6. Mathematical Models of Soil
Salinization and Alkalization
Processes

6.1. Modelling of salt exchange between soil phases

The change in salt concentration of the soil solutions and the solid phase
is a consequence both of solute migration along the profile and the vertical
redistribution of compounds due to inter-phase exchange. The mathematical
approaches to the salt interaction between phases in a definite soil volume
scem to be one of the main problems in the modelling of soil salinization and
alkalization. The mathematical description must be based on a bhasic know-
ledge of the physico-chemical processes in the soil and of the rules which
govern them (See Chapter 5).

One of the starting points should be the conclusion formulated by
GeproIrz [1906] about the effects leading to changes in the composition of
soil phases, which result in a shifting of the soil system from its initial state
to a quasi equilibrium one, depending on the conditions and the related kinetic
laws. With reference to the soil system GeDROITZ [1906] wrote: *“ . . . the study
of the soil system should start with the investigation of the composition and
concentration of the soil solution of individual soil specimens in the equi-
librium state . .. Secondly, it is necessary to study the kinetics of soil pro-
cesses, and the influence of various factors affecting it”. This statement should
also be a starting point in modelling the changes in the distribution of salts
in the soils.

The composition of soil solutions and solid phases ig influenced by abiotic
and biotic factors. The extent of the effect caused by the abiotic and biotic
factors and their relationship to one another depend on soil properties and the
depth at which the soil layer under consideration occurs.

When modelling the changes in the salt composition of the soil system
the two groups of factors mentioned above can be described separately. After-
wards, their joint influence must be analysed. A model which takes into account
only the effect of abiotic factors provides an opportunity to approach a de-
scription of real situations. The less liable a given soil volume is to the effect
of biological processes the more accurate this will be.

In order to model the ahiogenic effects in the soil processes, let us assume
the soil volume to be a physico-chemical system composed of solid, liquid and
gaseous phases. In this model the liquid phase is taken as an aqueous solution
containing calcium, magnesium, and sodium chlorides, sulphates and carbo-
nates, and carbonic ‘acid. As regards the pgaseous phase of the soil the
model will be concerned only with the transter of compounds from the soil air
to the solution and back. Among the compounds of the solid phase participat-
ing in salt exchange with the solution, crystalline caleite (CaCO,), gypsum
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(CaSO, - 2H,0) and the organo-mineral soil adsorbing complex (SAC) are con-
sidered. The digsolution of the compounds of SAC in the solution and the cat-
ion exchange capacities of calcium carbonate and gvpsum will be neglected. A
description of ion exchange equilibria in the system involves a material
balance equation for each component of the system. The material balance
together with the ratio of equilibrium concentrations form a model which
assumes the independence of the given subsystem in the soil: apparently these
factors are responsible for the fact that the behaviour of the subsystem is
unaffected by other processes.

The coneentrations (in kmole or kg-ion per m3 of the solution) of the
elements of the system in solution will be given by the symbols:

Ccar Cmg: CNa» Cci €50, CHCO,» €COyr CoH» CH» CHyco, AN Cipo

To express the content of the elements of the system in the soud and
gaseous phases of the soil their amounts will be related to a determined soil
volume containing a unit volume (one m3) of soil solution. The content of
calcite and gyvpsum is given by the svmbols cZo, and c§o, (kmole/m?), the
content of adsorbed cations as ¢&, , ¢k, (kg-ion/m3), and that of carbon dioxide
and water vapour in the soil air by cfp, and cf,o (kmole/m3), respectivelv.

In the material balance equations the following symbols are used:

— total quantities of Ca?*, Mg2*, Na*, Cl- and SO}~ jons in a soil
volume containing a unit volume of soil solution (m3): gca, Gy Inar g1 and
#so, (kg-ion/m? of soil solution);

- total quantities of elements: hydrogen gy, carbon g., bound oxygen
go within the solid, liquid and gaseous phases (H,O, OH—, H*, S03-, HCO,,
CO3-, H,CO,, gypsum, calcite) in a soil volume containing a unit volume of
solution (kg-atom/m?).

As was mentioned earlier, for the purpose of the given model the SAC
compounds are examined only in terms of their cation exchange capacity and
their constituents are not included in the g values.

So, a system of equations is constructed indicating the relations between
unknown concentration values in equilibrium.

The amounts of compounds which are part of the various phases of the
system will thus be connected with each other by the following material
halance equations:

fca = Cca + ¢ + Co, + o, (6.1)
Img = Cmg T Chg (6.2)
Ina = Cna T g (6.3)
gso. = Cso. T 5o, (6.4)
fc1 = Cei (6.5)
gu = eu + Ccon + 2¢u.co, + 20u,0 + 20kh,0 + Cuco, T 4cko, (6.6)
gc = co, + Cu.co. T Cuco. + Cco, + CEo (6.7)

Jo = Cou + Cu,0 + 0 + 3Cu,co, T+ 3cco, + 3cto, +
4 2¢fq, + 6cdg, + 4cso, + 3cnco, (6.8)
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Combining the equations (6.6) —(6.8) the following equation is produced:

Tu = gu — 2(90 — 4¢s0,) + 69c = cu — Cou + 2¢H,co. T
+ 23%0, + Cuco, (6.9)

In media having neutral or alkaline reactions the CEC value of the soil
adsorbing complex can he given as:

2{ea + chsg) + oha = S (6.10)

In connection with the description of the equilibria of salt exchange reac-
tions in the systems, it appears that in the system under investigation, carbon
dioxide of the soil air dissolves reversibly in the soil solution according to the
equation:

€0, + H,0 = H,CO0,

In the equilibrium state, according to the HENRY law:

.
K= 9HCO0 oot (6.11)
DPco,

In the following, for the description of the equilibrium state, thermo-
dynamic activities are used. At 25°C, the value of HENRY's constant is:
3.38 - 10— 2 kinole/m® atm. [Apams 1971]. If peo, = partial pressure of CO, in
the soil gaseous phase, then:

]
Deo, = 244+ ¢go, ——
e— 0
where 0 = the volume of the interparticle solution in a unit soil volume
£ = total porosity of the soil volume
24.4 = the volume of one kmole of gas under normal conditions

{atm. m¥kmole)
Taking 6/¢ = constant:

1 .
cHzCO: = 24‘4 K{ C%Oz ? PR ‘Kl cIéO: (6 12)
SR | .

Carbonic acid dissociates reversibly in the solution in the following way:
H,CO; == HCOy + H*
HCO, — CO3~ + H*

The thermodynamic equilibrium constants of these processes can be de-
scribed in terms of activities:

Oy * AHCO,
Ky, =—H —HCh (6.13)
O H,CO»
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B, e ET, (6.14)
Arcos
The numerical values of the constants are available in the work of
HarNeD and Davis [1943]: K, = 4.45 - 10-7, and HARNED and SHOLES [1941]:
K, = 4.69 - 10-11,
The water dissociation equilibrium in the solution can be described by
the equation:
H,O—=—=H~* + OH-

The activity product of water has a value of 1.0 - 10-14;
Ky = ttytoy (6.15)
Calcite dissolves according to the following equation:
CaCO; + H,CO, 7= Ca?*t 4+ 2HCOg

2
£} 45
— Ca HCO
Keoco, = —— 0 (6.16)
AH.COs

The value of Kcaep, i8: 4.24-10-° [Apans 1971)]. The dissolution of
gypsum can be given by the following equation:

CaS0, - 2H,0 = Ca%* + S0I- + 2H,0
Kg - aca * QSO‘ N a?_ho (6.17)

where K is the solubility constant of gypsum, and its value is: K, = 2.5 - 10~%
[LATIMER 1952].

As a first approximation the water activity in the solution, ay,g, is
equal to unity.

Ton exchange hetween salts in the solution and the adsorbing complex
follows the equations:

& =
2 CNa + Cea v cf::a + 2cNa
e e
Cta + CMg ¥ CMg i~ Cca

A great variety of equations to describe exchange isotherms have been
proposed by different authors [KErr 1928; VaxseLow 1932; Garox 1934;
Nixorskxy 1941; KrisuxaMoORTHY and OVERSTREET 1950; Borr 1967;
Davis 1950].

The most general and thermodynamically most appropriate of these are
the equations of VaxsErLow, NikoLsxky and GapoN. Their authors adopted
different approaches in order to describe ion exchange mechanisms [Srosito
and Marricon 1977].

There are several approximations applying the above-mentioned equa-
tions to describe the cation exchange isotherm within a narrow salt concentra-
tion range in the aqueous phase of the system, or for other defined conditions
of the cation exchange processes. The same is the case for the characterization
of the sorption isotherms in soil-water systems.

The choice of a given expression to describe the ion exchange or sorption
equilibrium assumes the necessity of comparing the results of modelling with
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the test data. An example to illustrate this is the mathematical description
of the co-transfer of the chlorides of Na and Ca in the soil core. Let us con-
sider the following three equations for the deseription of ion exchange in soils:

K, “Ne — Sva (6.18)
Ceca Sca

K, . Na _ SNa (6.19)
Veca  Sca
l'ena 1 8ca

where sya, Sca = exchangeable cations, kgeg/m?® of soil.

The constants K, K; and Ky were all calculated from the same data
which refer to the concentrations of the given ions in the solution and on the
exchanger (Fig. 6.1a), with an almost identical degree of approximation. Vary-
ing results are obtained from computations on experimental data using a model
involving only convective transfer and one of the equations (6.18) —(6.20)
(sce Fig. 6.1b). In fact, the differences persist even if the description of solu-
tion transfer becomes more complex. Thus the choice of an isotherm equation
proves to be a component of the modelling procedure. The suitability of the
description of an exchange isotherm to any particular equation, can be con-
trolled with the méan-root-square method by determining the deviation between

0SS b)

Sodiurm percentage
i the solution

Fig. 6.1
Na—Ca ion exchange curves in the soil based on different cation exchange equations: a)
equilibrium conditions, b) water migration in profile. 1. estimation for isotherm (G.18), 2.

estimation for isotherm (6.19), 3. estimation for isotherm (6.20), 4. experimental data.
D.8.8. = degree of sodium saturation
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the measured and calculated values of the exchangeable cations. When this
deviation is comparable with the standard deviation of the test data, the
equation can be considered as a reasonable approximation to the description
of the ion-exchange process under the given conditions. A better agreement
between the calculated and test data may be achieved by including additional
terms in the applied equations [CArRLsON and BucHawaw 1973]. When using
any of the isotherm equations, problems arise connected with the caleulation
of the ion-activity coefficients in mixed salt solutions. The DEpvE and HUCKEL
equation can be applied for the calculation of ion-activity coefficients only
at low ionic concentrations. In recent vears, better approximations have been
developed for the activities of compounds in concentrated water extracts of
soils [Woop 1975; Daras 1977]. These approaches have made it possible to
check the applicability of the VANsELOW and the N1goLsKY equation more effi-
ciently. The polydispersed and multi-componential character of the soil absorb-
ing complex may cause high variability in the values of cation selectivity
coefficients in the case of any of the known equations. Semi-empirical equations
and some methods based on the theory of similarity and dimensions may
be useful in such cases [SEpov 1957]. The theory of dimensions primarily
requires all the significant parameters describing the process (phenomenon)
studied to be taken into consideration. In the case of Ca-Na exchange these
are: 0, cnar Coar Sna a0d Sep. Where: 6 — moisture content (m® solution/m3
soil). It is necessary to give the dimensions of all the parameters and identify
those which are independent.

In the present cage the dimensions are: [¢] = kgeq/m3 solution, [s] =
= kgeq/m? soil, [f#] = m® solution/m? soil. Independent dimensions are those
which cannot be obtained from each other by multiplication or division. In
the present example [¢] and [s] are independent, while [6] is dependent.

The theory of uniformities requires the use of the so-called ‘/I-theorem”
which is the following: “If a phenomenon is characterized by n parameters
and £ of them possess independent dimensions, it is enough to build dimen-
sionless complexes and study the relations among #» — k& of them.” In the
present case n = 5 and £ = 2; therefore the ion equilibrium isotherm should
be an equation including three dimensionless complexes. For such complexes,
let us take:

X = CNaI(Céa + ¢nals Y = snaf(8ca + Sna)s

_  SNatSca
6 (ena + Ccca)

As an example let us check whether or not equations (6.18) — (6.20)
provide a connection between the complexes.

From (6.18), we obtain: K; = 1 ;(X - YY T o
- TY—YV]; , Where €' = ¢y, + Cep If instead of K; the dimension-

less value: K% = Kg V% is examined, where S = sy, + Sca, the equation
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o — f‘;i
1—¥ X

of Kg differs only slightly from the variability of K; (the variation coefficients

£z Y

/g T

does in fact connect X, ¥ and . The variahility

are 52%, and 549, respectively). From (6.20) we deduce K N] lf_l;iY ;

yi=x

1 Y J1-X
V1i—-%¥
found to be fairly similar (49Y%, and 449%).

Thus, equation (6.18) is a relation only between X and ¥ but ignores
the dependence on E. This may perhaps account for the higher variahility
of Ky (72%,) and for its pronounced distribution asymmetry. Modifving (6.19)
and (6.20) slightly by introducing factors with somewhat lower variability an
equation giving a relation between X, ¥ and ¥ is reached. The high variability
of the constants suggests the necessity of designing a better approximation.
An analysis of the connected values of X, ¥, ¥ and K% leads to the identifica-
tion of the dependence of K on £ and ¥ and gives the function K% =
= ynE"37Y %5 The isotherm equation can be expressed as follows:

6C Vcca Sca
The variability of the coefficient , of the isotherm is significantly lower
than that of K%; the variation coefficient is 239, and the average is: 0.251.

’

Giving more attention to K% = Ky /6 than to K%, K =

is obtained. The variabilities of K, and K% were

~—

*/0

K3, is a selectivity coefficient of the adsorbent for Na, since

N
at constant X. The dependence of K} on E, ¥ proved that soil selectivity
to Na increases as the total ionic concentration of the solution decreases and
it also increases with an increase in Na saturation. This is in accordance with
the results published in the literature [DaraB and REprLy 1967]. If the iso-
therm equation is to be developed, attention should be paid to other factors
related with ion exchange.

In our mathematical model the GaPox equation has heen applied for the
description of cation exchange equilibria:

IK4 ANa - cqua s KS . lea _ C&a (621)

VraCa + a‘Mg C%a + Cfe\ﬁg aMg Ci‘!.g

The mathematical model of physico-chemical equilibrium in the soil sys-
tem is based on equations (6.1)—(6.17) and (6.21).

The applicability of individual parts of the model has been verified for
simple systems. For example, the uses of physico-chemical functions relating
to particular soil factors were demonstrated by Darae and FerENcz [1969]
for ion-exchange equations; by MURATOVA, PAcHEPSKY and PoNizovsky [1977]
for an interpolation applied to the description of gypsum solubility; by
Naxavama [1971] for the solubility equation of calcite in salt solutions. In
natural soil conditions there are probably complications due to changes in
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the solid-phase properties, the aggregation state of the components, porous-state
geometry and solid-liquid phase interfice. The suitability of each model has
to be controlled by carefully conducted experiments.

In order to solve the equations (6.1)- (6.7), (6.9)  (6.17), and (6.21) of the
model it is necessary to complete them with relationships for the caleulation
of the thermodynamic activities of the solution components, There are precise
methods available for the caleulation of ion activities in o wide range of soil
solution concentrations and compositions [GARRELS and TroMsox 1962; Woobp
1975; Dara® et al. 1977). Good examples for sodium ion were demonstrated
in the previous Chapter. The use of the methods mentioned is possible, of course.
But we realise that the model set up is only the first approximation and dur-
ing the process of comparing predicted and experimental values it will hecome
more complete and complicated in all its components. So as a first step it is
assumed that:

0.509 Vit

lgy = a2 [——— .
1-+r- [,u

~bu (6.22)

This equation gives the dependence of lg ¢ on the ionic strength of the
solution:

p="0.5 [4 (cca + Cmg + €50, T €co,) + €na =+ Cc1 T Cheo, T Cu T COH]-
In equation (6.22) z = the charge of the ion, while » and b are constants.
If = is denoted as:

0.500 } &

—_— + by

x=z(p) =10 1+r- Vs (6.23)

hen, according to (6.22):

P = %% (6.2-][]

In order to estimate an error in the caleulation using cquation (6.22),
experimental data on the mean ion activity coefficients of the salts, 3., must
be used. By definition,

1
Yo = (L - pL)Re - (6.25)

where p.. n. and y_, n_ are individual activity coefficients and the number
of dissociated cations and anions respectivelv. According to the demand of
electroneutrality, combining the equations (6.24) and (6.23) we obtain:

Yo =% i
From the equations (6.23) and (6.24) it follows that the values of p 2+~
for different electrolytes should be identical funections of the ionic strength.
!
The values of y, 2+3~ calculated from the data on activity coefficients
of some salts [VOzNESENSKAYA and MIRULIN 1968] are shown in Figure
6.2. Even though the functions for the salts studied do not fit each other,

the caleulated values never deviate from those determined from
1

experimental data, y #+#~!, by more than +10 percent. The calculation was
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carried out by the same function of z with » = 1.075, b = 0.0536 and using
equation (6.24). Within such an error it can he assumed that equations (6.23)
and (6.24) determine the individual ion activity coefficients. The difference
hetween the numeric values of molar and molal concentrations never exceeds
2 -3 percent, up to 2 mole/l concentration for the salts studied. When com-

o4 @ NaCl
€ MgC12
10 L Mgs0,
2 CaCly
oe * NeySO,

S
L
x

o 02 04 06 08 10
(lonic strength)”2

Fig. 6.2 1
53 5 ; s g . ; N _ i3
Coefficients of ion activity of electrolytes in soils. o = yiiz* —, s = activity coofficient
of salt, z, and z_ = valences of positive and negative ions

puting the thermodynamic activities of the components of the system, the
molar, and not the molal concentrations were used in all the equations.
For the simplification the model variables are renamed as follows:

Uy = Ccas Us = Ciag Uy = Cs0,} Uy = CH.CO,*

Uy = Cpmg> Uy = Cas 19 = Cc1s U1y = Chs

U3 = CNaj U = €30,5 Uy = Cucoyt s = €0 (6.26)
'H"i == C%a; rMS — C’%Oa; w;12 — cCOa; ,Mlﬁ = G01‘1'

Because of the validity of (6.1) —(6.17), and (6.21)—(6.25), the equilib-
rium concentration values achieved during the interaction of soil phases will
be expressed by the following system of equations:

Jei = o (6.27)
Tmg = U + U (6.28)
na = Uy + g (6.29)
,,I_{“u_a =", g L=y (6.30)
al g +uy (g tus) Uy U
2wy + ug) +ug =18 (6.31)
gso. = Uz + Uy (6.32)
SKg if w,>0
T (6.33)

I gsol‘ if ’M;, = 0

9
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Uy = (foq — Uy — Uy — Uy (6.34)
= 0.5 [4ug + g + g + ) + Uy + wyg - wyy + wyy + ] (6.35)
o — 10 =509} 2(1+1.075] 1) +0.0536u (6.306)
ity = Kyutgg (6.37)

K. T2
—E =L (6.38)
% Uy
K, gty
=

(6.39)

2 Uy
ul .
[# - b if iy > 0
ilyg = KCaCD; (6_4[])

fo— Uqg — Upg — Uqg i Ug = 0

Je == Ug T Uy + Ugg + Ugy + Uss (6.41)
— = Ul (6.42)
“2

I = gy + g5 + sy — Wy + 20y, {6.43)

In view of the accepted methods for the caleulation of activity coetfi-
cients, the equation system (6.27) —(6.43) can be divided into two subsystemns.
With a known calcium concentration in solution u, and known ionic strength
w, the values of w,, ug, u,, 45 and %, can be obtained from (6.28)—(6.31) and
the values of u, and w, from (6.82)—(6.33), i.c. the composition of exchange-
able cations can be computed together with the content of Nat, Mg?+ and
SOf~ in the solution. Tt is also possible, for the same values of uy and g, to
obtain a,y, w, 45, ¥y, Uy, w5 and ug from equations {6.37)--(6.43), i.e. the
distribution of carbonates and hydrogen between the soil phases.

The construction of this equation system makes it possible to compute
the u, and u values using non-linear programming methods to carry out a
search for the values of u;, u whereby the right-hand side of equations (6.34)
and (6.35), which were computed after the system of equations (6.27)— (6.33)
and (6.36)—(6.43) had heen solved, differ little or nothing from the adopted
values: u,, u.

Among the parameters of the model deseribed alove, the constants of
dissolution and dissociation: K, K,, K, Koo, and K, arve taken from the
literature: )

— equilibrium constants for liquid phase, gaseous phase and soil adsorh-
ing complex interactions, ie. K, K,, K, respectively, are to he calculated
from experimental data;

— values of g are to he determined from standard soil analvses.

The following components of the model must be analytically determined:

— concentrations of Na, Mg, Ca, Cl, SO, and HCO, ions in the soil
solution;
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- pH of the soil solution;
exchangeable cations and CEC value;
gvpsum and CaCo, content in the soil;
s0il bulk density, moisture content and porosity;

— (0, content in the gaseous phase of the soil.

With these data the dependence of the salt solution densities on the
ionie strength mayv be caleulated using the following equation: g = 1.000 -+
- 0.032 p and it is possible to calculate successively: gear me INar 50,0 e
and 8 from equations (6.1)—(6.5) and (6.10), ¢y,co, from equation (6.13),
céo, and K| from (6.12), ccq, from (6.14) and epy from (6.15), then g, gy and,
finally, K, and K from (6.21).

In the following some examples are given of how the model can be used
for the description of salinization and alkalization, The computation deals
with the change in the salt composition of the phases in a soil volume due
to the percolation of leaching or ground waters. The well-known method
which was used by Mivasuixa [1972], Finep [1972a], PACHEPSKY and
Porova [1972] for routine land-improvement computations is applied for the
early stages of the leaching of saline soils. The method is based on a special
conception of the plate model theory. The soil column is considered to be sub-
divided into a number of layers. For every layer the percolating soil solution
substitutes some proportion of the equilibrium soil solution and a new equi-
librium of salt exchange and dissolution is reached. So the continuous pro-
cess of percolating is replaced by a series of discrete steps along the soil
column. The soil solution volume to be substituted at each step by the percolat-
ing solution is defined by the authors as the difference between the total moisture
capacity and the field moisture capacity. Obviously, the model described
above may be suitable for such caleulations. Indeed, each step represents
a change in easily definable values such as the difference between the concen-
trations in the equilibvium and percolating solutions multiplied by a factor
“F”, which meansg a ratio of the effluent and the existing solution volume of
the column laver. The constants in the model never change from one step to
another and the new steadv-state condition can easily be calculated.

We shall now consider the description of changes in the salt composition
of soil phases during salinization of a chernozem sample with a solution having
a total salt concentration of 5.27 g/l and a salt composition characteristic of the
ground waters in long term irrigated areas [MorGUN 1976].

The basic data are given in Table 6.1 and the results of the calculation
are represented in Figure 6.3. The abscissa represents the quantity of the so-
lution percolated through the soil sample. The total soil moisture capacity has
been taken as the unit for the quantity of percolating solution, as is recom-
mended by Paxiy [1968). On the vertical axis the concentrations of the com-
ponents in the soil system are given,

It is clear from the figure that first the chloride and bicarbonate con-
centrationg increase gradually as the degree of salinization in the soil system
increages, but then remain at a constant level.

At the beginning of the percolation of the saturating solution, the
sodium concentration is close to zero, due partly to the exchange of magnesinm
and partly to calcium-sodium ion exchange reactions. As soon as the soil ad-
sorption complex becomes saturated, mainly with sodinm, the concentration
of the sodium ion abruptly increases.

Ox
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Table 6.1

Initial data for modelling salinization and desalinization processes

Initial composition of soil solution in the samples mefl

Process e S -
| oo | HOO; | sop- | o | e g | Nt
I ey s e ‘ e e ‘ .
Salinization 0.00 ) 2.85 | 2.39 | 1.84 | 6.37 | 1.09 0.03
Desalinization 0.00 |  8.00 ’ 14.20 ‘ 18470 | 3800 | 50.50 68.40
Exchangeable cations 80, CO, | Total
o mef100 g gypsum carbonate : ’;;“}')‘Ez‘_:;
Ca2+ ; Mg+ I Na+ | %
Salinization 15.00 | 3.00 J 1.00 | 0 ‘ 2.5 | 45
Desalinization 3.45 ‘ 7.25 2.30 ‘ 5 ‘ 2.5 | 40
T S Con;p;;itigﬁ_;f i:erca[@ 7s;luti<;n-, r_ne,-fl o o B
Process
cor | BCO; | sor | a- | e Mgt | e
Salinization ’ 0.00 1 5.71 ‘ 53.96 i 20.60 ’ 10.28 ‘ 18.36 ‘ 51.63
1.52 ‘ 1.20 i 1.08

Desalinization [ 0.32 ‘ 1.44 ‘ 1.66 ‘ 1.80 ‘

2-
SO, (gypsum)

cations
me/gsoil o
i gypsum '
lon cencentration
me/|

0 2 4 & & 10 27 0o 2 & & & w1 12 07

Fig. 6.3
Results of calculations of the salinization of the soil layer, influenced by the transport
of mineralized water. IT = ratio of the amount of leaching water to the field moisture
capacity
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The calcium concentration changes in an opposite manner and reaches
its maximum value right at the beginning of the treatment. Its concentration
corresponds in all probability to the solubility of gypsum under the existing
matrix effect of other components in the solution.

After the saturation of the solution with caleium, the latter precipitates
in the form of gypsum. The concentration of the calcium in the solution grad-
ually decreases, in spite of the influx of calcium with the percolating solution
and the sodium-calcium exchange process.

The variation in sulphate ion content is similar to the change in the
calcium concentration at the beginning of the process. After the solution is
saturated with gypsum, the sulphate content still increases and then the rate
of the increase declines.

The value of the magnesium concentration reaches the maximum within
the studied range. This effect may be explained mainly by sodium-magnesium
ion exchange, and the movement of the solution.

lan concentralion Exchangeable
me/l cations
me/g soil

012

010+

0.08+

006+

0.04+

0.02
Na®
0 T
8] 2 4 6 11
Fig. 6.4

Calculated ion concentration of leaching water in sulphate-chloride-containing saline
soil. IT = the same as in Fig. 6.3.
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The pH of the soil solution during the sample salinization stabilizes
quickly at the pH value of the salinizing solution.

The other group of calculations is made on the changes in the salt composi-
tion of the soil phases during the desalinization of a meadow saline aren (solon-
chak) with a slightly mineralized solution (0.29 g/1), the composition of which
approximates to that of the irrigation waters used in the steppe region. The
original data regarding the soil composition are given in Table 6.1, and the
results of the calculation are shown in Figure 6.4.

It is clear from the figure that the concentrations of all the components
in the system in the interparticle solution gradually decrease, as they are
leached with a weakly mineralized solution. The calcium ion concentrations,
and perhaps also those of sulphate, change due to the change in gypsum
soluhility as the composition of the salt solution changes. The concentrations
of other ions drop to the level of their concentrations in the leaching solutions.

The solubility of gypsum is influenced by the “desalting” effect of sul-
phate ions.

When gypsum dissolves, the equilibrium between calcium, magnesium
and sodium ions shifts in favour of Ca?* ion adsorption.

The leaching solution has a higher pH than the initial soil solution of
the sample; this can be proved by the ratio of CO, and HCO, concentrations
in these solutions, and is due to the fact that the pH of the soil solution rises
during the leaching process to a value of about 7.3.

Thus, the model constructed offers a way of deseribing basic modifica-
tions in the equilibrium salt content of the soil during the percolation of solu-
tions. In the same way the process of salinization can be studied when salts
accumulate in the sample as the salt concentrations increase due to the change
in the soil moisture content.

The real process of salt exchange between soil phases, from the initial
to the equilibrium state, can be described in a model which simulates the kinet-
ics of soil processes. A knowledge of the parameters of the system in the initial
and equilibrium states is necessary if a proper kinetic model is to bhe con-
structed. For this purpose a good understanding is needed of the relationships
between each of the parameters playing a role in the exchange between the
phases. Of the processes mentioned above, ion-exchange is the quickest one,
CO, dissolution is somewhat slower, and the dissolution of gypsum and carbo-
nates proceeds at the lowest rate. There are few data in the literature relating
to the kinetics of the exchange processes even in the case of very simple systems
and the explanations of the experimental data published by different authors
are contradictory.

The application of some approximate kinetic functions is one way in
which salt interaction models of soils can be put to practical use. The
example given below describes a model often used to study the kinetics of
ion exchange or the sorption process.

A fairly convenient equation which connects the rate constants of the
processes with the parameters of the system is as follows [BowEr et al. 1957]:

o
a_:f =k, p(s9—s)) (6.44)
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where j is the number of migrants; ¢ is a function indicating the availability
of the exchanger surface to the jons of the solution, ¢(0) = 0; £, is the rate
constant of the exchange process and sf is the equilibrium concentration of
the adsorbed components.

Similar ealeulations have heen earried out quite often with the following
approximations [LaPits and AmupsoN 1952; LinpstroMm and BoErsMs
19717

k, = const. g(s? — 5) =80 — ¢ (6.45)

Opwsox et al. [1970] criticized this method of calculation in the case
of sorption. They pointed out that k, was never constant but decreased as
the svstem approached the equilibrium state. A similar approach was given
by Darar [1974] for ion-exchange. The author proved that the ion exchange
process consists of partial processes with rate constants of different mag-
nitude. Until now neither the function £, nor ¢ has been defined in a suf-
ticiently broad range of the parameters of the system for any one of the mi-
grants. .
7 Tn the study of the movement of the solution at a fairly low velocity of
percolation the time required for reaching an exchange or sorption equilibrium
7, < LjQ (I, = the depth to which the solution infiltrates, @ = the volume of
solution percolated through a unit cross section per unit of time). In these
circumstances, the hvpothesis of instant ion exchange (or sorption) may be
adopted:

A N _
s;=s) and —I= 2‘—— & (6.46)

where ¢, (i =1, 2,... N) is the concentration of migrants in the solution,
and V is their quantity. A calculation method is proposed for the case when
a part of the migrant is adsorbed instantly and the adsorption of the remainder
proceeds more slowly. Then:

o N a0 op.
Do BT @ s) (6.47)
ot i=1 (:‘Cr- ot

In general 57 differs from s} [CadERON and KLuTE 1977]. An appropriate
model seems to be the equivalent of a model with instant sorption, which
takes into account the mass-exchange in the moving solution and that of the
dead-end pores.

What has been said above suggests that a mathematical description of
ion exchange and sorption should include a definition of the functions sj (¢;,
Car o oy C)s P(2)s Ko (83, 83+« s 8pms €1y Gy v+ o5 Gag) With §=1,2,..., M, where
M is the quantity of migrants capable of remaining in the solid phase.
The function s for the case of & mono-ionic system may be expressed directly
from the equations of the sorption equilibrium isotherm, and for ion exchange
and multi-ionic sorption, from an equation system which consists of ex-
change equilibrium isotherm equations and assumes the constancy of the CEC
value: X's; = 8.

For the exchange Na (i,7 = 1) — Ca (i, 7 = 2), for example, the func-
tions involved, s%(c,, ¢,), can be obtained from isotherm equations (6.18) —(6.20)
by the elimination of s§ = § — s}.
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6.2. Synthetic models of solute migration in soils

The ion and salt distribution in the soil is the result of several processes.
If this system of interrelated and interacting processes is to be described
mathematically, knowledge about only some of the processes, data relating
to them, is not sufficient.

Therefore mathematical models in soil science alwavs include several
main processes, which determine the phenomenon under consideration. How-
ever, very often one cannot say @ priori, what processes should be a sufficient
approximation of the whole system of processes. Then the description of the
phenomenon may be approached by creating a sequence of models. At each stage

1. the processes assumed to be the main ones are selected,

2. mathematical models which are in accordance with the experimental
conditions, are selected to deseribe them,

3. constants are determined in the models constructed,

4. a synthetic model (SM) is constructed from the models of the separate
processes [ANOKHIN 19747,

5. the system of SM equations is solved.

If there is satisfactory agreement between the measured and calculated
values this means that the selected processes really are the determining ones
and the modelling may be considered to be complete. If this agreement is not
reached, then the next stage of modelling starts, with a return to point 1, and
the inclusion of more processes, ete. The same phenomenon may be described
by several different SMs as it depends on how the processes under considera-
tion are selected [PacuHEpskavA ot al. 1976].

Below, one-dimensional flow will be considered. The vertical coordinate
is the direction identical with the direction of macroscopic filtration in the
solutions. Tt is assumed that all the relations of the models can be defined
by the mean values of the parameters given in terms of profile cross-section,
which depend only on coordinate x and time ¢. The parameter distribution
in the profile cross-section area will be ignored. When the variability of the
parameters in the cross-section area is not too high, the one-dimensional hy-
pothesis works quite well.

The starting point to construet the SM of galt migration in the soil may
be a differential equation — an expression of the law of material halance in
the liquid phase of the scil:

O S 3 5 (6.48)

of aa
where: m! is the mass of migrant in the solution per unit soil volume, J is
the flow of the mass of migrant per unit of time per unit of cross-section area,
perpendicular to the x-axis, and I is the mass of migrant entering into the
interparticle solution of a unit of soil volume per unit of time. Synthetic
models set up on the basis of (6.48) are the subject of mathematical chroma-
tography.

The equation (6.48) is derived from the analvsis of the material balance
of the migrant in the cylindrical volume of soil of a finite thickness dx during
time period A¢. The upper cross-sectional area of this cylinder is situated across
the a-axis at the point @, and the lower one at the point a + Ax, the vertical
axis of the evlinder corresponds to a, and the area of the column surface is w.
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The mass of migrant in the solution is equal to M'(z, a + Az, 1) =
x+dx

= 5 ml(&, 1) d5. Assuming that ! varies continously between @ and o + A,

X
it is possible to substitute the integral by the product of the length of the integ-

ration interval -l and the value of the subintegral function m!(§, t) at a certain
x+Ax '

point &, between x and « 4 /la, ie. § mt(E, £) dE = Axmi(&,, 1), ‘

= I ==

=27

sep

+ o, dx, 0<C o, << 1. Then M'(z, x + Az, t) = odam!(x 4 o 4w, t) and anal-

ogously M(x, a + du, t + ) = oAxml(z + o2, t + 2t). During the same
f4at

period of time Jf, a mass of migrant equal to o j Jla, 1) dr = oAt d (v, [+

1
-+ g,t) has entered the cylinder through the x-section, and wd(x + da, b -+

-+ g, t) has left the cylinder through the x + s section. And finally, a mass
z+dx t+At

of migrant equal to | d& [ del(§, 1) = odtdal(c + osda, t+ odl)

T t

has entered the volume under consideration. All values of o, (p = 2,3, ...,
6), like those of ¢, are between 0 and 1. The balance of the mass for the cylin-
drical volume is:

Mix, x + Az, t + At) — Mz, v + Az, 1) = odz[mle + odz, t + A) —

— mlfx 4+ oy dx, )] = odifJ{x, t + ogdt) — J(x 4 dx, t - 0 dt)] +

L odtdxl(x + oydz, t + ogdi).

Let us divide both parts of the equation by ot
mia + oz, ¢ + Af) — mix + oyde, b)

At

: _ L
_ S+ ) i](:c-{— Ax, 1 - gy At) + L+ 0,2 1+ o)
%

when At and Az approach zero, equation (6.48) will be obtained.
If the movement of N migrants is studied the use of & equations of
type (6.48) gives:

2ol :
Vdm‘,‘ — an + IJ, {j =], 2! S N) (649)
ot ox

where index § refers to the jth migrant. The equation system (6.49) is not com-
plete and should be supported with a function which makes it possible to
calculate J;, I

The values of I, are determined by the salt exchange between the liquic
and other soil phases, which can be determined using the model described in
the previous section. The equations to identify JJ; have to deseribe transport
processes in the soil interparticle solution. Under isothermal and electro-neutral
conditions, these latter include: a) transport by convection, Db) molecular
diffusion in the direction of flow, c¢) hvdrodynamic dispersion in the soil,
d) mass-exchange between the moving solution and that in the micropores in
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soil micro-aggregates and e) MOROZOV-type gravitation movements [Morozov
1956] due to solution density differences at various levels in the soil profile.
This process plays a role in seils with course structures (gravitation instabilit V),

In addition, solution transport is influenced by the effects of het erogenc-
ity in the structure of the soils: uneven packing of the soil column, the presence
ol macro-cracks and wall effect under the experimental conditions. In the fol-
lowing neither the uneven structure of soil column, nor the gravitation in-
stability due to density variations in different parts of the profile are taken

Fig. 6.5
Soil structure with the arrangement of agaregates. 1. pore volume zone filled with mobile
water, 2. micropores within maeroaggregates

into account during the study of solution movement [SOKOLENKO et al. 1976].
The soils differ from any other porous media in the heterogencous pore size
distribution of the aggregates (Fig. 6.5). As a result, an essential part of the
interparticle space inside the macro-aggregates (stagnant zone) becomes
saturated with solutions which are limited in their movement. In the case
of a high velocity of percolation, differences may arise in the concentrations
of migrant in the so-called transfer and stagnant zones. Tn this cage, the use
of a mean concentration relating to the entire interparticle space can be mis-
leading with regard to the quantity of adsorbed migrant. This is the case, for
example, with non-linear sorption isotherms.

Assuming, for example, that there are sodium and caleium ions in the
percolating solution, the ion exchange equilibrium can be given by the iso-
therm:

én &N ¢ SNa . -
G [_miz ,,M s Ko 22 = M with K = 0.7
l Cca Sca m Sca

(value typical for chernozem). Ty, + ¢¢, = éna + o = 0.1 kgeq/m3, sy, +
+ Sca = 8na 4 8cq = 0.22 kgeq/m3. The values for the transfer zone are ¢, §
and those for the stagnant zone, ¢, 5; cy,, cca are the concentrations in the
solution in kgeq/m?, and sy, sc, are the respective contents of exchangeable
ions in kgeq/m3.

Let us assume that the equivalent fraction of Na for the stagnant zone is

- = . é
X = :—Cmi, = 0.9 and that for the transfer zone X = —Na‘— = 0.98.
€Na T Cca CNa + Cea
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Assuming that the relation between the adsorption capacities of the two
zones 5/§ is equal to 2, we obtain 8y, = 0.044; 5y, = 0.056, syy = Sxa + Sna =
0.100 m;:ujjuna

Defining the value Sy, directly from the formula for the equation of
the isotherm, the formula is used for the entire interparticle space. The con-
centration value of Na is taken as the weighted mean for the whole interpar-
ticle space; the ratio of the contributions to porosity of the stamumt (&) and
transfer (&) zones will also be taken to equal 2. In this case, sy, = 0.108.
The difference hetween the real and calculated values is 8 percent, rmd IIFIRG
be still higher if §/§ > /¢ and if the value of the total concentration ey, + ccy
is low. Conditions like this are to be avoided. In the following a separate
treatment of the migrant concentrations in the stagnant and transfer zones
and that of the concentrations of exchangeable cations will be carried out.

The mathematical models of the transport processes in the soil were
obtained by the more precise application of the laws concerning the physical,
chemical and hydrodynamic processes in porous media. For instance, con-
vective transport is described by the convective mass flow of migrant JJ, through
a unit of the cross-section area, in the direction of the a-axis per unit of time:

J, = Q¢ (6.50)

where @ is the volume of solution flowing through a unit of the section area
per unit of time.

Molecular diffusion in the transfer zone changes to a macroscopic mass
flow of migrant in the direction of the x-axis. The expression for the .J, value
of this flow per unit of time through a unit of cross-section area is identical
to the equation of Ficx’s law:

L (6.51)
ax
where Dy = D, and D, are the values of coefficients of molecular diffusion of
a migrant in the soil and the solution 1'e.~apectivdv and A is the coefficient of
tortuosity, which is often taken to be equal to 2/3 [RoSE and Passioura 19717
The hydrodynamic di%pusinn obviously means the actual difference
between the rates of certain parts of the moving solution, which are under
the influence of solid wallg, limiting the flow region. The presence of the zone
of intraporous convection and its great influence on the porous media increases
the effect of hydrodynamie dispersion.
The effect of hydrodyvnamie dispersion is similar to that of diffusion.
Consequently, the model for the description of mass flow is similar to
that for diffusion flow [BEAR, Zasvavsky and Iraay 1968].

n

Fp= — B, 0 (6.52)
dx

The experimental data prove that dispersion D), depends on n dimensionless
parameter n = =<, D,, = fu(n} in porous media regardless of the aggregate
D, 0
structure. Where: U =
£

average aggregate diameter.

- the average velocity in porous space, o = the
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To express the above relations, several functions of f,(n) were formulated
theoretically and proved experimentally: f, = An, 4 = const. [ NTKOLAEVSKY
1959; CHURAEV et al. 1967; Passioura 19717 f, = 0.65 |'5/(1.0 + 7.0 |/n)
[Hrsy 1962]; f, = B |/, B = const. [Friep and CaMeArNOUS 1971].

Tor samples with different textures d, (k= 1,2,...,%), the d value
necessary for the calculations can be found using the equation

_
d= V = dipy
K=

where: p, = is the relative content of particles with average diameter d,
[Rose and Passioura 19717

The D, value is usually determined according to the relation bLetween
the filtrate composition and the volume of the effluent (break-through curve)
obtained by leaching with a solution of non-sorbing migrant. The experimental
break-through curve corresponded approximately with the SM, which included
only the convective, diffusive and dispersive transport zones and ignored the
presence of the stagnant zone. The value of D, however, was found to be
10 - 1000 times more than that determined from the f,() function when
« corresponded to the diameter of the macroaggregates [Racimov 1973;
ABDURAGIMOV 1973; Barox 1972]. Without taking into consideration the
polydispersity of the soil, agreement between the data cannot be achieved
by modelling the soil, or other porous media. Regarding the migration of com-
pounds in soils, the mass exchange between the stagnant and transfer zones
plays an important role. Three models were developed for the description of
the above-mentioned phenomena.

Passioura [1971] derived a model with an implicit deseription of the
mass exchange between the transfer and stagnant zones (Model 1). The whole
porous space is considered as a transfer zone, and the limitation in the flow
of migrant ecompounds due to the existence of micropores is simulated by the
ltroduction of a fictive flow determined by the gradient of concentration,
similarly to the diffusion flow:
=B (6.53)

o

Jo= —eD

where D is a “structural diffusion coefficient”. According to the results of

. Db

/

a value of 0.1, and D is the diffusion coefficient in micropores (D~ 0.1 - 0.01
D). Dy may exceed the value of D, 10—1000 times.

An implicit description by Model 1 is convenient because a separate
analysis of the concentration values in the stagnant zone is not necessary.
The solutions of SM equations for non-sorbing migrants were obtained by
standard methods [BRENNER 1962] and fairly simple methods have been
claborated to determine the combination of parameters D = éD, + éD, -
—+ &l required for caleulations with the SM [RosgE and Passiovra 1971;
Bricaam et al. 1961; Hasmimoro et al. 1964]. Good agreement was obtained

Rose and Passtoura [1971]: —-% = ~# - 52 where Df; is a coefficient with
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between the calculated and measured vertical distribution of a non-sorbing
migrant in the profile.

This approach can be applied for a sorbing migrant with a linear isotherm
of sorption (e.g. pesticides). If two ions migrate, and ion exchange oceurs,
the applicability of an implicit model is limited by the type of exchange iso-
therm [Lar and Jurinax 1972).

The second way of modelling the mass exchange between transfer and
stagnant zones (Model 2) is based on the determination of the I value, which
is the rate of the transport of a migrant mass from the stagnant zone to the
transfer one, within a unit of soil volume in a unit of time [Barow 1972;
BARON and Pranix 1974; Scorr and WARrIck 1974].

The diffusion transport within micropores can be expressed as follows:

a) a y-coordinate is introduced, perpendicular to the direction of the
main flow,

b) ¥ = 0 is the coordinate of the bo1dm between the micropores (dead-
end pores) and the transfer zone,

c) the pores of the stagnant zone are considered to be similar to each
other and to have the length R; at y = R, there is no mass transfer through

the bottom of the pore and the condition is il =0

Y _
ac  Da%

d) between the boundaries, 0 <y < R, the equation g T ob-
Y

tains.
The I; value is determined either as a diffusive flow from the stagnant

[
to the transfer zone: I, =@ D _6‘0_‘ , or as a flow due to the transfer of

Y |y=o
compounds on the border between the micropores and the transfer zone,
proportional to the difference between the corresponding concentrations:
I, = ok(¢c —c|,., where w = area of the dead-end pores and micropore
sections which serve for the mass transport and exchange between the zones
in a unit of volume, D = diffusion coefficient in the micropores, &k = a con-
stant chmractemzmg the rate of concentration equilibration.

The SM constructed on the basis of Model 2, including the determina-
tion of the ion concentrations in both zones, satisfactorily describes solute
migration [Scorp and WaRRIC 1974]. In order to give the concentrations, the
determination of three (w, D, R) or even four (@, D, R, k) parameters is neces-
sary.

The third approach (Model 3) has been described in the works of PHrrip
[1968], MiroNENKO and PacHEPSKY [1976] and others. In this case, mass
exchange between the zones is again modelled by the I, value. The details of
ion migration in micropores however are not taken into account. The average
coneentration of migrants in the micropores is taken, and it is agsumed that
the velocity of mass exchange is proportional to the difference between the
average concentrations in the two zones: I, = k(¢ -- ¢). The two unknown
parameters are: L and z. It is impossible at present to select « priori one of
the three above-mentioned approaches. Therefore, the choice of the model
for the description of mass transfer between the two zones, on the basis of
experimental data relating to non-sorbing migrants, is also included in the
above-mentioned successive approximation of modelling.
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The analysis and comparison of solutions to the SM equation system for
each of the models 1 -3, are possible with the methods given in the next sec-
tion. The analvsis needs time-consuming computation. IHere an analysis is made
of the propertics of the solutions, deduced by the application of model 8 to the
description of leaching in a thin soil layver when the solution of SM equations
allows a direet analysis. For a thin soil layver the mass conservation equation
takes the form:

i ;
B om 3 (6.54)
dt

where L is the thickness of the laver. The vertical changes in the concentration
of migrants in the layer should be ignored, the processes of diffusion and dis-
persion have no importance. ¢ is a known concentration of the influent; the
effluent concentration concurs with the mean concentration in the transfer
part of the whole layer ¢. In this case: the mathematical description of the
leaching in a thin layer of soil initially saturated with the solution of the non-
sorbing migrant is studied. Taking Model 3 for the description of the mass
exchange between the stagnant and the transfer zones, the system of S)M
equations will consist of two ordinary differential equations:

. de L de ] .
L|e - g-—|=—@Q¢ +Qc;
(_ dt * dt] #
é% s B l5 B B0} = 5(0) =rey (6.55)
After determining the dimensionless variables V — @, = kZ)L , and
: e
v = i it can bhe obtained from (6.55) that:
£
L B pra. U T, P9 sy o (azw)
14+» dV 1+v dV 14+92 dV

From the physical point of view, variable V represents the ratio between
the total volume of flowing water and the total water capacity of the soil.
The solution is obtained as a function of the amount of filtrate. Analysing
the solution of (6.56) for the ease when exchange between the zones occurs

: . . L 1 . )
more slowly than filtration, i.e. 5 < —or { < 1, then it is evident that:

5

£
.y ge—T(”") /¢ G (I =L )e-=DU+)V (6.57)

The equation demonstrates that the coefficient preceding V in the first
term is small (as { is small), and the coefficient before the first exponential
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funection is also small. In the second term the coefficients 1 S preceding
Jand the exponential function are close to 1. The exchange é according to
(6.57) will occur in the following wav. The rapid decrease of the difference
¢ — ¢ occurs at the initial stages of the leaching due to the rapid decrease
of the second term in the equation (6.57). The first term changes slowly us
the coefficient before the exponent V is small. Tts contribution at the initial
stage will not be perceptible, because the exponential function is multiplied
by a small coefficient. In the later stages of leaching the second term has no

® will he given by the first

Co— &
0
component, which is small as before, but its value diminishes more slowly than

importance and the main contribution to

A

that of the second term. The general picture of the changes in 2 (i and the in-

£y — &

fluence of values £ and v on the character of the curves are illustrated hy Figure

6.6a. They show that the process of leaching is clearly divided into two stages:

a rapid decrease in the quantity of migrant effluent in the early period and
a slow process at the later stages.

Regarding the experimental data, there are a lot of publications contain-

ing the results of soil leaching. Let us now consider the results of leaching

X}
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v=3 3 1 1
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Volume of filtrate to FMC Volume of filtrate to FMC

Fig. 6.6

Break-through eurves for a thin soil layer calculated according to Model 3. a) influence
of dimensionless parameters, b) comparison of calculated (A) and measured (B) break-
through curves
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in short columns (L = 6 cm) filled with disturbed samples of chernozem soil
with a particle size diameter of 0.25 -1 mm [FiLep and Kux 1975). The
authors’ main conclusions are that two stages of leaching with different rate
constants can be distinguished. The slope of leaching curves reflects different
stages, with rate constants differing by an order of magnitude. Leaching is
not a simple process; it can be subdivided into two part processes: one with
a high rate constant, that is, a period of rapid leaching, and a period of slow
leaching, with a lower rate constant, These conclusions correspond to those
obtained by analvsing the solution of SM equations for a thin layer of soil.
The hypothesis established by the authors concerning the mechanisms of salt
exchange may be of some interest. FiLep and Kux [1975] wrote that in order
to characterize this phenomenon one has to take into consideration the role
of forms of moisture having different mohility. The precipitation and irrigation
water quite rapidly mixes with the mobile part of the soil solution and the
infiltrating water leaches only a part of the water-soluble galts. This process,
as has been proved in their work, takes place quite rapidly under favourable
conditions. The leaching of salts dissolved in the immobile moisture by the
mass transfer to the mobile zone has a lower concentration of migrant due
to the high velocity of the first part process. The mass transfer between the
two zones (i.e. migration of salts and ions to a mobile phase) occurs mainly
Ly diffusion. When another portion of water is added, these salts begin to
leach and the whole process repeats itself. The mass transfer between the im-
mobile moisture and the mobile soil solution is a slow process, so this part
of the process is characterized by a small rate constant. This explanation agrees
with the conclusion derived from the explicit model which includes the prop-
erties related to the structure of the interparticle space in the soil.

Based on the above-mentioned results it is possible to evaluate the model
parameters.,

In Figure 6.6b the relationships betweenlg (¢ — &) and /T measured experi-
mentally and the estimated values from equation (6.57), where { = 0.06 and
vy = 2, are demonstrated. The agreement is satisfactory and points to the
applicability of Model 3 for the description of the above-mentioned and other
experiments of this character.

An example is now provided of SM construction for N migrants moving
in the porous space of a moisture-saturated soil and sorbed on the solid phase
of the soil (or subject to ion exchange). The mass of the jth migrant in the
liquid phase of the soil is: mj = &, + zc;. If s;, §; are the concentrations of
the migrant in the solid phase per unit soil volume in the stagnant and transfer
zones, then I}, the velocity of liquid-to-solid phase exchange, is equal to
ot dt

The migrant flow is summarized from the flows characterized by equa-
tions (6.50) — (6.52):
8,
ox

Jy= )+ U, + ) = @¢, — éD, [5 +h, [@
eDF_

It is obtained from (6.48) that:
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]%} (6.58)
ox

olee) | o) 08, 05, _0(@Q) , 9 [, [@d
— L == + —12D | f+ful 2=
w ot o et o2 ozl * B tn D,

The process of mass exchange between the zones is described with
Model 3:

NEE) ., =y 05
ol

(6.59)

The kinetic equation of the ion exchange or sorption can be given accord-
ing to (6.44):

% =k, p[83é5, b - . - &) — §]

5 — (6.60)
é 8! T —_

ot =t (P[S.?(Cv Ca ) 8,“]

Besides the four unknown functions ¢, ¢;, §j, S5 depending on z and ¢
there ave other functions and parameters in (6.58) —(6.60), namely:

£,8Q.8. D, fid ks k,, @ and s (6.61)

Values or mathematical models should be found for these, so that the
system of equations (6.58) —(6.60) will become a closed one. The SM includes
this system of equations with definite parameters (6.61), and also the depend-
ence of ¢, ¢, §j, §j on z at the initial moment and on the boundary conditions
in the region of migration. Similarly one can construct a SM for other variants
of the determining process and models for them, as discussed above. It should
be noted that the boundary conditions for the region of migration are usually
the cross-sections 2 = 0 and @ = L, if the region of migration is assumed to
reach the total length L. Under this boundary condition a determination is
made either of the I; value [by substituting a combination of (6.50)—(6.53)
into (6.48)], or the value of concentration ¢, or the condition of free outflow:
¢,

— =0,
ox

When leaching takes place in.the total length of the column and the
vertical axis has the symbol = (x = 0 at the top), the concentration of the
percolating solution & is equal to the concentration of the influents for z = L,
the effluent moves freely, so the houndary condition at the surface for equations
(6.58) —(6.60) can be given in the following form:

o¢ .
—_ = (/C.
ax]}x=0 Q

2 .
At the bottom of the column ETC - —=0. L= cc iz often taken; but this
. T lx=L .
assumption must be proved during further modelling,

o . d
T [Oc - EDM[,&? & fh[%
e

10
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A remark should be made on the construction of SMs with the extension
of the number of determining processes. If, besides the above-mentioned pro-
cesses, new ones are included, that influence the geometry of the interparticle
space and the rate of filtration (hydration, peptization of soil colloids, ete.)
by affecting the concentration of the migrant, the equation (6.48) may be used,
as before, as the basis for SM. The models of the transfer and salt exchange
between liquid and other phases of the soil should be completed with the con-
servation law of soil moisture mass;

0 +7) _ aQ

ot dx
where Iy, is the rate of increase of moisture in a unit of soil volume not con-
nected with solution transport. If the root activities of the plants or the activ-
ities of microorganisms are included, the models describing the effect of such
processes have to be added to the relationships for I in (6.48). For the investiga-
tion of migration in gas and solid phases, equation (6.48) is insufficient; here
the mass conservation law of the migrant in these phases should be used in
a form similar to (6.48) [PacHEPSKY et al. 1976].

sk

6.3. The solution of the equation system for synthetic models
of water migration

Two cases are possible in the analysis of the system of SM equations:
cither general equations containing the analytical solution can be obtained,
or, if this proves impossible, the results can he obtained by numerical solution,
Analytical solutions have a special importance not only in connection with
the possibility of a direct use of the corresponding synthetic models, but as
a control basis for algorhythms of numerical methods to solve more compli-
cated systems of SM equations. Therefore, to start with, an analysis is made
of several synthetic models for the leaching of a homogeneous laver of soil,
initially saturated uniformly with migrant solutions. For these models anga.
lytical solutions can be found. The -coordinate is directed downwards in the
column and @ = 0 is the upper section of the sample, where an influent with
a constant concentration is supplied.

The solution of the SM has been studied in detail for cases when the
stagnant zone can be ignored, of the transport processes only convection is
taken into consideration and the sorption reaction is instantaneous. According
to (6.48), (6.50) and (6.45):

o 8c as' @
gt = gee _ 98 e (6.62)
ot ox Uc ot
and ef@, 0) = ¢y ¢(0,8) =& c¢y>¢ (6.63)

It is not necessary to give the boundary condition at the lower section
of the layer due to the properties of equation (6.62). This means that the out-
flow of migrant from the region of filtration has no influence on its migration

1
in this region. By determining the coordinate g = [ @dt as the volume of the
d
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golution percolated through a unit of the section area of the layer, it is found
from (6.62) that:

1 ds°
T o s 5 5
[ T e de

A general property of the solutions of equations (6.63) and (6.64) is
that the value ¢ according to (6.64) depends on g and x. As a matter of

fact, ¢ depends on the combination of ¢ and «. This combination is & = e

a ”
. .H g (6.64)
8g  d(ex)

and so ¢ is the function only of a single variable. Therefore, ¢ = constant if
& = constant, that is: for different pairs of the values ¢ and z, ¢ will be the

same if =% is the same. Tt means that in the plane of the variables g and z, ¢ will
q

be constant along the straight lines 2 = const.

g

The solution for (6.63) and (6.64) is determined in the region 0 < & <T 1,
£ = 1 by the equation of movement of the replacement front. In fact £ =1
or ¢ = sx corresponds to those sections of the sample which have been reached
by the leaching solution; the volume of the influent solution is equal to the
volume saturating the porous space. Sections where & <C 1 have already been
percolated by the influent.

The type of solution (6.64), (6.63) depends on the sign of the second
derivative d2s/dc?, under the condition ¢ <C ¢ <l¢, If d2s%de? > for fixed q,
the value ¢ changes continuously from ¢, to ¢ as x decreases from gfe to 0.

The solution is expressed by the equations:

c=2é for 0<E<E

E=§c) for EL<ELE, (6.65)
¢c=¢, for P |
ds®\—1 3
Ee) = [1 r i— LN t=ted, E=t0)

If d2s/de? < 0 when & < ¢ <C ¢, then the solution has a quite different

character. When z changes from z = 9 to £ = 0 at the beginning ¢ has the
£

constant value: ¢,, then it instantly changes to ¢ = & and remains at this
value till x = & = 0.
The equations for the solution are:

c=c¢, for E,<LEL (6.66)
A o B e
€ & — ¢,

10*
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In more complicated cases, when d2s/dc? changes sign in the interval
o < ¢ = € the solution consists of several continuous intervals separated by
sharp discontinuities [KuzNeTsov 1967].

The relationships between ¢ and £ can be used in two wayvs. If ¢ is fixed

22| and we get the distribution of concentrations

s
in the layer at the moment when g, cm of the solution has percolated. If x is

at the value g, then ¢(§) = ¢

< 1 5 i
fixed at @ = a; then ¢(&) = ¢ | ~-. ex,| and we have the value ¢ in a section

of the sample as a function of time (or the effluent amount).

The solution above can also be used if the movement of two migrants
is included and their distribution between the solid and liquid phases.

It is assumed that the chlorides of Na (7 = 1) and Ca (7 = 2) are migrat-
ing, and the basic processes, as above, are convective transport and instan-
taneous ion exchange.

The equations of the SM are:

By ey B (6.67)
ot dx ot
s 2% ol U5 (6.68)
at oz at
ci(®, 0) = e 5 (0,%) = ¢ (6.69)

cafa, 0) = cgp ; 6(0, ) =& (6.70)

The concentrations s, ¢; (j = 1, 2) are given in kgeq/m®. Summarizing
(6.67) and (6.68):

Norte) o0+l s+s)

ot ox ot

Supposing that the cation exchange capacity 8 = s; + s, does not depend
on time, and denoting ¢, 4 ¢, = C, it can be derived that:

Pa 1 8
OC: - @ 20 or e 89 = ¢ (6.71)
ot dx Glri o

&

This equation expresses the physical fact that the sum of the charges
of the cations in the volume of the solution does not change during its migra-
tion in the layer of the soil. The solution of (6.71) is C = C{g — ex), i.e. at the
point g, .. the value of C is the same as at = 0, ¢ = ¢, — &, Since the value
of C = &, + §&,is constant at the section x = 0, C is constant for the conditions:
0 << & <L 1. Consgequently, for the conditions 0 < & <7 1, s] may be considered
as a funetion of ¢, only. This is because s, which depends on ¢;, ¢,, may in any
case be considered as a function of ¢;, C = ¢, + ¢, and ¢is constant for 0 < & <

& X 0
<C 1. So in the equation (6.67) %s; may be replaced by dﬁ . 88_61,‘1 Then
. Cl



149

acl . 8& . ds‘l’ . 861
at ox de, O
ds%) o &l
or [H_.l Aefj e | Ba g (8.19)
e de,) d9g  O(ex)

Tt is clear that (6.72) and (6.69) agree with (6.64) and (6.65) up to index
17, Therefore the solution of (6.65) or (6.66), depending on the sign of d?%s9/dc},
is suitable for describing the migration. In chernozems d?s%dc? > 0 and if Ca
is replaced by Na, i.e. &€ > ¢4 /cq, the continuous solution (6.65) is suitable
but when Na is replaced by Ca, the solution with sharp discontinuities (6.66)
is better. A comparison of the solutions of the system of equations (6.67)—
(6.70) with experimental data was carried out for the “‘linear’ isotherm (6.18)
in various works [FILeP 1972a; REDLY and SzaBorcs 1974] and for the Garon
isotherm in chapter 7.2 of this book.

Based on the composition of the solutions (6.63), (6.64) one can construct
a description of a more complicated phenomenon with a change in the compo-
sition of the influent solution, when at the beginning Ca is replaced by Na,
and then at a certain moment ¢ = ¢’ the replacement of Na by Ca starts.
¢ (0, 1) = &, ¢(0, ) = & and &/¢; < ¢/, The structure of the solutions may
be analysed in the ¢ — = plane (Fig. 6.7).

Solution (6.65)is illustrated by Figure 6.7a. According to (6.65) it is possible
to give equations of the straight lines separating the regions with different
properties of solution. For line OA £ = 1, for line OB & = &, forline OC & = &,.
Between OA and OC, ¢ = ¢,, between Oq and OB, ¢ = ¢;. Between OC and
OB ¢ continuously changes from ¢, to c,.

Figure 6.7b demonstrates the structure of the analytical solution for a
change in the percolating solution. Equation (6.65) is valid within a region
Eq’OA. The line ¢’E represents the front boundary formed under the percola-
tion of the second solution. The equation of this line is ex =¢"— ¢’.

For the further interpretation of Figure 6.7b, it seems to be useful to
select the value of ¢ .corresponding to the solution input in the second phase
of the experiments and an appropriate straight line ¢” N which is parallel to
the 2-axis. The movement along the straight line from ¢” to N has its associated
movement inside the sample from the surface at the point in time when ¢” em
of the solution has filtered through the surface. The line ¢” N crosses the char-
acteristic lines ¢’ HL, CM, and ¢"E, separating regions which obey different
laws in the changes of concentrations. In the depth interval from 0 to a; in
the area q¢° HL the concentration remains unchanged: ¢ = &, ¢, = & l.e. it
is the same as the influent solution. In the depth interval [x, a,] it is the
region LHCM where the concentration changes continuously. In the depth
interval the concentration is constant and equal to that which percolates
across the lineq” E — the front of substitution of the first solution by the second
one. During this part of the process the condition is fulfilled that the sorbed
amount does not change during the percolation across the substitution front.
Finally, for z deeper than z,, which is the deepness of the substitution front
by the first solution, the condition in the column is the same as it was in the
heginning.

Linear models represent another class of SM, having a known analytical
solution of the equation systems. These systems consist of linear equations
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that are of hyperbolic or parabolic type. Well known is the case of the migra-
tion of a non-sorbing migrant. When the mass-exchange hetween the stag-
nant and transmitting zones has an implicit deseription, the equation is:

dc dc 9%
E—= — — + &b (6.73
ot @ ox ox? )

Solutions are known for all types of conditions at the boundary of the
filtration region [CARSLAW and JAEGER 1964; BRENNER 1962]. The SM for the
migration of an instantly sorbing migrant with the linear sorption isotherm
8% = xc also gives (6.73) with the substitution of ¢ + % instead of ¢ on the left-
hand side.

a)
C
q B
A
0
0 X
b) i M
q
{ e
q' — N
u /! ¢ |1
1 | { i
! , ] 1
1 1
B [ Loy A
y 1 [
| |~
q | X J[
! [
1 I II
| |
1
s i
! Lo
i | i
0 L | L
0 Xy X X3 X,

Fig. 6.7

The structure of the solution of equations of the simplest SM expressed as the variables

7 and & (comments in the text). a) In the case of percolating solution of constant concentra-

tion, b) in the case of percolating solution with changing concentration, x = spatial

coordinate corresponding to the direction of macroscopic movement of the solution, m;

g = volume of the solution percolating through a unit eross-sectional area of the filtra.
tion region (m)
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Another SM has the following system of equations:

ac dc R as
& = — + £ D PO L
at ¢ dax dx? ot
o
e ky(xe — 8): clx, 0) = @2 (6.73a)
oc %
s{a, 0) = pylx) i]le — D—+ Qc] = @é.
ox x=0

This describes the movement of a sorbing migrant by the use of the
implicit Model 1, the linear sorption isotherm and the relationship (6.45) for
the sorption in time. The system (6.73a) which is exact up to » = 1, corresponds
to the SM for the non-sorbing migrant with Model 3. It is also suitable for SMs
with Model 1 when sorption is partially instantaneous and partially continuous.
Solution (6.73a) was discussed for the first time in the work of LiNpDsTROM
and Borrsma [1973]. However, they did not give a complete solution, and
their calculation results are erroneous (disbalance of the mass by 15%,). There-
fore, the solution of (6.73a) is derived here, not by the application of the tra-
ditional method of inversion of the LaPLacE transformation but by the iterative
solution of an auxiliary integral equation.

Changing the variables we obtain:

y=¢ ¢ z=3s5 %, @) =glx) ¢
() =ypalx) — & f=@Qe, a2=D, A=k, v=1]g
dy o 02 oy ’ 9z Oz

= R — Alxy — z (674)
ot dx? ox ot ot ey )

]
[ 3 Mz%ﬁ] =0; gl 0) = p@); 2z 0) =y
x=0

Then z is excluded from the second equation:

t
2, 1) = p(x)e=* + Ax | dre 9 y(z, 1) (6.75)
0

The following equation remains for y:

o
L
ot Ot

2 i
"ay—l—ﬁg—i—i—vy:v}.z (6.76)

v, = vix. According to TikHONOV and Samarsky [1966] the solution of
(6.76) may be given in the following form:

ylx, t) :.y d &Gz, &8 pl5) + A 5 dr‘s' dEGx, &t — ) 2(& 1) (6.77)

0 0 b
where Gz, £, t) is GREEN's function for equation (6.76) with 2 = 0. The con-
crete expression of this function depends on the boundary conditions and
will be defined later. Here it should be noted that the result of the solution
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will not depend on the choice of @. Only the general property of such functions
is used:

ylz, t -+ 6) jd Qla, &, ¢+ 1) y(E, &)
0
If (6.75) is put into (6.77) it is found that

i
y(@, 1) = Yyl &) + 1 [ Dy (e, 1) dr + Q[y] (6.78)
o}

where y, and y, are solutions of (6.76) for 2 = 0 and initial distributions ¢(x)
and yp(x):

and @[y] is an integral operator:

t oo T
Qyl =1 [ dr § Gla, &t — 7)dE | du,e =) y(&, 7,)
0 0 0
where /1 = » /.
Let us divide y into two parts y = y; + yi;:
t
1=y, + Qwl yn= "’H‘ ¢~ Yy (@, 7} dT + @ [y11].

0

These équations are solved using a method of successive approximations:
W=y,
W =y, + QP =y, + Q [,]
¥ =y, + Q] =y, + QIy,] + Qly,]

%=y, +§ Q*[y,]

It is easy to find that

i oo

Qyy] =4[ de [ Gz, &0 - déidw"’“ VY5 T) =
0 0

t T t
=Afdt{dr ey (2,6 — 14 1) = A [ dre~ y, (v, ¢ 1) { dvy =
0 0 0 T
:

=4 [ ge~%-Ny,_(z,2)dx
0
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Similarly

t
Q*y,] = ‘;—Aﬂ‘ 2t — Tle~ "y, (x, 7) dr
0
1
Plyy] =41 Pl — B e~My (2, 7)d7
0

Inductive inference leads to the formula:
A" b

m {2 — o) ey, (z, 1)dy
e 1R

Q"[y,] =

Consequently

oo An i
=y, + ¥>—" (¢t —1)" e~y (x,7)dr =
yI yq) nzz;(n—l)!n!é ( ) y¢( )

4
: . Az
=Y +(55 dre~*y, (z, 1)1/

t— 7

I[2 YAz — )]

where I,(z) is a modified BEsseL function of the first kind, index 1. yy; is deter-
mined in the same way. As a result we get:

Az
t— 1T

t
yla, t) =y, + [ dee~y, (2, 7) L[2VA«@ — )] +
o

t -
- vaoj dte=-y (x,7) I, [2 Az = 7)]
Then, according to (6.75)

t
2, 1) = p(@)e= + #d ( duy, (@, 1) I, [2V Av (@ — 7)] e~
o |

t e L
’l"Aé‘ dre~" y, (w, T)-[/ t/;rr I,[2VAdz(t — )]

Finally y(x, t) is defined. GREEN's function for this case is:

ﬁ(efxera i 7(§+x+£12 r
Mo bty=ct|——e N 2] 4 —— =g L 2W Jorr_
a7t 2u| 7t
£
B = X ol I
2% erfc x+5Lﬁt
#2 2x)/
where erfe(z) = i_ [ e-tdt
Vo ;
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Analysing the case when the initial distribution is a jump function:

vmo =g ={ro "¢ et

0 x> L
T o E (6.79)
x(c, — ¢ 0z
ﬂ‘:,o = = = 0
(%, 0) = () = mp(a) [0 o
After integrating in (6.77) it is finally found that:
— ft+x\2
s s | I pt—a) 28Vt |7
y?‘(ﬂf,t):(co—c)e '{?erfc W _alﬂ_fge [2 .“) +
1 28 L Be<: 1 pt—x+L|
+ ?1\1 + —2 (ﬁt -Jr Q’,‘) e erfe ( 211‘!#_ == ;erfc {Txﬁ_] e
T Bt+x+4+L\2 ﬁ_x ﬁx
L 280 5T A Bt e )] Fenn [Pt
alm 2 a? 2|t

Appendix 1 contains programme MIGR 1 for the calculation of the
filtrate composition at depth L for SM (6.73a) taking into account (6.79).
An example for the application of the programmeis given in Figure 6.8 where

el
1.0

|
0.8

086
0.4-

0.2-

0- T T T T T
2 4 6 8 10 12 vt/L

Fig. 6.8

Linear SM calculation of soil column saturation with a sorbing migrant (atrazine). 1.
caleulated values, 2. measured values [ELRICK et al., 1966]

calculated and measured compositions of filtrate are represented on the basis
of soil column experiments for atrazine saturation [ELRICK et al. 1966]. Calcu-
lations were carried out assuming instantaneous sorption with a linear isotherm.
The programmes in Appendix 1 also work for SM equations (6.73).

The analytical solution is also known for SM (6.73a) with the condition:
D = 0. The analysis of such a SM is appropriate under the condition that
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molecular diffusion and hydrodynamic dispersion in a wide range of parameters
common for soils do not essentially influence the solution of the migration
problems. Comparing solutions obtained with approximate D values (exact
to an order of magnitude) and if D = 0, the influence of the choice of D value
on the solution can be estimated and in certain cases the precise determination
of D can be neglected, reducing the volume of experimental work. A solution
of (6.73a) with D = 0 cannot be obtained with D — 0. It can be carried out
with other methods, for instance that of MiRoNENKO and PAcHEPSKY [1976]:
where p(x) = ¢q, p(x) = xc, the solution of svstem (6.74) equivalent to (6.73a)
is expressed as:

25, 8) = ucy + (6 —c) R (&, 1) (6.80)
where E:v;x:ﬂ, i r— {tmiJ,

Using the programme MIGR 2 it is possible to calculate the filtrate
composition at a depth L in accordance with the solution (6.80) (see Appen-
dix 2).

For SMs which include non-linearities (for example, non-linear isotherms
of the ion exchange or sorption) and transfer processes other than convection
and which do not have analytical solutions, a numerical approach is necessary.
For example, the SM given by equations (6.45) and (6.58) —(6.60), the process
of the transformation of the system of SM equations to the type suitable for
numerical computation, is given below.

The case of migration of two ions is analysed, for which the SM is present-
ed by equations (6.45) and (6.58) —(6.80). The ion exchange and the constancy
of surface charges: s, - s, = S are taken into account.

Summarizing equations (6.58) for j = 1 and j = 2 under the condition:
8 = const. the following equation is obtained for total concentration C':

W0 _ 00 Qo0 50
ot~ T 9x2  F ox £ Ot
Similarly from (6.59) when j =1 and § = 2 it can be obtained that

z%g- =k (0 -0 (6.82)

(6.81)

Using (6.45) the following equations can be derived:

%‘? =, (& — §) (6.83)
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ds ~ =
e (6.84)
C

And, finally, for ¢;, as a consequence of (6.58) and (6.59),

—
jad]

a¢ R a¢ k H
ot Y dg 1

=D S8y, — By —Tivg — (6.85)
al o sax 8 N T
de & _ 1 o5
e TR, PN ™ o B (6.86)
o = " & o
are valid.
At the boundaries of the migration region
- 6! g
60,0=2; Co,n=0C 2 =0 | _—o (6.87)
62 |x—L 9 [eop

It should he recalled that (6.81)— (6.87) were derived from equations
of the mass balance for a layer of finite thickness assuming that Az, At — 0.
For the numerical solution (6.81)—(6.82) a reverse operation is carried out:
by the approximation of finite differences differential equations are transformed
into equations of the mass balance in layers of finite thickness. If we have N
layers with equal thickness Ax = L/V in the filtration zone, and the coordinates
of the sections are enumerated from 0 to N: x; = idx. Introducing discrete
time intervals: ¢, = ¢, + ni, the values of any variable in (6.81)—(6.87) at
a moment of time ¢, at the point « = x; are indicated by using subscript ¢ and
superscript n. For example, C(x;, t,) = CF, s,(#;, 1, £,) = 7,741, tC.

In equations (6.81) and (6.82) finite difference approximations of the
derivatives give: ‘ o

Az [&(0pH — O + ECpH — O] = |

o9, (n n el g . (n+l (sl
:éDAt[h(‘wl 2 Ct +01—1+(1 _'h)ol—-l 2 CI +(’11JF;
Az Az
o (n_ (in n+1  dindl
— QA hof_;l_;_(l_h)u (6.88)
Ax Ax
(01— COF) =k A [R(CF — O + (1 — R) (G371 — 741 (6.89)

Equation (6.88) expresses the balance of the total mass of migrants in
the solution in a layer of Ax thickness between the sections x = x;; @; = ;. *
The total mass of migrants changes due to the inflow of the solution into the
section 2 = x; and the outflow from the section = = a;,, during the time 4.
The average flow through each of the sections for time At is calculated accord-
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ing to the formula: J = 2J” + (1 — k)J"*, 0 <<k < 1. Nothing can be
assumed about the value of & a priori; it is usuallv selected according to the
conditions of exactness of the calculations. Equation (6.89) expresses the law
for changing the total mass of dissolved migrants in the stagnant zone of
section z;. This change is proportional to the difference between the average
values of total concentration in two zones for an interval of time . The
average concentration for a time A¢ is derived according to formula C = hC" -+
+ (1 — R)C"*1, where k is the same as in (6.89).

Equations (6.83) —(6.87) are approximated in the same way as (6.81)
and (6.82). As a result the system of non-linear equations (6.81) - (6.87) is a
finite difference analogue, which connects the values of the unknowns in the
upper time layer (at t=i,,,).i.e.cf*Y, cf*t, ¢f%!, o %t &1L, Pt (i = 1-N),
with their values at the same pmnts ina IOWGL time layel (Where t =t,). As the
initial values of the unknown functions are given for ¢ = t,, then, solving
equations of the finite difference analogue and considering the values at ¢ = {;
as unknown then for t = {,, etc., one can find a solution for any 7 > ¢,. The
method of solving the non-linear system of equations is combined from the
processes of linear algebra and successive approximation for (6.83), (6.84)
and (6.87). Appendix 3 gives the programme RASNA to solve the system of
finite difference equations that replace (6.81)-- (6.87).

The problem of the identification of models for certain processes con-
sists in the discovery of the parameters and functions given in (6.61). Some
of them, such as e, ¢, § and s° can usually be measured directlv. However,
it should be kept in mind, that in some cases rethods of determunng pa-
rameters from disturbed samples may give wrong information regarding the
values of model parameters. For e\ample the number of adsorption sites in
the disturbed sample may differ from those in undisturbed ones, ete.

Other parameters and functions of thé above-mentioned in (6. G1), such
as &, b, and g(2), are determined by solving the svstems of SM equations and by
a comparison of experimental and caleulated values. For instance, applying
the system of SM equations (6.43), (6.58) and (6.60) for the description of the
movement of a single migrant, values d, s° ¢, @, £, D, and the function f,(n)
are known from experimental values; ¢, £, and L, from (6.61) are subject to
determination. Measured concentrations of migrant in the effluent at the
points of time t, &, .. .. 4y €1y Cpar - - o €y, are assumed to be known.
Values of é at @ = L at the same moments of time may be calculated, and
they depend not only on £, but on the values of unknown parameters £k, k,,
E:¢ =L t, ky by £).

Introducing the function: @k, L,, &) 2’ [cm i — e(L, &, kg B, £)]5,

optimal values of &, £, and ¢ will correspond to the minimum of function @.
The search for the mlnlmum of such functions is usually carried out with the
combination of several methods of non-linear programming [Porvax and
Sxoxov 1967]. In the determination of parameters the greatest difficulties arise
for the models of non-essential processes. When parameters of less impor-
tant processes vary, the value of @ changes slightly, and experimental errors
in the values of ¢,, ; may be regarded as the reason why values for the param-
eters of non-essential processes are obtained which are far from correct.
Such situations are undesirible because the necessity of unjustified
complication of the search methods for parameters reduces the rate of the
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search. The error in determining parameters is not too high as long as the
corresponding processes are not essential; however, one cannot consider such
parameters as fully valid.

Some a priori conclusions on the significance of this or other processes
can be drawn, if analytical solutions are used and dimensionless parameters,
characterizing the relation of characteristic periods of certain processes, are
introduced. For instance, the degree of influence of molecular diffusion and
hydrodynamic dispersion can be estimated by the value of the BREXNER
_ QL _ I*D

—— == = 1,/74, where 7, and 7, are characteristic periods
eD  £LjQ

of the convective transfer and the diffusive-dispersive transfer. The SM equa-
tion for a non-sorbing migrant in the flowing zone is similar to (6.73). Dividing
both of its parts by @/L and determining ¢’ = tQ/é, L, 2’ = x/L we get:

number B

d 1 a2
£ _ .2 0% (6.90)

at’ gz’ B o6ax'%

cic
0750 -
0.500- -1 -
- N -
/ B=10?10' 10°10" 10?
A S
0

050 1 150 at/EL
Fig. 6.9

Influence of BRENNER number (B) on the form of the break-through curve

If the BRENNER number is small, it can be assumed that the diffusive
and dispersive transport have only a slight influence on the solution. This can
be seen in Figure 6.9, which represents the influence of value B on the filtrate
composition — time function for ” = 1, i.e. with = L.

Another parameter, characterizing the relative rate of the processes is

the parameter: ¢ = k"L. SM equations for a single sorbing migrant with a
linear isotherm of sorption, ignoring the stagnant zone, in variables " = %:
" = 3% iz as follows:

Hedh e R P B e (6.91)

ot A A 4
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The rate of approach to the equilibrium is governed by the value of .

The influence of values { and » = — on the filtrate composition vs, time func-
€

tion for 2" = 1 is shown in Figure 6.10,
g
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Influence of values of parameters { and v on the form of a break-through curve

List of Symbols for Chapters 6 and 7.2

The symbols in Chapters 6 and 7.2 to identify physical values are given
below with an indication of their dimensions. These are based on the Inter-
national System of Measuring Units, and all deviations from the latter caused
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by the need for a more compact way of recording values in the range of values
normally used in research papers, are specially mentioned. In pmrtmulm, as a
time-measuring unit suitable for the description of migration processes in the
soil, 24 hr (Ollb d;w) is selected. Chemical symbols, when used as indexes,
mean that the value in question relates to a specific ion or chemical compound.
The superscripts g, e and s denote the mass of the migrant in the gaseous phase
of the soil, in exchange form on the surface of the solid phase, and in crystalline
salts, respectively. The superscript 0 refers to the state of equilibrium.

To complete these symbols the following superscripts are used:

# for the transfer zone of the interparticle space
for the stagnant zone of the interparticle space

~ for values related to the solution percolating into the migration region,
together with the subscript 0 for the initial values in the water migration
area, the subseript w for values connected with the water in pores, and
the subseripts indicating the process, as follows:

¢ convective transfer

d molecular diffusion

L hyvdrodynamical dispersion

s mass exchange between stagnant and transfer interparticle space zones
¢ ion exchange or sorption.

If the svmbol has a special significance and it alters the dimension of the
value, this is indicated immediately after those symbols by an additional sign.

B BRENNER number
C total average mass f_oncen‘cmtlon of a mixture of the migrants being
studied in the interparticle solution [kg/mole/m3? (kg- 1()11;’1113)]
coefficient to describe the effects of diffusion-type processes [m?*/day
(24 hours)]
coefficient of molec ul(u diffusion in the soil
coeff]ment of hydrodynamic dispersion

a “structural diffusion coefficient”, to deseribe mass-exchange between
stann.mt and transfer zones
coefficient of molecular diffusion in the solution
coefficient of molecular diffusion in micropores
dimensionless relation between the CEC of the solid phase of the
goil, and that of the salt content in the soil solution
the ratio of the volume of effluent to the total solution volume in the
sample '
the rate of sorption of a stagnant mass of migrant [kmole/m3/day
(kg-ion/m3¥day) ]
the transfer rate of migrant from the stagnant to the transfer zone
the rate of decrease in solution volume [day—1]
the flow rate of the mass of migrant in the soil liguid phase per unit
time through a unit crosssectional area [kmole/m?/day (kg-ion/m?/
day)]
flow due to convective tranfer
flow due to molecular diffusion
flow due to hydrodynamic dispersion

~
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fictive “structural flow” to describe mass exchange from the stagnant
zone to the transfer zone

equilibrium constant of salt-exchange reactions between the soil
phases

the length of the migration zone under study [m]

the quantity of migrants capable of remaining in the solid phase.
the number of migrants being investigated at any moment

the water flux through a unit cross-sectional area, [m/day]

effective depth of dead-end pores of the stagnant phase, [m]

CEC value of the soil [kgeq/m3]

total exchange capacity

the average rate of infiltration in the interparticle space [m/day]
ratio of the volume of percolating solution to the total moisture
apacity of the filtration region

sodium percentage in the solution

the degree of sodium saturation (D.S.5.)

thermodynamic activity of the ion (salt)

average concentration of migrant in the interparticle solution
[kmole/m3 (kg-ion/m?)|

average concentration for the interparticle space transfer zone
average concentration for the interparticle space stagnant zone
concentration in the solution percolating into the migration region
initial concentration in the migration area

average diameter of macro-aggregates, m

total mass of an individual migrant in a soil volume containing one
m? of interparticle solution [kmole/m? (kg-ion/m?)]

salt-exchange velocity constant [day—!]

ion-exchange velocity constant

mass-exchange veloeity constant from the stagnant zone to the trans-
fer zone

amount of migrant in the interparticle solution per unit soil volume
[kmole/m3 (kg-ion/m3)]

amount of migrant in the liquid phase of the soil volume unit

7., n_ the number of positive and negative ions

p(':Osz
q

11

partial pressure of carbon dioxide, atm.

volume of the solution percolating through a unit cross-sectional
area of the filtration region [m]

average content of migrant in the solid phase of a unit soil volume
exposed to ion-exchange or sorption processes [kmole/mn? (kg-ion/m?)]
for the transfer zone

for the stagnant zone

time [days]

the time interval for which the balance is calculated [days]

spatial coordinate corresponding to the direction of macroscopic
movement of the solution [m]

thickness of the layer (m]

coordinate perpendicular to the direction of the main water flow [m]
the charges of positive and negative ions, respectively

activity coefficient of the monovalent ion [1000 kg H,0/kmole]
tortuosity factor
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shape factor

activity coefficient [1000 kg H,O/kmole (kg-ion)]

the interparticle solution volume in unit soil volume

in the transfer zone

in the stagnant zone

ratio hetween the characteristic times of convective transfer and
mass-exchange

atio between the characteristic times of convective transfer and
molecular diffusion in macropores

moisture content in volume percentage

distribution coefficient of linear sorption

auxiliary variable

auxiliary variable

the ionic strength of the solution [kmole/m?]

ratio between solution volumes in the stagnant and transfer zones
self-similarity coordinate

ratio of the filtrate volume to the field moisture capacity

the weight of a unit volume of interparticle solution [1000 kg/m?]
the characteristic duration of the process [days]

a funetion indicating the availability of the exchanger surface to the
ions of the solution

coetficient in the modified equation of the ion exchange isotherm
auxiliary function

the cross-sectional area of the migration region vertical to the x-
axis [m]

cross-sectional area of the section of dead-end and micro-pores serving
as a path for mass-exchange between the stagnant and transfer zones
in a unit of soil volume [1/m]





