REAL

NADPH oxidáz szabályozása és élettani szerepe = Regulation and physiological role of NADPH oxidase

Ligeti, Erzsébet and Geiszt, Miklós and Káldi, Krisztina and Molnár, Gergely and Patryk, Moskwa and Rada, Balázs (2006) NADPH oxidáz szabályozása és élettani szerepe = Regulation and physiological role of NADPH oxidase. Project Report. OTKA.

[img]
Preview
PDF
37755_ZJ1.pdf

Download (66kB)

Abstract

A kutatási program célja a neutrofil granulociták O2.--termeléséért felelős NADPH oxidáz enzim szabályozásának valamint a baktériumölésben játszott szerepének vizsgálata volt. Megállapítottuk, hogy az oxidáz-komplexben részt vevő Rac monomer G-fehérje GTP-kötött állapota elengedhetetlen a folyamatos enzimaktivitás fenntartásához. A GTPáz aktiváló fehérjék (GAPok) hatásosan és folyamatosan gátolják a O2- termelést. Két különböző, granulocitákban előforduló GAP esetén mutattunk ki eddig ismeretlen szabályozó mechanizmust. A p190GAP-nál egyes foszfolipidek a szubsztrát specificitást változtatják meg: a Rho-GAP aktivitást gátolják, míg a Rac-GAP aktivitást fokozzák. A p50GAP nativ állapotában viszont molekulán belüli interakciók egyaránt gátolják a Rho- és Rac-GAP aktivitást; a G-fehérje prenil csoportja szükséges a p50 megnyílásához. Intakt sejten a NADPH oxidáz elektrogén működése a plazma membrán depolarizációján keresztül gátolja a Ca2+ belépést. Kvantitatív méréseinkkel kimutattuk a baktériumölési képesség korrelációját egyrészt a O2.- termelés intenzitásával, másrészt a depolarizációval és a K+ leadás mértékével. Tehát a NADPH oxidáz kettős szerepet játszik a baktériumölésben: mind az elektrogén működése következtében létrejövő ionvándorlások, mind az enzimreakció végterméke, a szuperoxid kémiai hatása érvényesül. A kutatások adatokat szolgáltattak két emberi megbetegedés (CGD, Gaucher kór) kialakulásához, és 8 hallgató doktori értekezésének elkészítését támogatták. | NADPH oxidase is responsible for superoxide (O2.-) production by neutrophilic granulocytes. The aim of the project was to investigate the regulation of the enzyme and its role in killing of microorganisms. We demonstrated that sustained enzyme activity depends on the GTP-bound state of Rac, an essential subunit of the assembled enzyme. We revealed that GTPase activating proteins (GAPs) effectively and continuously down-regulate O2.- production. We showed novel regulatory mechanisms for two GAPs prevalent in granulocytes. In case of p190GAP, substrate specificity is altered by specific phospholipids: Rho-GAP activity is decreased whereas Rac-GAP activity is enhanced. In p50GAP, intramolecular interactions inhibit both Rac-GAP and Rho-GAP activity, but the prenyl group of the small GTPase is able to open up the GAP molecule. In intact cells, NADPH oxidase function is electrogenic and we showed that the resulting depolarization of the plasma membrane blocks Ca2+ entry. In a fine quantitative analysis we found correlation between killing of S. aureus and O2.- production resp. K+ efflux. We conclude that NADPH oxidase plays dual role in bacterial killing: both the initiated ion movements and the chemical product (O2.-) are vital for efficient elimination of some microorganisms. Our experiments provided new data on the pathomechanism of two human diseases (CGD and Gaucher) and supported the completion of the thesis of 8 PhD students.

Item Type: Monograph (Project Report)
Uncontrolled Keywords: Elméleti Orvostudomány
Subjects: R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában
Depositing User: Mr. Andras Holl
Date Deposited: 08 May 2009 11:00
Last Modified: 30 Nov 2010 23:33
URI: http://real.mtak.hu/id/eprint/339

Actions (login required)

Edit Item Edit Item