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Abstract 

The location of cerebral neurons innervating the three recently described flexor muscles 

involved in the orientation of the posterior tentacles as well as their innervation patterns were 

investigated, applying parallel retrograde Co- and Ni-lysine as well as anterograde 

neurobiotin tracings via the olfactory and the peritentacular nerves. The neurons are clustered 

in eight groups in the cerebral ganglion and they send a common innervation pathway via the 

olfactory nerve to the flexor and the tegumental muscles as well as the tentacular retractor 

muscle and distinct pathways via the internal and the external peritentacular nerves to these 

muscles except the retractor muscle. The three anchoring points of the three flexor muscles at 

the base of the tentacle outline the directions of three force vectors generated by the 

contraction of the muscles along which they can pull or move the protracted tentacle which 

enable the protracted tentacle to bend around a basal pivot. In the light of earlier physiological 

and the present anatomical findings we suggest that the common innervation pathway to the 

muscles is required to the tentacle withdrawal mechanism whereas the distinct pathways serve 

first of all the bending of the protracted posterior tentacles during foraging. 

Keywords cerebral motoneurons, food conditioning, innervation patterns, olfactory 

orientation, ommatophore 
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Introductions 

Olfaction in terrestrial snails is an essential sensory modality and plays a crucial role in 

orientation and foraging (for rev. Chase 2002). In Stylommatophora snails including Helix 

pomatia, although the entire head region is abundantly supplied with chemoreceptors and 

mechanoreceptors the posterior tentacles are the most important for olfaction involved 

principally in the orientation towards a distant food source (Croll and Chase 1980, Chase and 

Croll 1981, Croll 1983, Friedrich and Teyke 1998, Teyke 1995, for rev. Chase 2002). The 

posterior tentacles held upright display external lateral movements during exploring the 

environment and this active scanning behavior is likely to be involved in obtaining 

information on the occurrence and spatial distribution of actual odors. The tentacle 

movements serve to bring the olfactory receptors in an appropriate position for the perception 

of odor stimuli that help adjust the direction of locomotion in maintaining the perception of 

increasing odor concentration which then help the animal find the source of the odor during 

foraging (Peschel et al. 1996, Friedrich and Teyke 1998, Nikitin et al. 2008, for rev. Chase 

2002).  

Studying the role of odor memory in feeding behavior Peschel et al. (1996) observed that 

during normal locomotion both naïve and food conditioned snails kept the posterior tentacles 

upright, while after the introduction of the conditioned food (odor) the conditioned snails but 

not the naïve ones turned into the direction of the food and lowered the ipsilateral tentacle 

pointing at the direction of food. At the same time the contralateral tentacle remained in 

upright position. During the final approach to the food both tentacles were oriented 

horizontally pointing directly at the food. This type of tentacle movements is characterized by 
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bending the tentacle around a basal pivot in different directions without curving the stem. 

Consequently it can easily be distinguished from other tentacle movements, such as tentacle 

withdrawal (Prescott et al. 1997, for rev. Chase 2002) and local movements of the tentacle tip 

(Lemair and Chase 1998, Nikitin et al. 2005, 2008). Therefore the bearing of the posterior 

tentacles was considered as indicative of the feeding history of the snail at the level of 

behavior (Peschel et al. 1996). 

The posterior tentacles are innervated by the olfactory nerve as well as by the external 

peritentacular (ePT) and the internal peritentacular (iPT) nerves (Kerkut and Walker 1975). In 

isolated tentacle preparation the electrical stimulation of the PT nerves, which innervate the 

tegumental muscle in the stem of the tentacle (Peschel et al. 1996), evoked the lateral bending 

of the protruded tentacle. The electrical stimulation of the ePT nerve evoked external lateral 

whereas the stimulation of the iPT nerve evoked the medial downward bending of the 

protruded tentacle. It resembled the tentacle movements carried out by conditioned snails 

during food approach. Contrary, the electrical stimulation of the olfactory nerve evoked no 

bending but only local movements of the tip of tentacle (Peschel et al. 1996). In semi-intact 

preparation obtained from odor conditioned animal the stimulation of the olfactory epithelium 

evoked activity discharge in the PT nerves only when applying the conditioned odor. On the 

contrary the conditioned odor failed to evoke nerve activity in the PT nerves in preparation 

obtained from naïve animal (Peschel et al. 1996). Therefore Peschel et al. (1996) suggested 

that the increased activity in the iPT nerve is responsible for the medial whereas in the ePT 

nerve for the lateral downward bending of the tentacle and the evoked electrical activity in PT 

nerves in the presence of an odor are indicative of the feeding history of the snail. Labeled 

axons have been shown in distinct areas of the tegumental muscle following anterograde Co-



 5 

lysine tracing via the different PT nerves, therefore Peschel et al. (1996) suggested that the 

musculature responsible for these movements is located inside the posterior tentacles 

(tegumental muscle) and the contractions of the different parts of the tegumental muscle 

evoked via the different PT nerves are sufficient to generate the full complement of tentacle 

movements, that is bending of the protracted tentacles around a basal pivot, associated with 

olfactory orientation in conditioned snail.  

Snails which are supplied with a hydro skeleton have no extensor muscles, instead the 

haemolymph pressure plays an extensor function (for rev Chase 2002). Therefore when the 

posterior tentacles are fully protracted and stretched by the hydrostatic pressure of the 

haemolymph during olfactory orientation, the contraction of the different parts of the 

tegumental musculature alone cannot be able to execute the bending of the protracted 

tentacles around a basal pivot. We supposed that a still unknown separated flexor muscle or 

muscles exist which counterwork the hydrostatic pressure and execute the bending of the 

protracted tentacle around a basal pivot. Recently we have demonstrated the presence of three 

novel thin string-like muscles in each posterior tentacle spanning the entire length of the 

tentacle from the tip to the base of the tentacle (Hernádi and Teyke 2012). Their gross 

anatomical, ultrastructural and physiological properties described (Hernádi and Teyke 2012, 

Krajcs et al. 2012) fulfill the criteria of a flexor muscle.  

The aim of the present study was to identify the cerebral neurons and their innervation 

patterns in these novel flexor muscles. Applying anterograde neurobiotin tracing via the 

olfactory and PT nerves we determined the nerves belonging to the different flexor muscles 

and visualized their projections in these muscles. Applying paired retrograde cobalt and nickel 

lysine tracing via the olfactory and the different peritentacular nerves the location of cerebral 
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neurons innervating the flexor muscles was demonstrated in order to outline a 

neuroanatomical background of a regulatory system which might be responsible for the 

generation of motor output to the space positioning of the olfactory organ during foraging.  

 

 

Materials and Methods 

Adult specimens of the snail Helix pomatia were collected locally, kept in an outdoor 

cage and fed on cucumber before using them for the experiments. 

 

Anterograde neurobiotin tracing  

Posterior tentacles with the flexor muscles and the CNS interconnected via the olfactory and 

the different peritentacular (PT) nerves were dissected and pinned out in Sylgard coated 

plates containing Helix saline (Vehovszky et al. 1992). One of the three nerves was cut and 

placed in a Vaseline cup containing 5% neurobiotin (Vector) diluted in distilled water. The 

cup was sealed with Vaseline thus anterograde tracing via the distal segment of the selected 

nerve was excluded. The preparation was covered with saline and kept at room temperature 

for one day. The preparations were then fixed in 4% paraformaldehyde (Reanal, Budapest, 

Hungary) buffered with 0.1 M phosphate buffer (pH 7.4) for 6 h at 4°C. The neurobiotin 

labeled axons were visualized in whole-mount preparations by applying avidine conjugated 

Alexa-fluor 488 (Molecular Probes, London, England) diluted 1:1000 in PBS-TX for 1 hour 

at room temperature. After washing in PBS-TX the samples were mounted in PBS-glycerol 

(2:1) and viewed under a fluorescence microscope equipped the appropriate filters.  
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Paired retrograde cobalt and nickel-lysine tracing  

The CNS with all the cerebral nerves was dissected and pinned out in Sylgard coated plates 

containing Helix saline (Vehovszky et al. 1992). The olfactory nerve and one of the 

peritentacular nerves or the external and internal peritentacular nerves were cut and placed in 

a vaseline cups containing cobalt-lysine vs. nickel lysine complex. Then the cups were 

closed with Vaseline, covered with physiological saline and kept at room temperature for 

one day. Thereafter the cobalt and nickel ions in the cerebral neurons were visualized by 

applying rubeanic acid (Hernádi 1991). The whole-mount preparations were embedded into 

Cytomation matrix (Dako, Denmark). The cobalt containing (orange color) and nickel 

containing (blue color) neurons were studied in a light microscope equipped with a camera 

lucida apparatus.  

 

 

Results 

Anterograde neurobiotin tracing via the olfactory and the peritentacular nerves  

Neurobiotin tracing via the olfactory nerve revealed that labeled fibers run through the 

tentacular ganglion and leave it via the digits of the ganglion at the sites where the flexor 

muscles are attached to the ventral sensory pad and innervate each flexor muscle (M1, M2, 

M3) from the tip to the base where the flexor muscles are anchored to the body wall (Fig.1). 

Labeled trunks of fibers run inside the muscles and give off collaterals which innervate the 

muscle fibers (Fig.2). Additionally parallel labeled fibers run through the digits of the 

tentacular ganglion and innervate the tegumental musculature in the wall of the stem from the 

tip to the base (Fig.1). The labeled axons give off varicose side branches which innervate the 
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tegumental muscle fibers (Fig.2 D). Labeled fibers also supply the tentacular retractor muscle 

(Fig.1). 

Neurobiotin tracing via the internal peritentacular (iPT) nerve, which reaches the base of the 

stem ventromedially (Fig.1), revealed labeled axons in the M1 flexor muscle (Fig.3) which is 

anchored to the base of the stem also ventromedially (Fig.1). Labeled fibers run inside the M1 

flexor muscle and give off varicose side branches which innervate the muscle fibers (Fig.3 A). 

Additionally labeled fiber trunks can be seen in the ventromedial part of the stem (Fig.3 B) 

which fibers innervate a stripe of the tegumental muscle from the base to the tip of the stem 

(Fig.1).  

Neurobiotin tracing via the external peritentacular (ePT) nerve, (bifurcates before reaching the 

base of the stem and joins to it ventrolaterally and dorsolaterally as well (Fig.1) revealed 

labeled fibers in both the M2 (Fig.3 C) and the M3 (Fig.3 D) flexor muscles. The labeled 

fibers give off side branches which innervate muscle fibers. Additionally two large trunks of 

labeled axons can be observed ventrolaterally and dorsomedially at the base of the stem 

(Fig.1). They send parallel fibers towards the tip of the tentacle and innervate the ventrolateral 

and the dorsal parts of the tegumental musculature (Fig.3 E).  

 

Location of cerebral neurons projecting to the flexor muscles via the olfactory and the 

peritentacular nerves 

Parallel Co- and Ni-lysine tracing via the olfactory and the external peritentacular (ePT) 

nerves revealed that the neurons labeled via the two nerves are clustered in seven distinct 

groups (g1-g7). One of them is found in the procerebrum, one in the mesocerebrum and five 

in the metacerebrum, all located mostly on the ventral surface of the cerebral ganglion. (Fig.4 
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E). In the majority of the labeled groups both the olfactory and the ePT nerves are 

represented. However, in the g2 group only the olfactory nerve whereas in the g5 group only 

the ePT nerve is represented (Fig.4 E). Additionally on the dorsal surface of the 

metacerebrum a solitary double labeled neuron corresponding to the MtC3 neuron (Cottrell et 

al. 1983) could also be observed (Fig. 4 D, E). In the largest metacerebral group (g4) the 

neurons labeled via the ePT nerve are located under the neurons labeled via the olfactory 

nerve and they are partly intermingled. Among them a large (50-60 µm) neuron labeled via 

the ePT nerve can be seen located in the external part of the labeled group (Fig.4 A, E). A 

small group of neurons (g5) labeled via the external peritentacular nerve is located externally 

from the main labeled group (g4). Among them a large (50-60 µm) neuron can be 

distinguished (Fig. 4A, E). In the pleural lobe of the metacerebrum the neurons labeled via the 

ePT and the olfactory nerve are intermingled and can be separated in two loose groups (g6-

g7) consisting of medium diameter (30-50 µm) neurons (Fig.4 E). In the mesocerebrum a few 

of neurons (g3) labeled via the ePT nerve (60-70 µm) are scattered in the medial part of the 

mesocerebrum (Fig.4 E).  

 

The parallel tracing via the olfactory and the internal peritentacular nerves revealed eight 

groups of labeled neuron (Fig.4 E). In the majority of them both the olfactory and the iPT 

nerve are represented (g1, g5-g7). In the g3, g5 groups only the ePT and iPT nerves whereas 

in the g8 group only the iPT nerve is represented (Fig.4 E). In the largest metacerebral group 

of neurons (g4) a large (40-60 µm) neuron labeled via the iPT nerve can be seen among them 

(Fig.4 B,E). A large (40-60 µm) neuron and a few of small diameter neuron labeled via the 

iPT nerve form a small group (g5) located externally from the g4 labeled group (Fig.4 B,E). 
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In the pleural lobe the neurons labeled via the olfactory nerve are separated in two loose 

groups (g6-g7) and only a few of neurons labeled via the iPT nerve can be observed among 

them (Fig.4 E). In the mesocerebrum neurons are labeled only via the iPT nerve (g3), located 

dominantly on the dorsomedial part of the mesocerebrum (Fig.4 E). The identified large MtC3 

neuron labeled via the olfactory and the ePT nerves is also labeled via the iPT nerve (Fig.4 E). 

Additionally, close to the MtC3 neuron a medium (30-40 µm) diameter neuron was labeled 

via the iPT nerve (Fig.4 E).  

 

The parallel tracing via the external and the internal peritentacular nerves revealed that 

neurons labeled via the iPT nerve are located close to that labeled via the ePT nerve, however, 

double labeled neurons can rarely be seen. The large neuron in the g4 group was labeled 

dominantly via the iPT nerve whereas in the g5 group was labeled dominantly via the ePT 

nerve (Fig.4 C). They were only rarely double labeled. Caudally from the g4 group a small 

group of neuron (g8) consisting of small diameter (15-20 µm) neurons is labeled exclusively 

via the iPT nerve (Fig.4 C, E). In the pleural lobe only e few neurons are labeled via the iPT 

nerve and they are located in the groups of neurons (g6-g7) labeled via the ePT nerve (Fig.4 

C, E). In the mesocerebrum the majority of the labeled neurons (g3) are labeled via the iPT 

nerve. Among them a few of double labeled neurons can also be detected (Fig.4 D, E).  

 

The results of the retrograde Co and Ni-lyine tracing via the olfactory nerve and the different 

PT nerves outlined eight groups of labeled neurons (g1-g8) in the cerebral ganglion. Each 

nerve is represented in the g1, g4, g6, g7 groups. In the g2 group only the olfactory nerve, in 
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the g8 group only the iPT nerve whereas in the g3 and g4 group both the ePT and the iPT 

nerves are represented (Fig.4 E).  

 

 

Discussion 

The flexor muscles and the tegumental musculature receive both common and distinct 

innervation pathways  

The anterograde neurobiotin tracing revealed that the flexor muscles receive labeled 

fibers from cerebral neurons via the olfactory as well as the external peritentacular (ePT) 

and internal peritentacular (iPT) nerves. The fibers labeled via the olfactory nerve 

innervate each flexor muscle (M1, M2, M3) and additionally each separable musculature 

of the tentacle as the tegumental musculature of the stem and the tentacular retractor 

muscle. The labeled fiber trunks in the olfactory nerve reach these muscles via the digits 

of the tentacular ganglion and innervate them from the tip to the base of the tentacle. Via 

the PT nerves distinct separated labeled pathways reach these muscles (except the 

tentacular retractor muscle) and innervate them from the base of the stem to the tip of the 

tentacle. The iPT nerve innervates the M1 flexor muscle as well as a ventromedial stripe 

of the tegumental musculature located close to the anchoring points of the M1 muscle. 

The ventro-lateral branch of the ePT nerve innervates the M2 muscle as well as the 

external ventro-lateral area of the tegumental musculature, whereas the dorso-lateral 

branch of the ePT nerve innervates the M3 flexor muscle as well as the dorsal area of the 

tegumental musculature. Contrary to the observations of Peschel et al (1996) we found 

that the tegumental musculature is innervated not only by the PT nerves but also through 
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the olfactory nerve. Our observations show that the flexor muscles and the stem of the 

tegumental musculature receive both common and distinct innervation pathways. The 

common pathway via the olfactory nerve innervates them from the tip to the base 

whereas the distinct pathways via the PT nerves innervate them from the base to the tip of 

the tentacle.  

 

The cerebral neurons innervating the flexor muscles are clustered into eight groups  

According to the paired cobalt and nickel lysine tracing via the olfactory and the external 

peritentacular (ePT) and the internal peritentacular (iPT) nerves the neurons sending 

axons to the tentacle and the flexor muscles are clustered into eight groups (g1-g8). In the 

majority of labeled groups (g1, g4, g6, g7) all the three nerves are represented. In the g3 

and g5 groups only the PT nerves whereas in the g2 group only the olfactory nerve while 

in the g8 group only the ePT nerve is represented. Topographic arrangement of the 

labeled neurons could not be observed in the groups, except the g1 and g5 groups in 

which a limited topography was found.  

Earlier findings have shown that the efferent neurons located in the cerebral ganglia 

which project to the different head areas of Helix pomatia via the olfactory and the 

different lip nerves were grouped in several loci and the neurons labeled via the different 

nerves showed a limited topographic arrangement in the loci (Hernádi 1992). The main 

neurochemical characters of the loci that is in their transmitter and modulator contents 

showed differences (Hernádi and Elekes 1993, 1999, Hernádi 2000). The location of the 

presently described groups (g1-g8) labeled via the olfactory and the different PT nerves 

fall into the areas of the loci sending axons to the different head areas. Therefore we 
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suggest that the different groups of labeled neurons which innervate the flexor and 

tegumental muscles send neurochemically different pathways to these muscles.  

Only a solitary labeled neuron the MtC3 cell was identified functionally, taking part both 

in the tentacle withdrawal reflex and the graded tentacle retraction (Cottrell et al. 1983, 

Chase and Hall 1996, Prescott et al. 1997, Nikitin et al. 2005). Therefore it is difficult to 

render exact function (sensory, motor or modulator) to any group of the labeled neurons. 

In the g3 and g5 groups only the PT nerves are represented, therefore it cannot be 

excluded that the neurons in these two groups generate motor outputs to the flexor 

muscles.  

 

The possible mechanism by which the labeled cerebral neurons regulate the movement of the 

protracted tentacle (olfactory organ) 

To bring the olfactory receptors in an appropriate position for the perception of an odor 

stimulus requires complex movements by the protracted tentacle (for rev. Chase 2002). 

Our observations outline the anatomical and neuroanatomical basis (see Fig. 5) enabling 

the tentacles to execute the precise movements observed during foraging in food 

conditioned animals (Peschel et al. 1996).  

It was suggested that the motor activity in PT nerves and the evoked muscular contraction in 

the stem of tentacle (tegumental musculature) are sufficient to generate the full complement 

of tentacle movements associated with olfactory orientation in vivo (Peschel et al. 1996). 

However our recent anatomical findings demonstrating the existence of the three flexor 

muscles (Hernádi and Teyke, 2012) suggest that the bending of the protracted posterior 

tentacle in different directions around a basal pivot needs first of all the contraction of the 
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flexor muscles which opposes the hydrostatic pressure in the protracted posterior tentacles 

and thus the tentacle can be pulled in different directions. Each flexor muscle and the 

tegumental musculature receive both distinct (via the iPT and the ePT nerves) and common 

innervation (via the olfactory nerve) (see Fig. 5). Therefore when the conditioned odor 

induces distinct motor output via a PT nerve (Peschel et al. 1996) and evokes the contraction 

of a flexor muscle it also induces contraction in a given stripe of the tegumental musculature 

which is innervated by the corresponding PT nerve. The sites where the muscles are anchored 

to the base of the stem outline three space axes and force vectors along which the contraction 

of a flexor muscle can pull the tentacle (Fig. 5). Therefore, the position of the olfactory organ 

located on the tip of the protruded tentacle is determined as a result of the three force vectors 

generated by the contraction of the three flexor muscles. Parallel, the evoked contractions of 

the different stripes of the tegumental muscle cooperate with the contractions of the flexor 

muscles helping the bending of the protruded tentacle. The food conditioned snail displays 

four basic tentacle position during foraging (Peschel et al. 1996): i) the upright position during 

locomotion ii) external lateral movements of the upright tentacle during exploration, iii) 

external lateral downward position during the perception of the conditioned odor, iv) the 

forward horizontal position during approaching the conditioned food. Considering the 

possible force vectors along which the flexor muscles can move the tentacle, the upright 

position is generated by the contraction of the M3 flexor muscle, the upright lateral position is 

generated by the contraction of the M2 and M3 muscles, the lateral downward position is 

generated by the contraction of the M2 muscle and the relaxation of the M3 muscle whereas 

the horizontal position is generated by the contraction of the M1 and M2 muscles and is 

maintained by the relaxation of M3 and M2 muscles. 
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The conditioned odor induced horizontal positioning of the posterior tentacles was 

considered as an odor memory driven motor response (Peschel et al. 1996). The M1 

muscle receives distinct motor command via the iPT nerve, therefore the activity of 

motor neurons sending axons via the iPT nerve are probable commanded by the olfactory 

memory during the generation of horizontal positioning. However, the location of the 

odor memory and how it induces or drives the motor output via the iPT nerve is not 

known. The procerebrum of the cerebral ganglion which takes part in the odor 

information processing (for rev. see Chase 2002) was shown to be involved in odor 

discrimination but not in odor identification in Limax (Teyke and Gelperin 1999). 

Therefore the odor identification or the decision making center should be located in other 

yet unknown areas of the cerebral ganglion. It was shown that during odor or food 

conditioning the formation of odor memory requires additional feeding related stimuli, as 

sensory inputs from the anterior tentacles and the oral cavity, which inputs terminate on 

yet unknown cerebral neurons (Teyke 1995, Friedrich and Teyke 1998). Therefore it 

cannot be excluded that neurons in the presently labeled groups of the cerebral ganglion 

which project via the iPT nerves can be odor conditioned and respond directly to the 

conditioned odor. 

Contrary to the distinct motor pathways, the common pathway via the olfactory nerve which 

innervate the tegumental, flexor and retractor muscles is probably responsible for the 

withdrawal reflex and the graded shortening of the tentacles when all muscles of the tentacle 

are contracted (Prescott et al. 1997, for rev. Chase 2002). This is supported by earlier findings 

according to which the electrical stimulation of the olfactory nerve failed to induce bending of 

the isolated tentacle preparation but evoked contractions on the tip of the tentacle (Peschel et 
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al. 1996). In the isolated tentacle preparation the tentacular retractor muscle is cut from the 

columellar muscle (Peschel et al. 1996) thus the contraction of the retractor muscle is not able 

to withdraw the tentacle although the stimulation of the olfactory nerve evoked the 

contraction of the retractor and tegumental musculature. Therefore we suggest that motor 

outputs via the olfactory nerve play a role first of all in the withdrawal mechanism rather than 

bending of the tentacle.  

In conclusion our gross anatomical and neuroanatomical findings provide a basis to explain 

how the motor commands sent to the flexor and tegumental muscles via the PT nerves, 

generated by cerebral neurons and modulated by olfactory memory, can direct the movement 

of the olfactory organ to adjust the direction of locomotion in maintaining the perception of 

increasing concentration of conditioned odor during foraging. 

 

Acknowledgement: This work was supported by grants from the Hungarian Scientific Fund 

(OTKA No:K78224), the “Stiftung Reinland-Pfalz für Innovation” and the DAAD. 

 

 



 17 

 

 

Fig.1. Schematic drawing of a stretched, turned from inside out preparation of a posterior 

tentacle, the flexor muscles (M1, M2, M3) and their innervation. Retrograde neurobiotin 

tracing via the olfactory nerve (on), as well as the external (ePT) and internal (iPT) 

peritentacular nerves. Fibers labeled via the on (red) run through the tentacular ganglion (TG) 

and its digit (td) and form a common innervation pathway (red dotted areas) for the retractor 

muscle (trm), the tegumental muscle of the stem (st) as well as for the three flexor muscles 

(M1, M2, M3). Fibers labeled via the iPT nerve (green) reach the tentacle at its base and 

innervate the M1 flexor muscle and a ventromedial stripe of the stem (green area). Fibers 

labeled via the ePT nerve bifurcate before reaching the base of the tentacle. The ventrolateral 

branch (light blue) innervates the M2 muscle and the ventrolateral stripe of the stem (light 

blue area), whereas the dorsolateral branch (dark blue) innervates the M3 muscle and the 

dorsal stripe of the stem (dark blue area). Arrows indicate the direction of the innervation by 

the given nerves. 
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Fig.2. Representative examples of the innervation of the M1 (A), M2 (B) and M3 (C) flexor 

muscles as well as the tegumental muscle (D) via the olfactory nerve. Thick neurobiotin 

labeled fibers (long arrows) run in the muscles giving off side branches (short arrows) which 

innervate the muscles. Calibration bars 100 µm. 
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Fig.3. Representative examples of the innervations of flexor and tegumental muscles via the 

peritentacular (PT) nerves. Neurobiotin labeled fibers (long arrows) innervate (short arrows) 

via the iPT nerve the M1 flexor muscle (A) as well as a stripe of tegumental muscle (B). 

Labeled fibers (long arrows) innervate (short arrows) via the ePT nerve the M2 (C) and the 

M3 flexor muscles (D) as well as a lateral and a dorsal stripe of the tegumental muscle (E). 
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Fig.4. Representative examples of parallel retrograde Co-lysine (orange) and Ni-lysine (blue) 

tracings via pairs of nerves innervating the flexor muscles. A Parallel tracing via the olfactory 

(orange) and the external peritentacular nerves (blue) revealed several labeled groups. Among 
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them in the g4 group the neurons labeled via the ePT nerve (blue) are located under the 

neurons labeled via the olfactory nerve. In the g 4 and g5 groups one-one large neuron (stars) 

labeled via the ePT nerve can be seen. B Parallel tracing via the olfactory (orange) and the 

internal peritentacular nerves (blue) shows that neurons labeled via the iPT nerve are located 

among the neurons labeled via the olfactory nerve. The large neurons (stars) in the g4 and g5 

groups are labeled also by the iPT nerve. C Parallel tracing via the ePT (orange) and the iPT 

nerves (blue) shows that in the g5 group the Ni-lysine labeled neurons (blue) are separated 

and located over the Co-lysine labeled neurons (orange). D On the dorsal surface of the 

mesocerebrum (MC) in the g3 group neurons (pink) are labeled via both the iPT (blue) and 

ePT (orange) nerves. MtC3 and the arrow show solitary labeled neurons. E Schematic 

drawing shows that neurons labeled via the olfactory (red), the internal (green) peritentacular 

(iPTn) and the external (blue) peritentacular nerve (ePTn) are clustered into eight groups (g1-

g8) in the procerebral (PC) mesocrebral (MC) and metacerebral (MtC) lobes of the cerebral 

ganglion. Left side shows the ventral surface whereas the right side shows the dorsal surface 

of the right cerebral ganglion. cbc cerebro-buccal connective, cpc cerebro-pedal connective, 

cplc cerebro-pleural connective iln inner lip nerve, mgc metacerebral giant cell, mln medial lip 

nerve, MtC3 identified neuron (Cottrel et al. 1983) oln outer lip nerve,  
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Fig.5. A Schematic drawing showing the three flexor muscles (M1, M2, M3) anchored to 

different sites at the base of the stem (circles). The M1 is fixed to the base of stem at 

ventromedial position and is innervated by the iPT nerve (green). The M2 muscle is anchored 

at external ventrolateral position and is innervated by the ventral branch of the ePT nerve 

(light blue). The M3 muscle is anchored at dorso-lateral position and is innervated by the 

dorsal branch (dark blue) of the ePT. The anchoring points of the flexor muscles outline the 

directions of three force vectors (red dotted arrows) generated by the contraction of the flexor 

muscles. B Schematic drawing showing the innervation of the protracted tentacles by the iPT 

nerve (green) as well as the ventral (light blue) and the dorsal (dark blue) branch of the ePT 

nerve. The posterior tentacles are in the basic upright position. Red arrows shows the typical 

positions of the tentacle generated by the contraction of M3, M2 and M1 flexor muscles 

during foraging behavior which includes locomotion (i), exploration (ii), perception of 

conditioned odor (iii), and food approach (iv).  
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