Madarász, Ádám and Rossky, Peter and Turi, László (2009) Interior- and Surface-Bound Excess Electron States in Large Water Cluster Anions. Journal of Chemical Physics, 130 (12). p. 124319. ISSN ISSN 1089-7690
|
PDF
MS_repository_JCP_2009_130_124319.pdf Download (218kB) |
Abstract
We present the results of mixed quantum/classical simulations on relaxed thermal nanoscale water cluster anions,(H_2O)^-_n, with n=200, 500, 1000 and 8000. By using initial equilibration with constraints, we investigate stable/metastable negatively charged water clusters with both surface-bound and interior-bound excess electron states. Characterization of these states is performed in terms of geometrical parameters, energetics, and optical absorption spectroscopy of the clusters. The calculations provide data characterizing these states in the gap between previously published calculations, and experiments, on smaller clusters and the limiting cases of either an excess electron in bulk water, or an excess electron at an infinite water/air interface. The present results are in general agreement with previous simulations and provide a consistent picture of the evolution of the physical properties of water cluster anions with size over the entire size range, including results for vertical detachment energies and absorption spectra that would signify their presence. In particular, the difference in size dependence between surface-bound and interior-bound state absorption spectra is dramatic, while for detachment energies the dependence is qualitatively the same.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia |
Depositing User: | Dr. Túri László |
Date Deposited: | 19 Apr 2012 06:45 |
Last Modified: | 04 Sep 2012 12:55 |
URI: | http://real.mtak.hu/id/eprint/2951 |
Actions (login required)
Edit Item |