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 29 

ABSTRACT 30 

 31 

Aim. The relationship between isoprenoid emission and hygrophily was investigated in woody 32 

plants of the Italian flora, which is representative of European diversity. 33 

 34 

Methods. Volatile isoprenoids (isoprene and monoterpenes) were measured or data collected from 35 

the literature, on 154 species native or endemic in the Mediterranean. The Ellenberg indicator value 36 

for moisture (EIVM) was used to describe plant hygrophily. Phylogenetic analysis was carried out, 37 

at a broader taxonomic scale on 128 species, and then refined on strong isoprene emitters (Salix and 38 

Populus species) based on isoprene synthase gene sequences (IspS).  39 

 40 

Results.  Isoprene emitters were significantly more common, and isoprene emission was higher in 41 

hygrophilous EIVM classes, whereas monoterpene emitters were more widespread, and 42 

monoterpene emission was higher, in xeric classes. However, when controlling for phylogeny, 43 

isoprene emission was not associated with EIVM, possibly due to the large presence of Salicaceae 44 

among hygrophilous isoprene emitters. Moreover, the distribution of isoprene emitters among 45 

EIVM classes was not related to IspS-based phylogenesis in Populus and Salix, suggesting that the 46 

gene has not undergone evolution linked to ecological pressure. In contrast, monoterpene emission 47 

pattern is independent of phylogeny, suggesting that the evolution of monoterpenes is associated 48 

with transitions to more xeric habitats.  49 

 50 

Main conclusions. Our results reveal an interesting ecological pattern linking isoprenoids and 51 

water availability. The idea is surmised that isoprene is a trait that i) evolved in plants adapted to 52 

high water availability; ii) is replaced by more effective protection mechanisms, e.g. more stable 53 

isoprenoids, in plants adapting to more xeric environments; iii) being strongly constrained by 54 

phylogeny, persists in Salicaceae adapted to more xeric environments. 55 

 56 

 57 

 58 

Keywords: Adaptation, Chemo-taxonomy, Hygrophytes, Isoprene, Monoterpenes, Phylogenies, 59 

Salicaceae, Xerophytes, Water stress. 60 
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 63 
INTRODUCTION 64 

 65 

Leaves of many woody and perennial plants constitutively emit volatile isoprenoids (isoprene and 66 

monoterpenes) to the atmosphere, at rates that often exceed 1-2% of the photosynthetic carbon 67 

fixation, especially in stressed leaves (Loreto & Schnitzler 2010). Isoprene and monoterpenes are 68 

formed from photosynthetic metabolism in the chloroplasts (Loreto & Schnitzler 2010). Generally, 69 

either isoprene or monoterpenes are emitted but not both (Harrison et al. 2013). However, some 70 

species (e.g. Myrtales) show significant storage of monoterpenes in specialized structures and these 71 

species can emit both isoprene and monoterpenes (Niinemets et al. 2004). 72 

Isoprene is believed to play a role against thermal and oxidative stresses, possibly because of the 73 

capacity of this molecule to stabilize thylakoidal membranes (Singsaas et al. 1997, Velikova et al. 74 

2011), or to remove reactive oxygen or nitrogen species within the mesophyll (Loreto & Velikova 75 

2001; Vickers et al. 2009). Light-dependent monoterpenes may play similar roles, but they are also 76 

often involved in plant communication with other organisms, especially in multitrophic plant 77 

defense and pollination (Dicke & Baldwin 2010). 78 

The emission of isoprene and monoterpenes is widespread across plant families (Harley et al. 79 

1999). A recent study has indicated a strong phylogeographic signal for monoterpenes; the emission 80 

of monoterpenes is qualitatively different in cork oaks across their distribution range in Europe 81 

(Loreto et al. 2009). Alien species of Hawaii emit more monoterpenes than native ones, which is 82 

also suggested to be an indication of greater evolutionary success of alien species since 83 

monoterpene emission is associated with higher stress resistance (Llusiá et al. 2010). 84 

However, there seems to be no straightforward relationship between isoprene emission and plant 85 

taxonomy or phylogeny. Isoprene emission is absent in herbaceous, annual vegetation, whereas it is 86 

widespread in trees and perennial plants (Kesselmeier and Staudt 1999). However, this robust trend 87 

may not be associated to phylogeny, as isoprene emission is limited to woody life-forms of families 88 

that also include herbaceous species (Fineschi et al. 2013).  Hanson et al. (1999) reported that 89 

isoprene emission is more widespread in mosses than in all other taxa, and this is so far the only 90 

unambiguous phylogenetic pattern. This finding led to the suggestion that the isoprene emission 91 

trait evolved when plants conquered the land and started coping with more severe thermal extremes 92 

than in the water-buffered environment (Hanson et al. 1999). Similarly, Vickers et al. (2009) and 93 

Fineschi & Loreto (2012) commented that isoprene could have evolved as a first mechanism to 94 

cope with more recurrent and stronger oxidative stress in the terrestrial than in aquatic 95 

environments, being then replaced by more effective mechanisms when plants adapted to more 96 
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xeric conditions. No other adaptive relationships are apparent when dealing with volatile 97 

isoprenoids emitted from plants that do not have specialized structures to accumulate isoprenoids. 98 

We reasoned that, if the emission of isoprene has evolved in plants conquering the land, then the 99 

trait could still be more widespread in hygrophytes than in xerophytes. To test this idea, the 100 

emission of isoprene was assessed in the Italian woody flora, which is representative of the 101 

Mediterranean eco-region, one of the primary global biodiversity hotspots, and an area of 102 

exceptional biodiversity value exhibiting high endemism (Blondel & Aronson 1999; Médail & 103 

Quézel 1999; Comes 2004; Thompson 2005; Médail & Diadema 2009). Further, the vast majority 104 

of the tree genera of continental and northern-Europe (including Scandinavia and the British Isles) 105 

naturally occurs in Italy today, as the Italian peninsula was one of the main Quaternary glacial 106 

refugia (Bennet et al. 1991). Thus, the Italian woody species account for most of the total European 107 

diversity of trees and shrubs. 108 

The Ellenberg indicator values (EIV; Ellenberg 1974; Ellenberg et al. 1991) characterize the 109 

adaptation of a vascular plant species to edaphic and climatic conditions in comparison to other 110 

species: i.e., each plant species is given values denoting the position at which plants reach peak 111 

abundance along environmental gradients (Diekmann 2003; Godefroid & Dana 2007). A 9- or 12- 112 

point ordinal scale for each of the following parameters is used: moisture, soil nitrogen status, soil 113 

pH, soil chloride concentration, light, temperature and continentality. Although EIV were originally 114 

designed for Central Europe and assigned to the Central European flora only (Ellenberg 1974; 115 

Ellenberg et al. 1991), they have been subsequently redefined and calculated for other floras, such 116 

as Britain (Hill et al. 1999), Southern Greece (Böhling et al. 2002) and Italy (Pignatti et al. 2005). 117 

EIV have been widely used to interpret responses to environmental gradients (Diekmann 2003), and 118 

are now used also as an effective tool for applied purposes, such as remotely-sensed vegetation 119 

monitoring (Schmidtlein 2005), conservation strategies (Sullivan et al. 2010), ecological restoration 120 

(Krecek et al. 2010), and prediction of pollution effects (Jones et al. 2007 ; Dupré et al. 2010). 121 

Experimental studies found that EIV ranking within a given flora is a highly reliable indicator of 122 

adaptation to environmental conditions (Schaffers & Sýcora 2000; Diekmann 2003; Schmidtlein 123 

2005; Jones et al. 2007; Klaus et al. 2012): in particular, the index for soil moisture (EIVM) was 124 

found to perform the best (Schaffers & Sýcora 2000; Fanelli et al. 2007; Krecek et al. 2010). The 125 

EIVM was therefore used here to rank isoprenoid-emitting species of the Italian woody flora 126 

according to an index of hygrophily.  127 

Two phylogenetic analyses were carried out on this dataset at different taxonomic scales. The first 128 

analysis was performed at a broad scale on woody species belonging to 31 different orders 129 

representing main lineages among woody plant species, to assess whether isoprenoids emissions 130 
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and EIVM show phylogenetic signal (i.e. whether phylogenetically related species tend to have 131 

more similar EIVM and/or isoprenoid emission values than more distantly related species). The 132 

second analysis was performed on a narrower range of taxa to assess whether changes of the coding 133 

sequences of isoprene synthase (IspS), the enzyme responsible for isoprene production (Silver & 134 

Fall 1995; Loreto & Schnitzler 2010), are associated with changes of EIVM. To perform the latter 135 

test, poplars (Populus sp.) and willows (Salix sp.), two main genera of isoprene emitters in the 136 

Mediterranean area and worldwide (Kesselmeier & Staudt 1999), with plant species spanning 137 

several classes of EIVM, were studied in detail. 138 

 139 

 140 

 141 

MATERIALS AND METHODS 142 

 143 

Plant material 144 

Constitutive emissions of isoprene and monoterpenes from light-dependent pools that are not 145 

concentrated in storage compartments, are found almost exclusively in perennial, woody plants 146 

(Loreto & Schnitzler 2010), thus this survey was limited to these plant species. A check-list of 147 

woody species (i.e., trees, shrubs and lignified lianas) of the flora of Italy, was compiled using, as a 148 

first approximation, the life form assignments made by Pignatti (1982). This preliminary list, only 149 

including Phanerophytes (P) and Nano-phanerophytes (NP) life forms, was then complemented 150 

with some Chamaephyte (Ch) species that, based on field experience and on species description in 151 

regional floras, are in fact lignified shrubs. Further refinement was done by deleting from the check-152 

list: i) all non-native species, as Ellenberg indices can be defined only in comparison to other 153 

species growing in natural communities within an homogeneous biogeographical area. Exceptions 154 

were possible for those species of very ancient or controversial introduction, such as Castanea 155 

sativa and Pinus pinea, or for alien plants that are now widely naturalized in the Mediterranean 156 

vegetation (e.g. Robinia pseudoacacia); ii) the micro-species of critical genera such as Rosa and 157 

Rubus (which were then limited to ‘main’ species; cf. Diekmann 2003); iii) the hybrid taxa and the 158 

species of controversial taxonomic value [i.e., those species listed in Pignatti (1982), but rejected or 159 

doubtfully accepted in Conti et al. 2005]; iv) some species which had an obviously wrong life form 160 

in Pignatti (1982). As a result, 323 plant species were considered in the check-list of the Italian 161 

woody flora (Appendix S1). 162 

 163 

The Ellenberg ecological indicator for moisture 164 
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We used the Ellenberg indicator value for moisture (EIVM) to formalize the ranking of the woody 165 

species along a gradient of hygrophily. The ordinal scale defined by Ellenberg (1974) for EIVM is 166 

composed of 12 classes; however no woody species of the Italian flora fall within classes 10-12 (i.e. 167 

plants with permanently submerged roots and aquatic plants, see Pignatti et al. (2005)). Thus, the 168 

EIVM of the species included in the present work range from class 1 (plants of extremely arid 169 

habitats), to class 9 (species of marshy soils undergoing frequent root submersion). 170 

The EIVM were assigned to plants according to Pignatti et al. (2005). However, for 39 species the 171 

original attribution by Pignatti et al. (2005) was either considered obviously wrong (see Fanelli et 172 

al. 2007), or missing. In these cases the correct EIVM was attributed according to descriptive 173 

vegetation papers and original field data, as recorded during field surveys to collect volatile 174 

isoprenoids (Appendix S1). 175 

 176 

Volatile isoprenoids 177 

The emission of volatile isoprenoids was reported for 149 species, i.e. about half of the total native 178 

woody flora of Italy, and in five exotic species common in the Mediterranean vegetation, that we 179 

had considered, without any relevant bias in terms of EIVM class (Appendix S1). No important 180 

European tree species is missing from the emission database, whereas, for a small number of 181 

common European shrubs or lianas (i.e. Clematis vitalba, Cornus sanguinea, Crataegus 182 

oxyacantha, Euonymus europaeus, Lonicera caprifolium, Rhododendron sp.pl., Viburnum tinus, 183 

Vinca sp.pl.) it was not possible to obtain reliable emission data. 184 

Species were assigned to two Boolean (0/1) categories, emitting or non-emitting, based on the 185 

potential emission rate threshold of 1 µg g-1 h-1 for isoprene and 0.2 µg g-1 h-1 for monoterpenes, 186 

which are known to be emitted 5-10 times less than isoprene. The emission rates actually measured 187 

are also presented, to have a quantitative assessment of the relationship between emission and 188 

EIVMs.  189 

Plant material was both collected and tested during the summer months (June-August) in a common 190 

garden at CNR-Rome, or measurements of isoprenoid emission were made in situ across Italy in 191 

periods (June or September) characterized by high temperatures and non-limiting conditions 192 

(especially no drought) for the physiology of plants. In all cases, a LI-COR 6400 (LI-COR, Lincoln 193 

Nebraska, USA) was used to standardize measurements in its 6 cm2 gas-exchange cuvette. This leaf 194 

area was exposed to 1000 µmol m-2 s-1 photosynthetic photon flux density, 30°C, and 50% relative 195 

humidity, under a flux of 0.5 L min-1 of air that was passed through a catalytic converter (Parker 196 

Hannifin Corp., ChromGas Zero Air Generator 1001) to filter contaminants and other volatile 197 

organic compounds. The released isoprenoids were collected into a cartridge packed with adsorbent 198 
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(200 mg of Tenax; SRA Instruments, Milan, Italy). Tenax has been used in many past experiments 199 

for isoprene measurements. Though unable to retain high isoprene concentrations without 200 

undergoing breakthrough, Tenax may reveal concentrations as low as < 1 ppb, thus fulfilling the 201 

scope of separating non-emitters when loading small volumes of air onto the adsorbent. Two to five 202 

L of air were trapped at a flow of 150 ml min−1 in the cartridge that was placed at the outlet of the 203 

cuvette. Measurements were made when the physiological parameters of the leaf (photosynthesis, 204 

transpiration, stomatal conductance; also monitored by the LI-COR 6400 instrument) were stable, 205 

and were repeated on at least three different leaves of different plants. The number of replications 206 

was increased in presence of large intraspecific variation of the emission, particularly in the case of 207 

low monoterpene emitters. 208 

The cartridges were kept refrigerated until desorbed and analyzed with a GC–MS (Agilent 6850; 209 

SRA Instruments) using a capillary column (DB-5, Agilent, 30 m × 0.25 mm inner diameter and 210 

0.25 µm film thickness). The actual emissions were positively quantified filling the cartridges with 211 

2 L of air in which 70 ppb of gaseous standards (Rivoira, Milan, Italy) of isoprene or main 212 

monoterpenes (α-pinene, β-pinene, sabinene, myrcene, limonene) were mixed. 213 

 214 

Broad-scale phylogenetic analysis 215 

We created a composite phylogenetic tree representing the relationships among the studied species 216 

(Fig. 1). The tree is based on the Angiosperm Phylogeny Website (Stevens, 2001 onwards) and was 217 

further refined based on published molecular phylogenies (Appendix S2). In this way, we could 218 

determine the phylogenetic position of 128 species. However, as some of these species tolerate a 219 

wide range of moisture conditions (see Appendix S1), the phylogenetic analyses involving EIVM 220 

were limited to 119 species. 221 

By using the phylogenetic tree in Fig. 1 we performed an Abouheif (1999) test to assess whether 222 

isoprenoids emitters and EIVM show phylogenetic signal at this taxonomic scale. To test the 223 

association between phylogenetic signal and hygrophily we used the Ellenberg indicator values for 224 

moisture. By contrast, for testing for phylogenetic signal in isoprene and monoterpene emission 225 

capability, we performed two distinct tests on the Boolean, emitting/non-emitting (0/1) classes of 226 

both isoprenoid emission types. 227 

Next, we used the phylogeny to analyze the relationship between Ellenberg indicator values and 228 

isoprenoid emission. Therefore, we built Bayesian Phylogenetic Mixed Models using the 229 

MCMCglmm R package (Hadfield 2010, R Core Team 2012), with either isoprene (emitter/non-230 

emitter) or monoterpene (emitter/non-emitter) emission as binary dependent variables and EIVM as 231 

explanatory variable. The mixed model implemented in MCMCglmm can incorporate the 232 
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phylogenetic relationships among species as a random factor, thereby controlling for the non-233 

independence of data points due to shared ancestry. 234 

 235 

Narrow-scale phylogenetic analysis on Salicaceae 236 

Leaf samples were collected from Salix and Populus species (Appendix S3) and stored at -80°C 237 

until DNA extraction. We selected Populus and Salix because i) species of these two genera play an 238 

important role in the woody Mediterranean and European flora, ii) all species emit isoprene, and iii) 239 

species from both genera represent several EIVM classes, spanning from class 3 (e.g. Salix alpina) 240 

or 5 (Populus tremula) to class 8 (e.g. Salix viminalis or Populus nigra). 241 

Total DNA was extracted using Invitek Invisorb Spin Plant Mini Kit (Stratec GmbH, Berlin, 242 

Germany) according to manufacturer’s instructions, from approximately 100 mg of material, 243 

ground in the automatic grinding mill MM200 (Retsch GmbH, Haan, Germany). Isoprene synthase 244 

gene was amplified using PaIspS-Fw2 and PaIspS-Bw3 primers (Fortunati et al. 2008; Appendix 245 

S4). Polymerase chain reactions (PCRs) were performed in 100 µl containing 30 ng of template 246 

DNA, 5x PCR reaction buffer (Promega Corporation, Madison, Wisconsin, USA), 0.2 mM of each 247 

dNTPs, 0.2 µM of each primer, 2.0 mM MgCl2, 3.2 U Taq polymerase (GoTaq, Promega). All 248 

samples were amplified on a Mastercycler thermal cycler (Eppendorf, Hamburg, Germany), 249 

following two touchdown PCR profiles for Populus and Salix species, respectively: 1) 3 min at 250 

95°C, 15 touchdown cycles of 95°C 30s, 70°C 1’ (-1°C/cycle), 72°C 2’; 20 cycles of 95°C 30s, 251 

55°C 1’, 72°C 2’ and final extension at 72°C 10 min; 2) 3 min at 95°C, 15 touchdown cycles of 252 

95°C 30s, 65°C 1’ (-1°C/cycle), 72°C 2’; 20 cycles of 95°C 30s, 50°C 1’, 72°C 2’ and final 253 

extension at 72°C 10 min. 254 

PCR products were purified using GFX PCR DNA and Gel Band Purification Kit (GE Healthcare, 255 

Uppsala, Sweden), and directly sequenced on an ABI 3130 Avant automated sequencer (Life 256 

Technologies Corporation, Carlsbad, California, USA) using PaIspS-Fw2 and PaIspS-Bw3 primers 257 

and specific internal primers (Appendix S4). Purifications of sequencing reactions products 258 

followed the ethanol-sodium acetate precipitation protocol provided with the sequencing kit. 259 

Confirmation of sequence identity was performed by BLASTN search against the GenBank non-260 

redundant database using default parameters (Altschul et al. 1997). The resulting amino acid 261 

sequences were screened for the presence of specific residues that appear to be implicated in 262 

reducing active site volume in isoprene synthases relative to monoterpene synthases (Sharkey et al. 263 

2013).  264 

The eleven IspS coding sequences obtained from poplar and willow species where the EIVM was 265 

also identified, together with sequences of the same gene from other plant species (Appendix S3) 266 
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were aligned using ClustalX (Thompson et al. 1997). The phylogenetic analyses were conducted 267 

using the software MEGA v.5.05 (Tamura et al. 2011). Maximum likelihood phylogenetic trees 268 

(ML) were reconstructed and the reliability of tree branches was evaluated by using bootstrapping 269 

with 9999 pseudo-replicates (Felsenstein 1985).  Further, a ds/dn analysis using SNAP 270 

(Synonymous (ds) vs Nonsynonymous (dn) Analysis Program) at 271 

http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html, which calculates the proportion of 272 

synonymous substitutions per potential synonymous site and the proportion of nonsynonymous 273 

substitutions per potential nonsynonymous site using the Nei and Gojobori method (Nei and 274 

Gojobori 1986), was carried out. 275 

By using the IspS phylogenetic tree, an Abouheif test of phylogenetic signal was performed to 276 

evaluate whether the EIVM of the Salix and Populus species were related to changes in IspS 277 

sequences at this taxonomic scale. 278 

 279 

 280 

RESULTS 281 

 282 

Among the woody species tested for emission of volatile isoprenoids, the proportion of isoprene-283 

emitting species was clearly higher in more hygrophilous EIVM classes, especially in class 8, where 284 

about 80% of the plants emit isoprene (Fig. 2a).  The trend was opposite for the emission of 285 

monoterpenes, with monoterpene-emitters being found more often in the more xeric Ellenberg 286 

classes (Fig. 2b). The association between the two classes of volatile isoprenoids and the moisture 287 

level that characterize the habitats of the Mediterranean woody species was confirmed by a non-288 

parametric Mann-Whitney Z-test. This test showed that the median EIVM is significantly higher in 289 

isoprene-emitting than in non-emitting species, while the EIVM is significantly lower in 290 

monoterpene emitters than in non-emitters (Fig. 3, p < 0.001 in both cases).  291 

A trend was also found when isoprenoid emission rates were attributed to EIVM classes. Plant 292 

species belonging to hygrophilous EIVM classes emitted more isoprene (Fig. 4a, p = 0.028), 293 

whereas the emission of monoterpenes was generally higher in the xeric EIVM classes (Fig. 4b, p = 294 

0.030). However, when differences of emission rates among EIVM classes were assessed 295 

statistically, only isoprene was significantly different (Kruskal-Wallis non-parametric test, p = 296 

0.0042, followed by post-hoc Dunn’s Multiple Comparison Test showing differences between 297 

means of EIVM contrasting classes, e.g. 2-6 and 7-8). In the case of monoterpenes, the Kruskal-298 

Wallis test yielded non-significant differences (p = 0.136), possibly because of the higher variability 299 

of the sampled emissions, and so we did not proceed with statistical mean separation among EIVM 300 
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classes. The presence of monoterpene emitters with and without storage organs among the sampled 301 

plant species might have contributed to make more variable the emission. As we only assessed 302 

emissions, not contents, we did not separate monoterpene emitters according to the presence of 303 

storage organs.  The different emission rates of isoprenoids, as highlighted above, were not 304 

associated with differences in the rates of photosynthesis among EIVM classes (data not shown).   305 

 306 

Since isoprene-emitters of hygrophyte EIVM classes are dominated by Salicaceae, and 307 

monoterpene-emitters of xeric EIVM classes mostly belong to Cistaceae and Pinaceae, a 308 

phylogenetic analysis was carried out to understand how the phylogeny could have interacted with 309 

the ecological signal.  310 

Evidence of evolutionary conservatism in Ellenberg’s indicator values was already found by 311 

Prinzing et al. (2001). In agreement with this former report, the Abouheif test showed significant 312 

phylogenetic signal in EIVM in our data set of woody species (C = 0.380, p = 0.001; 999 313 

permutations, 119 species). Likewise, the species also showed significant phylogenetic signal in 314 

both isoprene and monoterpene emitting competence (C = 0.547, p = 0.001, and C = 0.276, p = 315 

0.001 for isoprene and monoterpene, respectively; in both cases 999 permutations and 128 species 316 

were used). Accordingly, we may hypothesize that, at this broader phylogenetic scale, the species' 317 

capability to adapt to more or less xeric terrestrial environments and their isoprenoid emissions are 318 

both related to the evolutionary history of plants. In this view, EIVM and isoprenoids emissions 319 

refer to large-scale environmental gradients, sensu Silvertown et al. (2006, Figure 1). 320 

However, when controlling for phylogeny in the MCMCglmm analysis, we found that the presence 321 

of isoprene emission is not associated with Ellenberg indicator values (binomial phylogenetic mixed 322 

model: posterior mean 2.804, lower 95% credibility interval -2.236, upper 95% credibility interval  323 

7.272, p = 0.133). This is most likely due to the overwhelming influence of closely related, 324 

hygrophilous isoprene emitters (mainly Salicaceae) in the dataset. To the contrary, monoterpene 325 

emission is significantly less frequent in hygrophytes (binomial phylogenetic mixed model: 326 

posterior mean -0.465, lower 95% credibility interval -0.882, upper 95% credibility interval -0.124, 327 

p < 0.01), suggesting that the evolution of monoterpene emission is associated with transitions to 328 

more xeric habitats. The two traits (i.e. isoprene and monoterpene emission) were not significantly 329 

related to each other (binomial phylogenetic mixed model with isoprene emission as dependent 330 

variable: posterior mean: 3.146, lower 95% credibility interval -23.604, upper 95% credibility 331 

interval 28.925, p = 0.711), which suggests that the two traits are not complementary and their 332 

evolution is probably determined by separate ecological factors. 333 
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Since isoprene emitters belonging to Populus and Salix genera were clearly distributed along the 334 

gradient of hygrophily, we further explored whether this distribution was associated with 335 

phylogenetic differences, as inferred from differences in the isoprene synthase gene. Eleven partial 336 

genomic isoprene synthase sequences were identified in Populus and Salix species (Appendix S3). 337 

All sequences displayed high degree of homology (from 95% to 100%) with already available IspS 338 

sequences. All the sequences were screened for the presence of two Phe residues that are involved 339 

in reducing active site volume in isoprene synthases relative to monoterpene synthases (Sharkey et 340 

al. 2013). In addition, SNAP analysis demonstrated higher ds than dn in all sequences (average 341 

ds/dn pairwise comparison ratio = 8.29). 342 

Phylogenetic analysis was carried out by using the coding sequences of IspS of Populus and Salix 343 

species isolated in this study, together with poplar sequences available in GenBank 344 

(http://www.ncbi.nlm.nih.gov/genbank/) (listed in Appendix S3). When using Vitis vinifera and 345 

Pueraria montana as outgroups, the ingroup turned out to be monophyletic even if the relative 346 

position of the two outgroups has low bootstrap support. Two main clades were identified within 347 

the in-group, one clustering most Populus species and the other clustering Salix species (Fig. 5a, b). 348 

Furthermore, within the Populus clade, the species grouped according to section classification based 349 

on other markers (Eckenwalder 1996). An exception was represented by P. nigra, which was 350 

grouped within the Populus section in spite of being classified as a member of the Ageiros section 351 

(Eckenwalder, 1996). The ecological adaptation trait, as marked by the EIVM classes, and the 352 

pattern of nucleotide changes in IspS were not associated in poplar and willow species (Fig. 5b). 353 

This was further confirmed by the non-significant results of the Abouheif test (Abouheif C = 0.033; 354 

p = 0.357). 355 

 356 
 357 
DISCUSSION 358 
 359 

An association between isoprene emission and hygrophily was suggested by several independent 360 

observations: a) that isoprene is emitted at higher rates in hygrophyte forest plants than in more 361 

xeric plants of transitional woodlands and savannahs, e.g. in central Africa (Greenberg et al. 1999); 362 

(b) that isoprene emission is generally more common in fast-growing, water-spending species 363 

(Vickers et al. 2009). Perhaps this is in turn related to the phloem-loading mechanism, because 364 

isoprene emitters are characterized by symplastic phloem loading (Kerstiens & Possell 2001). 365 

Whether this trait is also related to fast-growth and hygrophily should be investigated; c) that 366 

isoprene emission is more common in mosses than in other clades of plants (Hanson et al. 1999). 367 

Hanson et al. (1999) suggested that isoprene emission by plants could have been an important 368 
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ancient mechanism of adaptation to terrestrial environment that increased tolerance to thermal 369 

stresses in environments not buffered by water. Vickers et al. (2009) argued that isoprene could also 370 

have helped early land plants cope with high oxidative stress in the atmosphere. 371 

Indeed, isoprene emission is more common and the emission rates are higher in the hygrohytes of 372 

the Italian flora that we have tested.  Emission rates expressed on a leaf area basis are reported here, 373 

but the trend would hold when expressing isoprene emission on a leaf mass basis, as leaves of 374 

hygrophytes are generally thinner than in xerophytes.   An exception to this trend was found in 375 

EIVM class 1. However, this xeric class includes only three species, and only one isoprene-emitting 376 

species, Chamaerops humilis, which is the sole representative of Arecaceae (the palm family) in 377 

mainland-Europe. This taxon evolved in moist tropical climates of the rain-forest biome, where it 378 

still harbors its highest diversity; most palms have a very low drought-tolerance, and the few 379 

species adapted to dry habitats are probably the result of recent radiation (Eiserhardt et al. 2011). 380 

Interestingly, a similar reasoning might apply to Myrtus communis, the only emitter found in EIVM 381 

class 2 (out of 16 tested taxa in this class), as this is the only European member of the tropical 382 

family Myrtaceae (Biffin et al. 2010). 383 

However, our large-scale phylogenetic analysis does not support the ecological value of these 384 

observations, because of the strong phylogenetic signal in isoprene emission; for instance, most 385 

isoprene emitting species in the more hygrophilous Ellenberg categories belong to Salicaceae (see 386 

Appendix S1). As the evolution of isoprene emission is not associated with evolutionary adaptation 387 

to hygrophily, our data suggests that resistance to other environmental factors (such as coping with 388 

thermal or oxidative stresses (Vickers et al. 2009)) might characterize isoprene emitters. On the 389 

other hand, our analysis has shown that, when the phylogenetic relationships are taken into account, 390 

monoterpene emission is more common in xeric species of the Italian woody flora, suggesting that 391 

monoterpenes evolved in arid habitats, independently on whether the emission of monoterpenes 392 

occurs from storage pools or directly from photosynthesis, in a light-dependent way. Thus, different 393 

classes of isoprenoids might have evolved in response to different environmental factors, rather than 394 

being complementary of each other. 395 

It is unclear why the isoprene emission trait has been lost multiple times in terrestrial plants (Harley 396 

et al. 1999, Sharkey et al. 2005, Sharkey et al. 2013). Monson et al. (2013) recently noted that the 397 

high frequency of loss might indicate that isoprene emission is a favorable trait only in a limited 398 

number of environments, or for few plants. As monoterpenes and non-volatile isoprenoids are 399 

effective antioxidants protecting plants from many abiotic and biotic stressors (Vickers et al. 2009), 400 

our observations suggest that isoprene is synthesized and emitted only when more effective 401 

mechanisms of stress protection, especially regarding stress conditions associated with xerophily, 402 
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are not active. In fact, as shown in Appendix S1, most plant species emit either isoprene or 403 

monoterpenes, not both. The trade-off between isoprene and monoterpenes was also observed by 404 

Harrison et al. (2013) in a survey that was carried out at worldwide level, and therefore emerges as 405 

an important feature, not limited to Mediterranean conditions. The emission of monoterpenes seems 406 

to be a successful trait in alien species invading new territories, possibly again due to the ability of 407 

monoterpenes of conferring resistance against multiple stresses (Llusia et al. 2010). 408 

At a finer taxonomic scale, we then explored whether the hygrophily of isoprene emitters, as 409 

indicated by species assignment to the Ellenberg classes, showed phylogenetic signal within 410 

Salicaceae. Specifically, we tested whether isoprene emitters, phylogenetically close with respect to 411 

IspS, also shared similar EIVM classes. However, the distribution of EIVM classes was not 412 

associated to the phylogenetic patterns of IspS. We therefore hypothesize that IspS has not 413 

undergone convergent evolution linked to ecological pressure, namely to adaptation to xeric 414 

environments. Perhaps genes at earlier stages of the chloroplastic isoprenoid pathway are more 415 

pleiotropic and are therefore subjected to heavier selective pressure than IspS (Ramsay et al. 2009), 416 

or regulation of gene expression or enzyme activation, rather than gene sequence, provides 417 

sufficient response to changes in hygrophily. 418 

On the other hand, the phylogeny based on IspS showed that poplar and willow species could be 419 

properly separated, indicating a strong match with taxonomic information (Eckenwalder 1996), and 420 

confirming the value of genes underlying volatile isoprenoid biosynthesis as chemo-taxonomical 421 

markers (Loreto et al. 2009). A relevant exception to the clear match between IspS phylogeny and 422 

taxonomy in Mediterranean poplar species is represented by P. nigra, which grouped within the 423 

section Populus in spite of being a member of the section Ageiros, maybe as a consequence of its 424 

hybrid origin (Smith & Sytsma 1990). 425 

The public availability of IspS sequences in GenBank made it possible to match the phylogenies of 426 

our Mediterranean poplars with those of non-European poplars. The resulting ML tree showed that 427 

gene identity between poplars of different regions of the world is higher than the identity between 428 

genera sharing the same ecological environment. Moreover, P. euphratica, a species adapted to 429 

desert conditions (Qiu et al. 2011) was phylogenetically very distant from Mediterranean species 430 

that are adapted to xeric conditions. Accordingly, changes in IspS sequences on poplars of different 431 

habitats strongly reflect the species’ phylogenetic relationships rather than ecological adaptation. 432 

Therefore, the gene evolution and function (i.e. isoprene emission) appears to be a strong 433 

phylogenetic trait that did not undergo adaptive modification in recent evolutionary time. This 434 

observation is in good agreement with the outlier behavior of Chamaerops humilis (Arecaceae) and 435 

Myrtus communis (Myrtaceae): in spite of their xeric nature, both these plants have retained their 436 
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ancestral isoprene-emission character. A similar conclusion was reached when analyzing isoprenoid 437 

emissions in oaks (Loreto et al. 1998; Loreto et al. 2009). Similarly, also monoterpene-emitting 438 

taxa, like e.g. the few Betula species that can be found in the Mediterranean area, in clearly 439 

hygrophytic habitats, may have retained this trait due to a strong phylogenetic signal rather than 440 

with their present-day ecological distribution. 441 

In conclusion, we surmise that biosynthesis and emission of different volatile isoprenoids have 442 

likely evolved in response to different stimuli. Isoprene likely has evolved independently many 443 

times, characterizing about all vascular plants, from ferns to angiosperms. It might be a primitive 444 

adaptive trait to terrestrial life, which might not have further evolved in response to more recent 445 

ecological pressures, being rather lost in favor of more effective protective mechanisms, in 446 

agreement with the ‘opportunistic’ hypothesis put forward by Owen & Peñuelas (2005). 447 

Monoterpenes might have evolved to adapt to xeric environments and might yet be an important 448 

adaptive trait in response to drought in the Mediterranean flora. Further studies are needed to test 449 

these conclusions, both completing the current survey of European flora, and, at an even wider 450 

level, providing more data about vegetation worldwide.  451 

 452 
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 638 
FIGURE LEGENDS 639 

 640 

Figure 1. Cladogram describing, for the 128 species subjected to broad-scale phylogenetic analysis, 641 

phylogenetic position, isoprenoid emissions capability (black circles; i = isoprene emitter, m = 642 

monoterpene emitter), and Ellenberg indicator values for moisture (EIVM). 643 

 644 

Figure 2. Fraction of isoprene (A) and monoterpene (B) emitters in the different classes of the 645 

woody plant species of the Italian flora as ranked for hygrophily according to the Ellenberg 646 

indicator values for moisture (EIVM: 1 = driest; 12 = wettest). Main families of isoprene 647 

(Salicaceae) and monoterpene (Pinaceae, Cistaceae and Betulaceae) emitters are shown with 648 

different bar patterns, as indicated in the figure legend. Statistical analysis is shown in Figure 3. 649 

 650 

Figure 3. Box plots of the distribution in classes of Ellenberg indicator values for moisture (EIVM) 651 

of isoprene (grey) and monoterpene (white) emitters versus non-emitters of the woody Italian flora 652 

(see Figure 1). Boxes indicate 25-75 percentiles of the collected data. The lines inside boxes 653 

indicate the median values. Bars outside boxes indicate the 5-95 percentiles of data, and circles 654 

indicate outlier data. A non-parametric Mann-Whitney Z-test was used for comparing median 655 

EIVM between emitters and non-emitters. Significant differences with respect to non-emitters were 656 

found for both isoprene-emitters (Z = 3.403; p < 0.001), and monoterpene-emitters (Z = -4.125; p < 657 

0.001). The latter is significant also after phylogenetic control, confirming the ecological relevance 658 

of this finding, while this is not the case for isoprene (see Results). 659 

 660 

Figure 4. Emission rates of isoprene (A) and monoterpenes (B) by woody species of the flora of 661 

Italy ranked according to the Ellenberg indicator values for moisture (EIVM). The means and 662 

standard errors of data collected through field measurements (n > 3) and surveys of available data 663 

sets are shown. Best fits based on linear regressions are shown, together with regression 664 

coefficients. The best fit lines showed a statistically significant trend toward higher emission of 665 

isoprene in hygrophytes (p = 0.028) and higher emission of monoterpenes in xerophytes (p = 666 

0.030). Further statistical analysis confirmed isoprene emission rates to be higher in hygrophytes 667 

(Kruskal-Wallis non-parametric test, p = 0.0042), and statistically significant among EIVM classes 668 

(Dunn’s Multiple Comparison Test, significantly different means are shown by different letters, p = 669 

0.05; class 1 was not included in the post-hoc test due to the low sample size (only one emitting 670 

species, as shown in the text)). The Kruskal-Wallis test yielded non-significant differences (p = 671 
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0.136) for monoterpenes, and therefore no test was performed to separate EIVM classes of 672 

monoterpene-emitters.  673 

 674 

Figure 5. Phylogenetic tree based on IspS coding sequences identified in this study for Populus and 675 

Salix species of the Italian flora (A). The numbers close to each species name refer to Ellenberg 676 

indicator values for moisture (n.a. = not available). The numbers next to each node are the bootstrap 677 

percentages from 10000 pseudo-replicates. Only bootstrap values above 50 % are presented on the 678 

tree. In (B) the phylogenetic tree based on available IspS coding sequences of Populus and Salix 679 

species is widened to compare with non-European poplar species, and with two outgroup species 680 

whose IspS sequence is also known. Black dots refer to sequences obtained in this research. The 681 

sections Populus (P), Aigeiros (A), Tacamahaca (Ta) and Turanga (Tu) are also indicated in (B). 682 
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 683 
 684 
Figure 1 685 
  686 

Page 23 of 40 Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

24 
 

 687 

 688 
 689 
Figure 2 690 
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Figure 4. 700 
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SUPPORTING INFORMATION 
 
Appendix S1. Attribution of woody species of the flora of Italy to classes of Ellenberg Indicator 
Values for Moisture (EIVM; 1 to 9 is the incremental scale for moisture, ? indicates species that 
tolerate a wide range of moisture conditions), and to isoprenoid emission types (I = isoprene; M = 
monoterpenes; NE = non-emitter; NA = data not available). The superscripted number indicates 
references are available, as reported at the end of the table. 
 

Family Species EIVM 
Isoprenoid 
Emission 

Pinaceae Abies alba Miller 4 I+M 
3
 

Pinaceae Abies nebrodensis (Lojac.) Mattei 3 NE
 2
 

Aceraceae Acer campestre L. 5 M 
3
 

Aceraceae Acer lobelii Ten. 5 NA 

Aceraceae Acer monspessulanum L. 3 M 
3
 

Aceraceae Acer obtusatum W. et K. 4 M 
1
 

Aceraceae Acer platanoides L. ? M 
3
 

Aceraceae Acer pseudoplatanus L. 5 NE 
4
 

Fabaceae Adenocarpus complicatus (L.) Gay 3 NA 

Betulaceae Alnus cordata (Loisel.) Desf. 6 M 
3
 

Betulaceae Alnus glutinosa (L.) Gaertner 9 M 
1
 

Betulaceae Alnus incana (L.) Moench 7 M 
3
 

Betulaceae Alnus viridis (Chaix) DC. 6 M 
3
 

Rosaceae Amelanchier ovalis Medicus 3 NA 

Fabaceae Anagyris foetida L. 2 NA 

Fabaceae Anthyllis barba-jovis L. 2 NA 

Ericaceae Arbutus unedo L. 3 M 
5
 

Asteraceae Artemisia arborescens L. 2 NA 

Fabaceae Astragalus massiliensis Lam. 2 NA 

Fabaceae Astragalus sempervirens Lam. 4 NA 

Berberidaceae Berberis aetnensis Presl 2 NA 

Berberidaceae Berberis vulgaris L. 4 I 
1
 

Betulaceae Betula nana L. 9 NA 

Betulaceae Betula pendula Roth 5 M 
3
 

Betulaceae Betula pubescens Ehrh. 7 M 
3
 

Apiaceae Bupleurum fruticosum L. 3 M 
7
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Buxaceae Buxus balearica Lam. 3 NA 

Buxaceae Buxus sempervirens L. 4 I+M 
3
 

Fabaceae Calicotome spinosa (L.) Link 2 NA 

Fabaceae Calicotome villosa (Poiret) Link 2 NA 

Ericaceae Calluna vulgaris (L.) Hull ? M 
8
 

Capparidaceae Capparis ovata Desf. 2 NA 

Capparidaceae Capparis spinosa L. 2 NA 

Corylaceae Carpinus betulus L. 7 M 
1
 

Corylaceae Carpinus orientalis Miller 4 NE 
3
 

Fagaceae Castanea sativa Miller 5 M 
3
 

Ulmaceae Celtis aetnensis (Tornabene) Strobl 3 NA 

Ulmaceae Celtis australis L. 3 NA 

Fabaceae Ceratonia siliqua L. 1 M 
1,9
 

Fabaceae Cercis siliquastrum L. 4 NE 
3
 

Arecaceae Chamaerops humilis L. 1 I 
10
 

Cistaceae Cistus albidus L. 2 M 
1,9
 

Cistaceae Cistus clusii Dunal 2 NA 

Cistaceae Cistus corsicus Loisel. 2 NA 

Cistaceae Cistus creticus L. 2 NA 

Cistaceae Cistus crispus L. 2 NA 

Cistaceae Cistus incanus L. 2 M 
1
 

Cistaceae Cistus laurifolius L. 2 NA 

Cistaceae Cistus monspeliensis L. 2 M 
1
 

Cistaceae Cistus parviflorus Lam. 2 NA 

Cistaceae Cistus salvifolius L. 2 M 
6
 

Ranunculaceae Clematis alpina (L.) Miller 5 NA 

Ranunculaceae Clematis cirrhosa L. 2 NA 

Ranunculaceae Clematis flammula L. 3 NA 

Ranunculaceae Clematis vitalba L. 5 NA 

Ranunculaceae Clematis viticella L. 4 NA 

Cneoraceae Cneorum tricoccon L. 2 NA 

Fabaceae Colutea arborescens L. 3 NA 

Coriariaceae Coriaria myrtifolia L. 3 NA 

Cornaceae Cornus mas L. 5 NA 

Cornaceae Cornus sanguinea L. 6 NA 

Fabaceae Coronilla emerus L. 4 NA 

Fabaceae Coronilla juncea L. 2 NA 

Fabaceae Coronilla valentina L. 2 NA 

Corylaceae Corylus avellana L. 6 NE 
3
 

Anacardiaceae Cotinus coggygria Scop. 3 NA 

Rosaceae Cotoneaster integerrimus Medicus 3 NA 

Rosaceae Cotoneaster nebrodensis (Guss.) Koch 3 NA 

Rosaceae Crataegus laciniata Ucria 3 NA 

Rosaceae Crataegus monogyna Jacq. 4 M 
8
 

Rosaceae Crataegus oxyacantha L. 5 NA 
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Asclepiadaceae Cynanchum acutum L. 7 NA 

Fabaceae Cytisus aeolicus Guss. 3 NA 

Fabaceae Cytisus scoparius (L.) Link 5 I 
6
 

Fabaceae Cytisus sessilifolius L. 5 NA 

Fabaceae Cytisus villosus Pourret 4 NA 

Thymelaeaceae Daphne alpina L. 3 NA 

Thymelaeaceae Daphne gnidium L. 3 I + M 
8
 

Thymelaeaceae Daphne laureola L. 5 I + M 
11
 

Thymelaeaceae Daphne mezereum L. 5 NA 

Thymelaeaceae Daphne oleoides Schreber 2 NA 

Thymelaeaceae Daphne sericea Vahl 3 NA 

Elaeagnaceae Elaeagnus angustifolia L. 3 NE
 2
 

Empetraceae Empetrum hermaphroditum Hagerup 4 NA 

Ephedraceae Ephedra distachya L. 3 NA 

Ephedraceae Ephedra fragilis Desf. 3 NA 

Ephedraceae Ephedra helvetica C.A. Meyer 3 NA 

Ephedraceae Ephedra major Host 3 NA 

Ericaceae Erica arborea L. 4 I+M 
3
 

Ericaceae Erica carnea L. 3 NE
 2
 

Ericaceae Erica cinerea L. 3 M 
8
 

Ericaceae Erica multiflora L. 3 I 
5
 

Ericaceae Erica scoparia L. 3 NE 
3
 

Ericaceae Erica sicula Guss. 2 NA 

Ericaceae Erica terminalis Salisb. 2 NA 

Celastraceae Euonymus europaeus L. 5 NA 

Celastraceae Euonymus latifolius (L.) Miller 5 NA 

Celastraceae Euonymus verrucosus Scop. 5 NA 

Euphorbiaceae Euphorbia dendroides L. 2 NA 

Fagaceae Fagus sylvatica L. 5 M 
3
 

Moraceae Ficus carica L. 7 I 
9
 

Rhamnaceae Frangula alnus Miller 7 I+M 
8
 

Rhamnaceae Frangula rupestris (Scop.) Schur 3 NA 

Oleaceae Fraxinus excelsior L. 7 NE 
3
 

Oleaceae Fraxinus ornus L. 4 NE 
3
 

Oleaceae Fraxinus oxycarpa Bieb. 7 NA 

Fabaceae Genista acanthoclada DC. 2 NA 

Fabaceae Genista aetnensis (Biv.) DC. 3 NA 

Fabaceae Genista anglica L. 3 I 
11
 

Fabaceae Genista aspalathoides Lam. 2 NA 

Fabaceae Genista cinerea (Vill.) DC. 3 NA 

Fabaceae Genista corsica (Loisel.) DC. 2 NA 

Fabaceae Genista ephedroides DC. 2 NA 

Fabaceae Genista morisii Colla 2 NA 

Fabaceae Genista salzmannii DC. 2 NA 

Cistaceae Halimium halimifolium (L.) Willk. 2 NA 
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Araliaceae Hedera helix L. 5 NE 
4
 

Elaeagnaceae Hippophae rhamnoides L. 7 M 
1
 

Cannabaceae Humulus lupulus L. 8 NE
 2
 

Aquifoliaceae Ilex aquifolium L. 5 NE 
3
 

Cupressaceae Juniperus communis L. 4 M 
3
 

Cupressaceae Juniperus oxycedrus L. 3 M 
3
 

Cupressaceae Juniperus phoenicea L. 2 M 
12
 

Cupressaceae Juniperus sabina L. 3 NA 

Cupressaceae Juniperus thurifera L. 3 NA 

Chenopodiaceae Kochia prostrata (L.) Schrader 3 NA 

Fabaceae Laburnum alpinum (Miller) B. et Presl 6 NA 

Fabaceae Laburnum anagyroides Medicus 5 I + M 
11
 

Pinaceae Larix decidua Miller 4 M 
3
 

Lauraceae Laurus nobilis L. 7 M 
21
 

Lamiaceae Lavandula angustifolia Miller 3 NA 

Lamiaceae Lavandula latifolia Medicus 3 NA 

Lamiaceae Lavandula multifida L. 3 NA 

Lamiaceae Lavandula stoechas L. 2 M 
6
 

Malvaceae Lavatera agrigentina Tineo 2 NA 

Malvaceae Lavatera maritima Gouan 2 NA 

Malvaceae Lavatera olbia L. 2 NA 

Malvaceae Lavatera triloba L. 2 NA 

Fabaceae Lembotropis nigricans (L.) Griseb. 4 NA 

Oleaceae Ligustrum vulgare L. ? NE
 2
 

Caprifoliaceae Lonicera alpigena L. 6 NA 

Caprifoliaceae Lonicera caprifolium L. 6 NA 

Caprifoliaceae Lonicera coerulea L. 8 NA 

Caprifoliaceae Lonicera etrusca Santi 3 NA 

Caprifoliaceae Lonicera implexa Aiton 3 NA 

Caprifoliaceae Lonicera nigra L. 5 NA 

Caprifoliaceae Lonicera peryclymenum L. ? NA 

Caprifoliaceae Lonicera stabiana Pasquale 2 NA 

Caprifoliaceae Lonicera xylosteum L. 5 NA 

Rosaceae Malus domestica Borkh. 5 NE 
3
 

Rosaceae Malus florentina (Zuccagni) Schneider 5 NA 

Rosaceae Malus sylvestris Miller 5 NA 

Rosaceae Mespilus germanica L. 4 NA 

Myrtaceae Myrtus communis L. 2 I+M 
13
 

Apocynaceae Nerium oleander L. 7 NE 
6
 

Oleaceae Olea europaea L. var. sylvestris Brot. 1 M 
1,9
 

Corylaceae Ostrya carpinifolia Scop. 4 NE 
3
 

Santalaceae Osyris alba L. 3 NA 

Rhamnaceae Paliurus spina-christi Miller 3 NA 

Asclepiadaceae Periploca graeca L. 7 NA 

Asclepiadaceae Periploca laevigata Aiton 2 NA 
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Oleaceae Phillyrea angustifolia L. 2 M 
12
 

Oleaceae Phillyrea latifolia L. 4 M 
3
 

Lamiaceae Phlomis ferruginea Ten. 3 NA 

Lamiaceae Phlomis fruticosa L. 3 M 
1
 

Pinaceae Picea excelsa (Lam.) Link 4 M 
3
 

Pinaceae Pinus cembra L. 5 M 
3
 

Pinaceae Pinus halepensis Miller 2 M 
9
 

Pinaceae Pinus laricio Poiret 3 M 
1
 

Pinaceae Pinus leucodermis Antoine 2 M 
3
 

Pinaceae Pinus mugo Turra ? M 
3
 

Pinaceae Pinus nigra Arnold 2 M 
3
 

Pinaceae Pinus pinaster Aiton 2 M 
8
 

Pinaceae Pinus pinea L. 2 M 
3
 

Pinaceae Pinus sylvestris L. ? M 
3
 

Pinaceae Pinus uncinata Miller 5 M 
3
 

Anacardiaceae Pistacia lentiscus L. 2 M
 3
 

Anacardiaceae Pistacia terebinthus L. 2 NE 
1
 

Platanaceae Platanus orientalis L. 7 I 
3
 

Salicaceae Populus alba L. 7 I 
3
 

Salicaceae Populus canescens (Aiton) Sm. 7 I 
3
 

Salicaceae Populus nigra L. 8 I 
3
 

Salicaceae Populus tremula L. 5 I 
3
 

Rosaceae Prunus avium L. 5 NE 
3
 

Rosaceae Prunus brigantina Vill. 5 NA 

Rosaceae Prunus cerasifera Ehrh. 5 NE 
14
 

Rosaceae Prunus cocomilia Ten. 5 NA 

Rosaceae Prunus fruticosa Pallas 3 NA 

Rosaceae Prunus mahaleb L. 3 NA 

Rosaceae Prunus padus L. 8 NE 
3
 

Rosaceae Prunus prostrata Labill. 2 NA 

Rosaceae Prunus spinosa L. ? M 
11
 

Rosaceae Prunus webbii (Spach) Vierh. 2 NA 

Rubiaceae Putoria calabrica (L.fil.) Pers. 2 NA 

Rosaceae Pyracantha coccinea Roemer 3 NE 
14
 

Rosaceae Pyrus amygdaliformis Vill. 4 NA 

Rosaceae Pyrus pyraster Burgsd. 5 M 
1
 

Fagaceae Quercus cerris L. 5 NE 
15
 

Fagaceae Quercus coccifera L. 3 M 
3
 

Fagaceae Quercus frainetto Ten. 6 I 
3
 

Fagaceae Quercus ilex L. 3 M 
3
 

Fagaceae Quercus macrolepis Kotschy 3 M 
3
 

Fagaceae Quercus petraea (Mattuschka) Liebl. 5 I+M 
3
 

Fagaceae Quercus pubescens Willd. 3 I 
3
 

Fagaceae Quercus pyrenaica Willd. 5 I + M 
8
 

Fagaceae Quercus robur L. 7 I 
1
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Fagaceae Quercus suber L. 3 M 
9
 

Fagaceae Quercus trojana Webb 3 NE 
15
 

Fabaceae Retama raetam (Forsskal) Webb et Berth. 1 NA 

Rhamnaceae Rhamnus alaternus L. 3 NE 
16
 

Rhamnaceae Rhamnus alpinus L. 5 NA 

Rhamnaceae Rhamnus catharticus L. 4 I 
11
 

Rhamnaceae Rhamnus glaucophyllus Sommier 4 NA 

Rhamnaceae Rhamnus lojaconoi Raimondo 4 NA 

Rhamnaceae Rhamnus oleoides L. 2 NA 

Rhamnaceae Rhamnus persicifolius Moris 3 NA 

Rhamnaceae Rhamnus pumilus Turra 2 NA 

Rhamnaceae Rhamnus saxatilis Jacq. 3 NA 

Ericaceae Rhododendron ferrugineum L. 6 NA 

Ericaceae Rhododendron hirsutum L. 4 NA 

Anacardiaceae Rhus pentaphylla (Jacq.) Desf. 3 NA 

Anacardiaceae Rhus tripartita (Ucria) Grande 3 NA 

Saxifragaceae Ribes alpinum L. ? NA 

Saxifragaceae Ribes multiflorum Kit. 6 M 
1
 

Saxifragaceae Ribes nigrum L. 6 NE 
4
 

Saxifragaceae Ribes petraeum Wulfen 4 NA 

Saxifragaceae Ribes rubrum L. 8 NA 

Saxifragaceae Ribes sardoum Martelli 3 NA 

Saxifragaceae Ribes uva-crispa L. ? NA 

Rosaceae Rosa agrestis Savi 3 NA 

Rosaceae Rosa arvensis Hudson 5 NA 

Rosaceae Rosa canina L. 4 M 
1,17

 

Rosaceae Rosa gallica L. 4 M 
1
 

Rosaceae Rosa micrantha Sm. 3 NA 

Rosaceae Rosa pendulina L. 5 NA 

Rosaceae Rosa pouzinii Tratt. 3 NA 

Rosaceae Rosa sempervirens L. 3 NA 

Lamiaceae Rosmarinus officinalis L. 2 M 
1,13

 

Rosaceae Rubus caesius L. 7 M 
11
 

Rosaceae Rubus canescens DC. 4 NA 

Rosaceae Rubus hirtus W. et K. 4 NA 

Rosaceae Rubus idaeus L. 5 NE 
4
 

Rosaceae Rubus ulmifolius Schott 4 M 
8
 

Salicaceae Salix alba L. 8 I 
1
 

Salicaceae Salix alpina Scop. 3 I 
1
 

Salicaceae Salix apennina Skvortsov 7 I 
1
 

Salicaceae Salix atrocinerea Brot. 7 I 
1
 

Salicaceae Salix aurita L. 8 I 
1
 

Salicaceae Salix breviserrata Flod. 3 NA 

Salicaceae Salix caesia Vill. 4 NA 

Salicaceae Salix caprea L. 6 I 
3
 

Page 34 of 40Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7 
 

Salicaceae Salix cinerea L. 9 I 
1
 

Salicaceae Salix crataegifolia Bertol. 6 NA 

Salicaceae Salix daphnoides Vill. 4 NA 

Salicaceae Salix eleagnos Scop. 7 I 
1
 

Salicaceae Salix foetida Schleicher 4 NA 

Salicaceae Salix fragilis L. 8 I 
1
 

Salicaceae Salix glabra Scop. 4 I 
1
 

Salicaceae Salix glaucosericea Flod. 3 NA 

Salicaceae Salix hastata L. 6 NA 

Salicaceae Salix hegetschweileri Heer 3 NA 

Salicaceae Salix helvetica Vill. 4 NA 

Salicaceae Salix herbacea L. 7 I 
1
 

Salicaceae Salix myrsinifolia Salisb. 7 NA 

Salicaceae Salix pentandra L. 8 I 
1
 

Salicaceae Salix purpurea L. ? I 
1
 

Salicaceae Salix repens L. 8 I 
1
 

Salicaceae Salix reticulata L. 6 I 
1
 

Salicaceae Salix retusa L. 6 NA 

Salicaceae Salix serpillyfolia Scop. 4 NA 

Salicaceae Salix triandra L. 8 I 
1
 

Salicaceae Salix viminalis L. 8 I 
19
 

Salicaceae Salix waldsteiniana Willd. 6 NA 

Caprifoliaceae Sambucus nigra L. 5 NE 
11
 

Caprifoliaceae Sambucus racemosa L. 5 NE 
11
 

Rosaceae Sarcopoterium spinosum (L.) Spach 2 NA 

Smilacaceae Smilax aspera L. 3 NA 

Rosaceae Sorbus aria (L.) Crantz 4 NE 
3
 

Rosaceae Sorbus aucuparia L. 5 NE 
3
 

Rosaceae Sorbus chamaemespilus (L.) Crantz 4 NA 

Rosaceae Sorbus domestica L. 3 NE 
3
 

Rosaceae Sorbus torminalis (L.) Crantz 4 NE 
3
 

Fabaceae Spartium junceum L. 4 I 
9
 

Staphyleaceae Staphylea pinnata L. 5 NA 

Styracaceae Styrax officinalis L. 4 NE
 2
 

Tamaricaceae Tamarix africana Poiret 6 NE 
6
 

Tamaricaceae Tamarix canariensis Willd. 6 NA 

Tamaricaceae Tamarix dalmatica Baum 6 NA 

Tamaricaceae Tamarix gallica L. 6 NE 
21
 

Taxaceae Taxus baccata L. 5 M 
21
 

Fabaceae Teline monspessulana (L.) Koch 4 NA 

Lamiaceae Teucrium fruticans L. 2 NA 

Thymelaeaceae Thymelaea dioica (Gouan) All. 3 NA 

Thymelaeaceae Thymelaea hirsuta (L.) Endl. 2 NA 

Thymelaeaceae Thymelaea tartonraira (L.) All. 2 NA 

Lamiaceae Thymus capitatus (L.) Hofmgg. et Lk. 2 NA 
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Tiliaceae Tilia cordata Miller ? NE 
3
 

Tiliaceae Tilia platyphyllos Scop. 6 I 
11
 

Fabaceae Ulex europaeus L. 5 I + M 
11
 

Ulmaceae Ulmus canescens Melville 3 NA 

Ulmaceae Ulmus glabra Hudson 6 NE 
3
 

Ulmaceae Ulmus minor Miller 7 NE 
3
 

Ericaceae Vaccinium gaultherioides Bigelow 5 NA 

Ericaceae Vaccinium microcarpum (Turcz.) H. Fil. 9 NA 

Ericaceae Vaccinium myrtillus L. ? NE 
19
 

Ericaceae Vaccinium oxycoccos L. 9 NA 

Ericaceae Vaccinium uliginosum L. 9 NE 
20
 

Ericaceae Vaccinium vitis-idaea L. 4 NE 
19
 

Caprifoliaceae Viburnum lantana L. 4 NA 

Caprifoliaceae Viburnum opulus L. 7 NE 
11
 

Caprifoliaceae Viburnum tinus L. 4 NA 

Apocynaceae Vinca difformis Pourret 3 NA 

Apocynaceae Vinca major L. 4 NA 

Apocynaceae Vinca minor L. 5 NA 

Apocynaceae Vinca sardoa (Stearn) Pign. 3 NA 

Verbenaceae Vitex agnus-castus L. 7 M 
3
 

Vitaceae Vitis vinifera L. 7 M 
8
 

Rhamnaceae Ziziphus lotus (L.) Lam. 1 NA 

 
Common exotic woody plants 
 
Cupressaceae Cupressus sempervirens L. 3 M 

1
 

Platanaceae Platanus x acerifolia (Aiton) Wild. 8 I 
1
 

Salicaceae Populus canadensis L. 7 I 
1
 

Fabaceae Robinia pseudoacacia L. 4 I 
1
 

Oleaceae Syringa vulgaris L. 5 NE 
1
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Appendix S2. List of references used to reconstruct the phylogenetic relationships of species. 
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International Journal of Plant Sciences, 166, 311-318. 

Navarro, E., Bousquet, J., Moiroud, A., Munive, A., Piou, D. & Normand, P. (2003). Molecular 
phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. Plant 
and Soil, 254, 207-217. 

Potter, D., Eriksson, T., Evans, R.C., Oh, S., Smedmark, J.E., Morgan, D.R., Kerr, M., Robertson, 
K.R., Arsenault, M., Dickinson, T.A. & Campbell, C.S. (2007) Phylogeny and classification of 
Rosaceae. Plant Systematics and Evolution, 266, 5-43. 

Powell, E.A. & Kron, K.A. (2002). Hawaiian Blueberries and Their Relatives—A Phylogenetic 
Analysis of Vaccinium Sections Macropelma, Myrtillus, and Hemimyrtillus (Ericaceae). 
Systematic Botany, 27, 768-779. 

Wallander, E. & Albert, V.A. (2000). Phylogeny and classification of Oleaceae based on rps16 and 
trnL-F sequence data. American Journal of Botany, 87, 1827-1841. 

Wojciechowski, M.F., Lavin, M., & Sanderson, M.J. (2004) A phylogeny of legumes 
(Leguminosae) based on analysis of the plastid matK gene resolves many well-supported 
subclades within the family. American Journal of Botany, 91, 1846-1862.  

Page 38 of 40Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 
 

 
Appendix S3. IspS phylogenetic analysis on Mediterranean species of the genus Populus and Salix 
sampled for isoprene emission in this study and belonging to different classes of EIVM (Appendix 
S1), and on outgroups (North-American species) for which IspS accessions are available. Populus 
euphratica is denoted with *, as this species was sampled in this study but does not belong to the 
flora of Italy and is characterized by extreme adaptation to aridity and salinity (Ding et al. 2010). 
 

Species GenBank accessions References 

Populus grandidentata JN173038 Gray et al. unpublished 

Populus fremontii  JN173040 Gray et al. unpublished 

Populus deltoides JN173039 Gray et al. unpublished 

Populus trichocarpa EU693027 Calfapietra et al. (2007)  

Populus balsamifera JN173037 Gray et al. unpublished 

Populus tremuloides AY341431 Sharkey et al. (2005) 

Pueraria montana AY316691 Sharkey et al. (2005) 

Populus alba JQ943922 this study 

Populus euphratica (*) JQ943923 this study 

Populus nigra JQ943924 this study 

Populus tremula JQ943925 this study 

Salix apennina JQ943915 this study 

Salix serpyllifolia JQ943916 this study 

Salix alpina JQ943917 this study 

Salix glabra JQ943918 this study 

Salix pentandra JQ943919 this study 

Salix reticulata JQ943920 this study 

Salix viminalis JQ943921 this study 
 
Calfapietra, C., Wiberley, A.E., Falbel, T.G., Linskey, A.R., Scarascia Mugnozza, G., Karnosky, 

D.F., Loreto, F. & Sharkey. T.D. (2007) Isoprene synthase expression and protein levels are 
reduced under elevated O3 but not under elevated CO2 in field-grown aspen trees. Plant Cell 
and Environment, 30, 654-661. 

Ding, M., Hou, P., Shen, X., Wang, M., Deng, S., Sun, J., Xiao, F., Wang, R., Zhou, X., Lu, C., 
Zhang, D., Zheng, X., Hu, Z. & Chen, S. (2010) Salt-induced expression of genes related to 
Na(+)/K(+) and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. 
Plant Molecular Biology, 73, 251–269. 

Sharkey, T.D., Yeh, S., Wiberley, A.E., Falbel, T.G., Gong, D. & Fernandez, D.E. (2005) Evolution 
of the isoprene biosynthetic pathway in kudzu. Plant Physiology, 137, 700–712. 
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Appendix S4. Primers used in amplification and sequencing of IspS. Primers used in initial PCR 
reactions are highlighted in bold. 
 
PRIMER SEQUENCE 5’-3’ 

PaISPS-Fw2 gtcgtttggagcattgaagca 

ISPS_Nested1-F gttcgaacctcaatatagtg 

ISPS_Nested2-F gaggcgtgttggtcttgc 

ISPS_Nested3_F cggattatatgaagctctgc 

ISPS_Nested4_F gagttggagctatttacaga 

ISPS_Nested5_F gataccatgtcaaggaacca 

ISPS_Nested6_F gtacagtataaatttcatcag 

PaISPS-Bw3 ttatctctcaaagggtagaat 

ISPS_Nested1_R acagaattcgcagtttcacc 

ISPS_Nested2_R caggtttcgtctatcaaattc 

ISPS_Nested3_R ctgaggatgatttccatgca 

ISPS_Nested4_R cttaacaaagccctagaatatg 

ISPS_Nested5_R gagtctcatcatcctcattc 

ISPS_Nested6_R gttggttccttaacaaagccc  
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