REAL

Ferroptosis is Involved in Acetaminophen Induced Cell Death

Lőrincz, Tamás and Jemnitz, Katalin and Kardon, Tamás Zoltán and Mandl, József and Szarka, András (2015) Ferroptosis is Involved in Acetaminophen Induced Cell Death. PATHOLOGY AND ONCOLOGY RESEARCH, 21 (4). pp. 1115-1121. ISSN 1219-4956

[img] Text
art253A10.1007252Fs12253_015_9946_3_u.pdf
Restricted to Repository staff only

Download (181kB) | Request a copy

Abstract

The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

Item Type: Article
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia > QH3011 Biochemistry / biokémia
Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia > QH3015 Molecular biology / molekuláris biológia
R Medicine / orvostudomány > RC Internal medicine / belgyógyászat > RC0254 Neoplasms. Tumors. Oncology (including Cancer) / daganatok, tumorok, onkológia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 21 Jan 2016 15:17
Last Modified: 21 Jan 2016 15:17
URI: http://real.mtak.hu/id/eprint/32608

Actions (login required)

Edit Item Edit Item