Principles of tumorigenesis and emerging molecular drivers of SHH-activated medulloblastomas

Menyhart, Otilia and Győrffy, Balázs (2019) Principles of tumorigenesis and emerging molecular drivers of SHH-activated medulloblastomas. ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 6 (5). pp. 990-1005. ISSN 2328-9503


Download (1MB) | Preview


SHH-activated medulloblastomas (SHH-MB) account for 25-30% of all medulloblastomas (MB) and occur with a bimodal age distribution, encompassing many infant and adult, but fewer childhood cases. Different age groups are characterized by distinct survival outcomes and age-specific alterations of regulatory pathways. Here, we review SHH-specific genetic aberrations and signaling pathways. Over 95% of SHH-MBs contain at least one driver event - the activating mutations frequently affect sonic hedgehog signaling (PTCH1, SMO, SUFU), genome maintenance (TP53), and chromatin modulation (KMT2D, KMT2C, HAT complexes), while genes responsible for transcriptional regulation (MYCN) are recurrently amplified. SHH-MBs have the highest prevalence of damaging germline mutations among all MBs. TP53-mutant MBs are enriched among older children and have the worst prognosis among all SHH-MBs. Numerous genetic aberrations, including mutations of TERT, DDX3X, and the PI3K/AKT/mTOR pathway are almost exclusive to adult patients. We elaborate on the newest development within the evolution of molecular subclassification, and compare proposed risk categories across emerging classification systems. We discuss discoveries based on preclinical models and elaborate on the applicability of potential new therapies, including BET bromodomain inhibitors, statins, inhibitors of SMO, AURK, PLK, cMET, targeting stem-like cells, and emerging immunotherapeutic strategies. An enormous amount of data on the genetic background of SHH-MB have accumulated, nevertheless, subgroup affiliation does not provide reliable prediction about response to therapy. Emerging subtypes within SHH-MB offer more layered risk stratifications. Rational clinical trial designs with the incorporation of available molecular knowledge are inevitable. Improved collaboration across the scientific community will be imperative for therapeutic breakthroughs.

Item Type: Article
Subjects: R Medicine / orvostudomány > RC Internal medicine / belgyógyászat > RC0254 Neoplasms. Tumors. Oncology (including Cancer) / daganatok, tumorok, onkológia
Depositing User: MTMT SWORD
Date Deposited: 27 Nov 2019 13:10
Last Modified: 27 Nov 2019 13:10

Actions (login required)

Edit Item Edit Item