Three genetically distinct ferlaviruses have varying effects on infected corn snakes (Pantherophis guttatus)

Pees, Michael and Schmidt, Volker and Papp, Tibor and Gellért, Ákos and Abbas, Maha (2019) Three genetically distinct ferlaviruses have varying effects on infected corn snakes (Pantherophis guttatus). PLOS ONE, 14 (6). ISSN 1932-6203

[img] Text

Download (4MB)


Ferlaviruses are important pathogens in snakes and other reptiles. They cause respiratory and neurological disease in infected animals and can cause severe disease outbreaks. Isolates from this genus can be divided into four genogroups–A, B, and C, as well as a more distantly related sister group, “tortoise”. Sequences from large portions (5.3 kb) of the genomes of a variety of ferlavirus isolates from genogroups A, B, and C, including the genes coding the surface glycoproteins F and HN as well as the L protein were determined and compared. In silico analyses of the glycoproteins of genogroup A, B, and C isolates were carried out. Three isolates representing these three genogroups were used in transmission studies with corn snakes (Pantherophis guttatus), and clinical signs, gross and histopathology, electronmicroscopic changes in the lungs, and isolation of bacteria from the lungs were evaluated. Analysis of the sequences supported the previous categorization of ferlaviruses into four genogroups, and criteria for definition of ferlavirus genogroups and species were established based on sequence identities (80% resp. 90%). Analysis of the ferlavirus glycoprotein models showed parallels to corresponding regions of other paramyxoviruses. The transmission studies showed clear differences in the pathogenicities of the three virus isolates used. The genogroup B isolate was the most and the group A virus the least pathogenic. Reasons for these differences were not clear based on the differences in the putative structures of their respective glycoproteins, although e.g. residue and consequential structure variation of an extended cleavage site or changes in electrostatic charges at enzyme binding sites could play a role. The presence of bacteria in the lungs of the infected animals also clearly corresponded to increased pathogenicity. This study contributes to knowledge about the structure and phylogeny of ferlaviruses and lucidly demonstrates differences in pathogenicity between strains of different genogroups.

Item Type: Article
Additional Information: Bolyai Kutatói Ösztöndíj (BO/00569/15) Papp Tibor részére
Subjects: S Agriculture / mezőgazdaság > SV Veterinary science / állatorvostudomány
Depositing User: MTMT SWORD
Date Deposited: 25 Sep 2019 16:49
Last Modified: 26 Sep 2019 04:38

Actions (login required)

Edit Item Edit Item