Repository of the Academy's Library

What Mathematicians’ Claims Mean: In Defense of Hermeneutic Fictionalism

Forrai, Gábor (2010) What Mathematicians’ Claims Mean: In Defense of Hermeneutic Fictionalism. Magyar Filozófiai Szemle, 54 (4). pp. 191-203. ISSN 0025-0090

[img]
Preview
PDF
what_mathematicians_claims_mean.pdf

Download (151Kb)

Abstract

Hermeneutic fictionalism about mathematics maintains that mathematics is not committed to the existence of abstract objects such as numbers. Mathematical sentences are true, but they should not be construed literally. Numbers are just fictions in terms of which we can conveniently describe things which exist. The paper defends Stephen Yablo’s hermeneutic fictionalism against an objection proposed by John Burgess and Gideon Rosen. The objection, directed against all forms of nominalism, goes as follows. Nominalism can take either a hermeneutic form and claim that mathematics, when rightly understood, is not committed to the existence of abstract objects, or a revolutionary form and claim that mathematics is to be understood literally but is false. The hermeneutic version is said to be untenable because there is no philosophically unbiased linguistic argument to show that mathematics should not be understood literally. Against this I argue that it is wrong to demand that hermeneutic fictionalism should be established solely on the basis of linguistic evidence. In addition, there are reasons to think that hermeneutic fictionalism cannot even be defeated by linguistic arguments alone.

Item Type: Article
Subjects: B Philosophy. Psychology. Religion / filozófia, pszichológia, vallás > BA Epistemology / ismeretelmélet
B Philosophy. Psychology. Religion / filozófia, pszichológia, vallás > BD Speculative Philosophy / rendszeres filozófia > BD1 Metaphysics / metafizika
Depositing User: Gábor Forrai
Date Deposited: 27 Jan 2012 08:00
Last Modified: 12 Oct 2012 04:49
URI: http://real.mtak.hu/id/eprint/2759

Actions (login required)

View Item View Item