Revisiting the iron pools in cucumber roots: identification and localization

Kovács, Krisztina and Pechoušek, Jiří and Machala, Libor and Zbořil, Radek and Klencsár, Zoltán and Solti, Ádám and Tóth, Brigitta and Müller, Brigitta and Pham, Hong Diep and Kristóf, Zoltán and Fodor, Ferenc (2016) Revisiting the iron pools in cucumber roots: identification and localization. PLANTA, 244. pp. 167-179. ISSN 0032-0935

manuscript-Kovács-Planta-10.1007 s00425-016-2502-x.pdf - Submitted Version

Download (3MB) | Preview


Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I), have been investigated. The identification of Fe microenvironments was carried out with 57Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high resolution microscopy was applied for the localization. In plants supplied with 57FeIII-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As 57Fe-citrate is non-removable from the root samples of Fe deficient plants the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the FeII-bipyridyl complex, which accounts for ~30% of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When 57FeIII-EDTA or 57FeIII-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.

Item Type: Article
Subjects: Q Science / természettudomány > QD Chemistry / kémia > QD03 Inorganic chemistry / szervetlen kémia
Q Science / természettudomány > QK Botany / növénytan > QK10 Plant physiology / növényélettan
Q Science / természettudomány > QK Botany / növénytan > QK20 Plant morphology. Plant anatomy / növénymorfológia, -anatómia
Depositing User: Dr. Solti Ádám
Date Deposited: 30 Sep 2016 07:47
Last Modified: 01 Sep 2017 23:15

Actions (login required)

Edit Item Edit Item