Quantum-Classical Simulation of Electron Localization in Negatively Charged Methanol Clusters

Mones, Letif and Rossky, Peter and Turi, László (2011) Quantum-Classical Simulation of Electron Localization in Negatively Charged Methanol Clusters. Journal of Chemical Physics, 135 (8). 084501. ISSN 1089-7690


Download (6Mb)


A series of quantum molecular dynamics simulations have been performed to investigate the energetic, structural, dynamic and spectroscopic properties of methanol cluster anions, [(CH3OH)n]– , (n = 50 – 500). Consistent with the inference from photo-electron imaging experiments, we find two main localization modes of the excess electron in equilibrated methanol clusters at ~200 K. The two different localization patterns have strikingly different physical properties, consistent with experimental observations, and are manifest in comparable cluster sizes to those observed. Smaller clusters (n≤128) tend to localize the electron in very weakly bound, diffuse electronic states on the surface of the cluster, while in larger ones the electron is stabilized in solvent cavities, in compact interior-bound states. The interior states exhibit properties that largely resemble and smoothly extrapolate to those simulated for a solvated electron in bulk methanol. The surface electronic states of methanol cluster anions are significantly more weakly bound than the surface states of the anionic water clusters. The key source of the difference is the lack of stabilizing free hydroxyl groups on a relaxed methanol cluster surface. We also provide a mechanistic picture that illustrates the essential role of the interactions of the excess electron with the hydroxyl groups in the dynamic process of excess electron transition from surface-bound states to interior-bound states.

Item Type: Article
Subjects: Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia
Depositing User: Dr. Túri László
Date Deposited: 12 Apr 2012 07:11
Last Modified: 31 Aug 2012 06:35

Actions (login required)

View Item View Item