
ParallelGlobal with Low Thread Interactions

Dániel Zombori
Department of Computational Optimization

University of Szeged
zomborid@inf.u-szeged.hu

Dr. Balázs Bánhelyi
Department of Computational Optimization

University of Szeged
banhelyi@inf.u-szeged.hu

ABSTRACT
Global is an optimization algorithm conceived in the ’80s.
Since then several papers discussed improvements of the al-
gorithm, but adapting it to a multi-thread execution envi-
ronment is only a recent branch of development [1]. Our
previous work focused on parallel implementation on a sin-
gle machine but sometimes the use of distributed systems
is inevitable. In this paper we introduce a new version of
Global which is the first step towards a fully distributed algo-
rithm. While the proposed implementation still works on a
single machine, it is easy to see how gossip based information
sharing can be built into and be utilized by the algorithm.
We show that ParallelGlobal is a feasible way to implement
Global on a distributed system. However, further improve-
ments must be made to solve real world problems with the
algorithm.

Categories and Subject Descriptors
[Computing methodologies]: Optimization algorithms;
[Computing methodologies]: Parallel algorithms

1. INTRODUCTION
Global is an optimization algorithm built from multiple mod-
ules working in an ensemble. While older implementations
viewed the algorithm as a whole, the most recent GlobalJ
framework handles algorithms as a collection of interlock-
ing modules. GlobalJ has several implementations for local
search algorithms and variants of Global. Main characteris-
tics of the single threaded version were established in [4]. In
recent years Global was further developed [6] and it has sev-
eral applications [5, 10] where it aids mostly other research
works. To speed up optimization processes we developed
an algorithm [1] that is capable of utilizing multiple compu-
tational threads of a single machine. It cannot be directly
implemented for distributed systems as the millisecond order
of magnitude latency in communication would significantly
slow down the synchronization of threads. To mitigate this
problem we propose ParallelGlobal, a parallel implementa-

tion suitable for distributed systems with high latency or
even with unreliable communication channels. In this paper
we introduce an experimental version whose main purpose
is to test the feasibility of the proposed solution. It provides
an algorithm skeleton for a real distributed implementation.

2. GLOBAL
Global is a global optimizer designed to solve black box un-
constrained optimization problems with low number of func-
tion evaluations and probabilistic guarantees [1, 2, 3, 4, 6, 7,
8, 11]. It uses local search algorithms to refine multiple sam-
ple points hence Global is a multi-start method. Global also
utilizes the Single Linkage Clustering algorithm to make an
estimation about the value of samples from the aspect of
optimization.

2.1 Updated Global Algorithm
While the updated Global algorithm has only minor changes
and in a lot of cases performs equally to the original, it is
superior in execution order, therefore we consider it as the
basis for improvements.

Global has an iterative framework where samples in an it-
eration compete with samples of previous iterations. The
original version contains four phases in every iteration con-
sisting of sampling, reduction, clustering and local search. In
the updated algorithm the clustering and local search phases
are merged by an implementation alternating between the
two.

Algorithm 1 describes the updated Global in detail. In lines
2-5 the algorithm performs the sampling phase. Selection of
sample points is stochastic, using uniform distribution in the
search space. The generated samples are placed in container
S which is a list structure. To find the most promising
samples, S is sorted and a reduced set of samples is acquired
with the lowest function values. R contains the reduced set,
which is removed from S.

When samples are ready to be processed, in lines 6-24 the
algorithm alternates between clustering and local searches
while there are unprocessed samples left. At 7-15 samples
in R are tried against the clustered samples. To determine if
ri ∈ R is part of cluster C we need the distance threshold dc.
dc depends on the dimension of the objective function, the
number of samples currently known in the clustering pro-
cess and the α ∈ [0, 1] parameter. The latter controls the
decrease speed of dc while more samples are added, in order



Algorithm 1 GLOBAL

1: while termination-criteria() is not true do
2: S ← S∪{ni = uniform(lb, ub) : i ∈ [1, new samples]}
3: S ← sort(F (si) < F (si+1)), si ∈ S
4: R← {si : i ∈ [1, reduced set size]}
5: S ← S \R
6: while R is not ∅ do
7: for C in clusters do

8: dc ←
(
1− α

1
|clustered|+|R|−1

) 1
dim(F )

9: N ←
{
ri : dc > ∥ri − cj∥∞ ∧ F (ri) > F (cj)

}
10: if N is not ∅ then
11: C ← C ∪N
12: R← R \N
13: repeat iteration
14: end if
15: end for
16: l← local-search(r1 ∈ R)

17: Cl, dmin ← argmin
C∈clusters

∥∥∥∥l − argmin
ci∈C,

F (ci)

∥∥∥∥
∞

18: if dmin < dc/10 then
19: Cl ← Cl ∪ {l, r1}
20: else
21: clusters← clusters ∪ {{l, r1}}
22: end if
23: R← R \ {r1}
24: end while
25: end while

to adapt to the expected decrease in distance between two
random samples. With dc set, sample pairs (ri ∈ R, cj ∈ C)
are evaluated to determine if ri is part of C. The two criteria
are having a clustered sample cj with lower function value
than ri and it being closer with the infinity norm (Man-
hattan distance) than dc. Samples in R satisfying both of
them are moved to the current cluster C. When a sample is
clustered, all samples in R can potentially be clustered too
therefore ri ∈ R is rechecked against C. After the for cy-
cle finished, samples in R cannot be the part of an existing
cluster therefore performing a local search is inevitable.

Local searches are performed in lines 16-23, where l is the
local optimum reached from r1. To determine if l is a newly
found local optimum a comparison with the cluster centers
is needed. The center of a cluster is the sample in the cluster
with the lowest function value. By finding the cluster with
the closest center the algorithm can decide if the optimum
is already found. If the distance dmin to the cluster Cl with
the closest center is lower than a tenth of the dc threshold, it
is considered the same local optimum. In this case l and r1
are added to Cl, otherwise they form a new cluster. Since r1
is either in an already existing cluster or in a newly created
one, we can remove it from R. Lines 6-24 are repeated until
R becomes empty. With no unclustered samples left Global
finished an iteration. The number of executed iterations is
limited by the termination criteria.

3. PARALLEL GLOBAL
Our goal is to derive an implementation from the updated
Global which is multi-threaded with low interactions be-
tween threads. The necessity for low thread interactions
comes from the fact that on huge scale optimization tasks a
single computer is not sufficient and in multi-computer envi-
ronments the communication between machines is relatively

slow compared to inter-thread communication. We address
this problem by removing the synchronization of computa-
tional threads and replacing it with a message based infor-
mation sharing scheme.

We can view ParallelGlobal as a naive parallelization of
Global. The main idea lies in the parallel execution of Global
iterations, while sharing information between computational
threads. Consequently, inter-thread communication is nec-
essary, however only a few selected data containers have to
be shared. Also, the shared containers have independent
data points and no deletions, therefore inconsistencies can-
not arise from data insertions. These considerations make
the algorithm for distributed systems viable.

3.1 ParallelGlobal Worker
Algorithm 2 describes the ParallelGlobal worker which is
the implementation of a single computational thread. The
worker might run on a machine by itself, or multiple workers
can use the multi-threaded environment of a computer.

Algorithm 2 ParallelGlobal

1: while termination-criteria() is not true do
2: exchange-data()
3: s← uniform(lb, ub)
4: R← reduce ({s})

5: dc ←
(
1− α

1
|clustered|+1−1

) 1
dim(F )

6: for C in clusters do
7: N ←

{
ri : dc > ∥ri − cj∥∞ ∧ F (ri) > F (cj)

}
8: C ← C ∪N
9: R← R \N
10: end for
11: l← local-search(r1 ∈ R)

12: Cl, dmin ← argmin
C∈clusters

∥∥∥∥l − argmin
ci∈C

F (ci)

∥∥∥∥
∞

13: if dmin < dc/10 then
14: Cl ← Cl ∪ {l, r1}
15: else
16: clusters← clusters ∪ {{l, r1}}
17: end if
18: end while

Similarly to Global, ParallelGlobal also runs in a loop to
complete iterations until a termination criterion is met. Un-
like Global, the new algorithm needs a data exchange step
(line 2). At the start of every iteration, received messages
can be processed and new messages can be sent according
to a suitable policy. The messages contain evaluated data
points arranged into clusters. These clusters can be handled
as if they were evaluated locally by clustering the center
point (minimum) of the cluster. If the center point cor-
responds to an existing cluster, the two clusters should be
merged while duplicate points are filtered out. Otherwise,
the received cluster describes a previously unknown local op-
timum and it can be added to the existing clusters without
modifications.

In lines 3 and 4 happens the sampling and reduction. In
previous Global versions sampling and reduction was per-
formed by taking a randomized sample set, then using a
sorted sample pool and taking the best samples out. Paral-
lelGlobal cannot utilize a common pool efficiently due to the
distributed nature of the system. In this version, for sim-



plicity we envisioned taking a single sample every iteration
and using stochastic sample reduction, possibly aided with
spatial measures on the samples information value. A more
complex but possible solution would be a distributed sample
pool. Samples could be transferred between local pools over
reliable data connection. This would ensure that a sample is
only evaluated by a single worker and would create a bigger
variety of samples to choose from.

In lines 5-10 occurs the clustering. It is very similar to the
original clustering algorithm. The only change is that we
know that no more than one sample is in R. This is also
true for the local search (lines 11-17) which is identical with
the original local search part.

3.2 Current implementation
The current implementation of ParallelGlobal only simulates
the described functionality with some simplification. First,
it runs on a single machine with multiple threads as a sin-
gle program. Second, messaging is simulated by synchro-
nization on the given containers while they are written, but
reading operations happen simultaneously. During cluster-
ization, the cluster list is only read to a point determined
before the process starts, hence new clusters will be excluded
from already started searches. This also resembles the effects
of messaging, like delays and losses in information spread.
Because no real messaging is present, the exchange-data()
function is only a placeholder for now. The reduce() func-
tion is also a placeholder and the subject of further develop-
ment. Currently, every sample is evaluated by the clustering
and local search steps.

4. RESULTS
The algorithm was examined from two aspects; comparison
with the updated Global in the number of function evalua-
tions and scaling of run time with additional threads. Nu-
merical results were obtained on the following functions,
definitions can be found in [9]. Ackley, Discus, Easom,
Griewank, Levy, Rastrigin, Schaffer, Schwefel, Shekel-5 ,
Shekel-7 , Shekel-10 , Shubert, Spikes1 and Zakharov. For the
evaluations we used two termination criteria, the maximum
number of function evaluations is 105 which is a soft con-
dition therefore overshoot is possible. To check whether an
optimum point is reached we use the following expression

|F (x∗)− F (x)| < 10−8 + |F (x∗)| · 10−6

where x∗ is a known global optimum point and x is the point
in question. To emulate computationally more expensive
functions we defined the hardness level. A hardness level of
h means that the function will be evaluated 10h times at
the requested point. Global is a stochastic optimizer, more-
over ParallelGlobal is also affected by the operating systems
thread scheduling, consequently run times and the number
of function evaluations can differ largely from one optimiza-
tion process to the other. To reduce the noise induced by
this, we obtained data points by averaging the results of 100
runs with every configuration. The algorithm parameteriza-
tions were identical except for the number of threads.

1Spikes function definition:

f(x) =

{
1002 + Πxisin(2πxi), if ∥x− (15.25, 15.75)∥2 > 1

4

1000, otherwise

Shubert

2
0

2
1

2
2

2
3

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative NFEV

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

2
−2

2
−1

2
0

2
1

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative Speed

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

Spikes

2
0

2
1

2
2

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative NFEV

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

2
−5

2
−4

2
−3

2
−2

2
−1

2
0

2
1

2
2

 1  2  4  8  16

P
a
ra

lle
lG

lo
b
a
l 
÷

 G
lo

b
a
l

Number of Threads

Relative Speed

10
0
 hardness

10
1
 hardness

10
2
 hardness

10
3
 hardness

Figure 1: Numeric results on Shubert (left) and
Spikes (right) test functions.

On the left side of Figure 1 we show results for the Shu-
bert test function, namely the number of function evalua-
tions (NFEV) and the speed of the optimization process,
both relative to Global. On the horizontal axes we see the
number of threads. The vertical axes show the number of
function evaluations and optimization processes run in unit
time respectively, both divided by the result of Global on a
single core. Shubert is a function with many local optima
and a flat global trend. In case of Global, NFEV is mostly
in the [500, 2000] range with an average of 900. On the top-
left graph relative NFEV shows that we have an increase
with a factor of two. On a single thread the multiplier of
2 shows that the algorithm is by itself inferior to Global.
This static multiplier is explained by the lack of a sample
pool which reduces the necessary number of local searches.
They create the bulk of the NFEV and while Global uses 1.5
local searches on average ParallelGlobal needs much more.
The dynamic growth is also explained by the local searches,
combined with multi-threading. Finding the global opti-
mum with local search takes several function evaluations in
sequence. Since multiple threads start local searches inde-
pendently, more evaluations can happen until one of them
reaches the global optimum. Moreover when the optimum
is found, the program does not terminate immediately, all
local searches have to finish. This phenomenon increases
the NFEV due to the intrinsic usage of multi-threading and
local searches.

The bottom-left graph of Figure 1 shows the speedup with
additional threads and different hardness values. While for



hardness 0 and 1 the additional threads caused a slowdown
due to synchronization time and increased NFEV, on com-
putationally more demanding versions we achieved a signif-
icant speedup. The results are promising because for the
hardness value of 3 on a single thread a function evaluation
took only 650µs on average. With higher evaluation times,
the addition of computational power would have more effect.

On the right side of Figure 1, we show the results for the
Spikes test function which also has many local optima and
a flat global trend. ParallelGlobal suffers from the lack of
a sample pool on the Spikes function too. On the other
hand, no dynamic change in NFEV is experienced. Without
a sample pool, ParallelGlobal had a much harder time find-
ing the global optimum, which would often exceed the 105

NFEV limit. This resulted in close to constant NFEV and
no saturation of threads. Based on the relative speed graph,
we gain speed linearly with additional CPU power in every
hardness level. Since the function is very cheap to evaluate
and ParallelGlobal has to do much more evaluations, only
hardness 3 gives an advantage to the multi-threaded imple-
mentation.

−4

−3

−2

−1

 0

 1

 2

a
c
k
le

y

d
is

c
u

s
5

e
a

s
o

m

g
ri
e

w
2

0

le
v
y

ra
s
tr

ig
in

−
2

0

s
c
h

a
f6

2

s
c
h

w
e

fe
l−

6

s
h

1
0

s
h

5

s
h

7

s
h

u
b

e
rt

s
p

ik
e

s

z
a

k
h

4
0

lo
g

2
 P

a
ra

lle
lG

lo
b

a
l 
÷

 G
lo

b
a

l

Relative runtimes with 16 threads and hardness 3

Figure 2: Relative runtimes on all test functions
with 16 threads and hardness 3.

On Figure 2 we show relative runtimes for the configuration
of 16 threads and hardness 3 on every test function. Since
the plot is logarithmic, 0 and values below mean similar and
better results compared to Global. On the functions which
experienced slowdown either the lack of a sample pool or
the intrinsic properties of ParallelGlobal prevented gains in
speed. About 50% of the functions with speedup were solved
successfully where the NFEV limit had no effects.

5. CONCLUSION
During our work we came to multiple important conclu-
sions about the ParallelGlobal algorithm. The most needed
change is the implementation of a distributed sample pool
with sample sharing between threads. Having a set of probe
points in the search space would ensure that local searches
only start from promising regions. This change would prob-
ably move the algorithm much closer to the NFEV values of
Global.

Many of our results show slowdown with ParallelGlobal,
but huge improvements as hardness values increase, Shu-

bert function is a good example. To keep our run times
manageable we kept the hardness value relatively low. By
going up from the current millisecond order to the second
or 10 second order in function evaluations we would have a
clearer image on how much speedup can we achieve. This
would still undershoot the evaluation time of many practical
problems, however it would be sufficient for proper testing
on distributed systems.

To achieve these changes, first the addition of a distributed
framework is needed. Both the sharing of probe samples
and cluster information would rely on it. It is also a key for
testing on computationally expensive problems.

6. ACKNOWLEDGMENTS
This work was supported by the Hungarian Government
under the grant number EFOP-3.6.1-16-2016-00008. The
project has been supported by the European Union, co-
funded by the European Social Fund, and by the János
Bolyai Research Scholarship of the Hungarian Academy of
Sciences.

7. REFERENCES
[1] B. Bánhelyi, T. Csendes, B. Lévai, L. Pál, and

D. Zombori. The GLOBAL Optimization Algorithm.
Springer, 2018.

[2] B. Betró and F. Schoen. Optimal and sub-optimal
stopping rules for the multistart algorithm in global
optimization. Mathematical Programming, 57:445–458,
1992.

[3] C. Boender and A. Rinnooy Kan. On when to stop
sampling for the maximum. Global Optimization,
1:331–340, 1991.

[4] C. Boender, A. Rinnooy Kan, G. Timmer, and
L. Stougie. A stochastic method for global
optimization. Mathematical Programming, 22:125–140,
1982.

[5] T. Csendes, B. Garay, and B. Bánhelyi. A verified
optimization technique to locate chaotic regions of
hénon systems. Journal of Global Optimization,
35:145–160, 2006.

[6] T. Csendes, L. Pál, J. Sendin, and J. Banga. The
global optimization method revisited. Optimization
Letters, 2:445–454, 2008.

[7] I. Lagaris and I. Tsoulos. Stopping rules for
box-constrained stochastic global optimization. In
Applied Mathematics and Computation, 197:622–632,
2008.

[8] J. Send́ın, J. Banga, and T. Csendes. Extensions of a
multistart clustering algorithm for constrained global
optimization problems. Industrial & Engineering
Chemistry Research, 48:3014–3023, 2009.

[9] S. Surjanovic and D. Bingham.
http://www.sfu.ca/%7essurjano/optimization.html.

[10] A. Szenes, B. Bánhelyi, L. Z. Szabó, G. Szabó,
T. Csendes, and M. Csete. Improved emission of siv
diamond color centers embedded into concave
plasmonic core-shell nanoresonators. Scientific
Reports, 7:an:13845, 2017.

[11] A. Törn. A search clustering approach to global
optimization, pages 49–62. Elsevier, North-Holland,
1978.


