Ujfalussy, Balázs B. and Makara, Judit K. (2020) Impact of functional synapse clusters on neuronal response selectivity. NATURE COMMUNICATIONS, 11. pp. 1-14. ISSN 2041-1723
|
Text
s41467-020-15147-6.pdf Available under License Creative Commons Attribution. Download (24MB) | Preview |
Abstract
Clustering of functionally similar synapses in dendrites is thought to affect neuronal input-output transformation by triggering local nonlinearities. However, neither the in vivo impact of synaptic clusters on somatic membrane potential (sVm), nor the rules of cluster formation are elucidated. We develop a computational approach to measure the effect of functional synaptic clusters on sVm response of biophysical model CA1 and L2/3 pyramidal neurons to in vivo-like inputs. We demonstrate that small synaptic clusters appearing with random connectivity do not influence sVm. With structured connectivity, ~10–20 synapses/cluster are optimal for clustering-based tuning via state-dependent mechanisms, but larger selectivity is achieved by 2-fold potentiation of the same synapses. We further show that without nonlinear amplification of the effect of random clusters, action potential-based, global plasticity rules cannot generate functional clustering. Our results suggest that clusters likely form via local synaptic interactions, and have to be moderately large to impact sVm responses.
Item Type: | Article |
---|---|
Subjects: | R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában > R850-854 Experimental medicine / kisérleti orvostudomány R Medicine / orvostudomány > RC Internal medicine / belgyógyászat > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry / idegkórtan, neurológia, pszichiátria |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 16 Mar 2021 15:07 |
Last Modified: | 16 Mar 2021 15:07 |
URI: | http://real.mtak.hu/id/eprint/122442 |
Actions (login required)
![]() |
Edit Item |