢jzZj—No—Rj)
j=1
—LNX_:IhGh(xN §si)bjzi+¢jZi—Ny—Rj), Xi € w 4.5)
VXN1+XNJ.:1 123 )\0jZj T Cjlj—No J ) A . .

In the analogous manner as in [4] one can show that 0 < Gh(x,',s i) < o~ L. Then
from (4.5) it follows that

N-—1
Izlloow <& lzlloow O h(Bi ]+ |ciD+ IR o}
j=1
YXN N-1
Mo +xNa_1{||Z||oo,w 3" (b |+ |es )+ IRl 0}

Jj=1
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<@ Bl zlloow IBll1.0 + el ) + IR o}
< Mzlloow +@ BRI 0
which implies the validity of (4.4).

Now, we give the main result on e-uniform convergence of the proposed method
for solving the problem (1.1)-(1.2). O

Theorem 1. Under the condition of Lemma 1, the solution of (1.1)-(1.2) and the
solution (3.4)-(3.5) satisfy the estimate

1y —ttlloo, < Ch. (4.6)

Proof. Combining the previous lemmas, we immediately have (4.6). O

5. ALGORITHM AND NUMERICAL RESULTS

In this section, we shall propose the following iterative technique for solving prob-
lem (3.4)-(3.5). In addition, we demonstrate the effectiveness of the present method

by applying it to three examples of problem (1.1)-(1.2).
891')’)%';),,- +aiy(()"? +biy,-(n) = fl-(l), f,-(l) = fi—¢iyi-Ny» 1 =1 < No—1,
X,i

y =i —No<i<0: y§) = kno1.

e0iy ) +aiy +hiy™ = f2. fP = fi—ciy®y, No+1<i <N -1,
X,i
y](\','c? = Kn—1, yj(\}’) =A—yln-1,
where k, and p, are values of (3.4) for yy, and yy, so that

kn = (0N (Y1 + V) + 12 (angy S+ enowo— fvg)l (208, —bngh®) 7,

x,N()
0N, N 1 YN DR (an, y§P e )
1OUN+1TYN -1 N1y)(3N N1®$N1—No—JN;
B 1 >
M _ 26‘0N1_bN}h2 ’ N() . N19
n — (n) (n) 2 ) (n)

eON N, 41t N, —1)+h (“le)(gan"‘chyA’/quo_le)

260N, —bn, h2 » No <Ny,

n=1,2,3,..,

ko = o = Cp, and Cy is given by (2.2).
We consider the following test problems:

Example 1. (Case 1: [; <)

eu” (x) +64u’'(x) —u(x) +0.25u(x —1) = 0.25x —1.25, 0 < x < %
ux)=x,-1<x<0; %u(%)—l—u(%) =2,
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the exact solution is given by
1+ dje™™* + dye™2*, x €10,1]
u(x) = d3e’1nl (x=1) 4 d4em2(x—1) _ % .
—Td—(X—l)(\/g+d1€ml(x_l)—dzemZ(x_l)), X € (1,5]

where
133 (B —em2 113,72
8 +IBIe (,82 e 8v/d 4)6
1= my mp
03—04+4(e2 —e2)

dry =—1—dy, d3s =a1di—p1, ds = —azdy + P — e

Example 2. (Case2:[{ =r)
eu” (x) + 64u’(x) —u(x) +0.25u(x —1) = 0.25x —1.25, 0 < x < %
u(x)=x, -1<x<0; Ju()+u@) =2,
the exact solution is given by
1 +die™* +dye™>*, x €10,1]

y (x) _ d3em1(x—1) 4+ d4em2(x—1) _ %
;d (x— 1) (Vd +dyemED —ghem2=D) - x e (1,3]

where
B4 pred —J(1—em)—(Br—em— Lye T
dl - 8 d ,
L —em) + 03 —os

dy =—1—dy, d3s =ard1—p1, ds = —azd1 + B2 —e™

Example 3. (Case 3: [{ >r)
eu”(x) + 64u’'(x) —u(x) +0.25u(x —1) =0.25x —1.25, 0 < x < %
u(x)=x, -1<x<0; %u(%)—l—u(%) =2,
the exact solution is given by
14+ dje™”>* + dye™2*, x €10,1]
d3em1(x 1) +d4em2(x 1) _

u(x) =
——(x—l)(\/_—i—dleml(x D _ dyem2(x=1)), xe(l,%]

where
mp
=

e e )= (Ba—em— e

01— 02+03—04

01 —02+03—04
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dy =—1—dy, d3 =a1di— P, ds = —ardy + P2 — ™2,

and the other coefficients for all examples are as follows

O =

(% +(=D*
@2+ (=DF L)e ™

mg
L)e s,

32/d

Mmg—2

8vd

k=12,
’ k:374’

1
B2 =M g Pra= o Gmaa -y -

my = =SV 4y, = 64N g 912 4 g

D).

TABLE 1. Errors and convergence rates for Example 1

£ No=64  No=128 Ny=256 No=512 No=1024

272 353104E-5 1.02837E-5 2.69286E-6 6.83444E-7 3.60809E-7
1.78 1.93 1.98 1.92

27%  575563E-5 2.46914E-5 8.83647E-6 2.57391E-6 6.74033E-7
1.22 1.48 1.78 1.93

276  6.37278E-5 3.08407E-5 1.43934E-5 6.17426E-6 2.20966E-6
1.05 1.10 1.22 1.48

278 6.52702E-5 3.23831E-5 1.59358E-5 7.71119E-6 3.59865E-6
1.01 1.02 1.05 1.10

2710 6.56558E-5 3.27687E-5 1.63214E-5 8.09677E-6 3.98423E-6
1.00 1.01 1.01 1.02

2712 6.57522E-5 3.28651E-5 1.64178E-5 8.19317E-6 4.08062E-6
1.00 1.00 1.00 1.01

2714 6.57763E-5 3.28892E-5 1.64419E-5 8.21727E-6 4.10472E-6
1.00 1.00 1.00 1.00

2716 6.57820E-5 3.28949E-5 1.64475E-5 8.22291E-6 4.11037E-6
1.00 1.00 1.00 1.00

2718 6.57837E-5 3.28967E-5 1.64493E-5 8.22470E-6 4.11216E-6
1.00 1.00 1.00 1.00

2720 6.57842E-5 3.28971E-5 1.64498E-5 8.22515E-6 4.11260E-6
1.00 1.00 1.00 1.00

eV 6.57842E-5 3.28971E-5 1.64498E-5 8.22515E-6 4.11260E-6

N 1.00 1.00 1.00 1.00

Now, we define the exact error e/¥ and the computed parameter-uniform maximum

pointwise error eV as follows:

N N
er =y —ulloog. ¢ =maxel.
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where y is the numerical approximation to u for various values of N, &. We also
define the computed parameter-uniform rate of convergence to be

o = log, (eN/eZN).

The values of ¢ and No (N = 3Ng/2) for which we solve the test problems are
e=2"2i=1,2,..,10; No = 64,128,256,512,1024. The resulting errors e’V and
the corresponding numbers p? after 20 iterations are given in Tables 1-3.

TABLE 2. Errors and convergence rates for Example 2

e No = 64 No=128 Np=256 No=2512 No=1024

272 236474E-5 6.88645E-6 1.8032E-6 4.56462E-7 1.34503E-7
1.78 1.93 1.98 1.76

274  3.85540E-5 1.65391E-5 5.91880E-6 1.72400E-6 4.51464E-7
1.22 1.48 1.78 1.93

276 4.26883E-5 2.06587E-5 9.64138E-6 4.13580E-6 1.48013E-6
1.05 1.10 1.22 1.48

278 4.37216E-5 2.16919E-5 1.06746E-5 5.16533E-6 2.41053E-6
1.01 1.02 1.05 1.10

2710 4.39799E-5 2.19502E-5 1.09329E-5 5.42362E-6 2.66881E-6
1.00 1.01 1.01 1.02

2712 4.40444E-5 2.20148E-5 1.09974E-5 5.48819E-6 2.73338E-6
1.00 1.00 1.00 1.01

2714 440606E-5 2.20309E-5 1.10136E-5 5.50433E-6 2.74952E-6
1.00 1.00 1.00 1.00

2716 4 40643E-5 2.20346E-5 1.10173E-5 5.50805E-6 2.75325E-6
1.00 1.00 1.00 1.00

2718 4.40655E-5 2.20359E-5 1.10185E-5 5.50930E-6 2.75449E-6
1.00 1.00 1.00 1.00

2720 4.40659E-5 2.20362E-5 1.10189E-5 5.50961E-6 2.75480E-6
1.00 1.00 1.00 1.00

eV 4.40659E-5 2.20362E-5 1.10189E-5 5.50961E-6 2.75480E-6

N 1.00 1.00 1.00 1.00

6. CONCLUSION

In this paper, we have developed a finite difference method for solving the singu-
larly perturbed nonlocal boundary-value problem for a second order delay differential
equation. This method was based on an exponentially fitted difference scheme on a
uniform mesh. The method was proved to be first order accuracy in the discrete
maximum norm, with respect to the perturbation parameter . Test problems were
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TABLE 3. Errors and convergence rates for Example 3

& N() =64 N() =128 N() =256 N() =512 N() = 1024

272 3.67457E-5 1.07011E-5 2.80203E-6 8.90948E-7 3.19656E-7
1.78 1.94 1.65 1.48

274 5.99030E-5 2.57004E-5 9.19987E-6 2.68102E-6 7.89100E-7
1.22 1.48 1.78 1.93

276 6.63273E-5 3.21016E-5 1.49846E-5 6.43084E-6 2.30438E-6
1.05 1.10 1.22 1.48

278 6.79328E-5 3.37071E-5 1.65901E-5 8.03061E-6 3.75060E-6
1.01 1.02 1.05 1.10

2710 6.83341E-5 3.41084E-5 1.69915E-5 8.43195E-6 4.15194E-6
1.00 1.01 1.01 1.02

2712 6.84344E-5 3.42087E-5 1.70918E-5 8.53229E-6 4.25228E-6
1.00 1.00 1.00 1.01

2714 6.84595E-5 3.42338E-5 1.71169E-5 8.55737E-6 4.27736E-6
1.00 1.00 1.00 1.00

2716 6.84656E-5 3.42397E-5 1.71227E-5 8.56318E-6 4.28313E-6
1.00 1.00 1.00 1.00

2718 6.84673E-5 3.42416E-5 1.71246E-5 8.56511E-6 4.28510E-6
1.00 1.00 1.00 1.00

2720 6.84677E-5 3.42420E-5 1.71251E-5 8.56558E-6 4.28557E-6
1.00 1.00 1.00 1.00

eV 6.84677E-5 3.42420E-5 1.71251E-5 8.56558E-6 4.28557E-6

N 1.00 1.00 1.00 1.00

addressed for different cases of /; and r. The case of /; = r was obtained better
results than in other cases. Furthermore, the approximate errors and the rates of con-
vergence for test problems was computed for different values of ¢ and Ny in Tables
1-3. Numerical results were carried out to show the efficiency and accuracy of the
method. Theoretical results represent undergoing more complicated delay problems.
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