REAL

Role of slow delayed rectifier K+-current in QT prolongation in the alloxan-induced diabetic rabbit heart

Lengyel, Csaba Attila and Virág, László and Kovács, P. P. and Kristóf, Attila and Pacher, Pál and Kocsis, E. and Koltay, Zs. M. and Nánási, P. P. and Tóth, Miklós and Kecskeméti, Valéria and Papp, Julius Gyula and Varró, András and Jost, Norbert (2008) Role of slow delayed rectifier K+-current in QT prolongation in the alloxan-induced diabetic rabbit heart. Acta Physiologica, 192 (3). pp. 359-368. ISSN 1748-1708

[img] Text
1109509.pdf
Restricted to Registered users only

Download (924kB) | Request a copy

Abstract

Aim: In diabetes mellitus, several cardiac electrophysiological parameters are known to be affected. In rodent experimental diabetes models, changes in these parameters were reported, but only limited relevant information is available in other species, having cardiac electrophysiological properties more resembling the human, including the rabbit. The present study was designed to analyse the effects of experimental type 1 diabetes on ventricular repolarization and the underlying transmembrane potassium currents in rabbit hearts. Methods: Diabetes was induced by a single injection of alloxan (145 mg kg(-1) i.v.). After the development of diabetes (3 weeks), electrophysiological studies were performed using whole cell voltage clamp and ECG measurements. Results: The QT(c) interval in diabetic rabbits was moderately but statistically significantly longer than measured in the control animals (155 +/- 1.8 ms vs. 145 +/- 2.8 ms, respectively, n = 9-10, P < 0.05). This QT(c)-lengthening effect of diabetes was accompanied by a significant reduction in the density of the slow delayed rectifier K+ current, I-Ks (from 1.48 +/- 0.35 to 0.86 +/- 0.17 pA pF(-1) at +50 mV, n = 19-21, P < 0.05) without changes in current kinetics. No differences were observed either in the density or in the kinetics of the inward rectifier K+ current (I-K1), the rapid delayed rectifier K+ current (I-Kr), the transient outward current (I-to) and the L-type calcium current (I-CaL) between the control and alloxan-treated rabbits. Conclusion: It is concluded that type 1 diabetes mellitus, although only moderately, lengthens ventricular repolarization. Diabetes attenuates the repolarization reserve by decreasing the density of I-Ks current, and thereby may enhance the risk of sudden cardiac death.

Item Type: Article
Subjects: Q Science / természettudomány > QP Physiology / élettan
Depositing User: Erika Bilicsi
Date Deposited: 11 Mar 2013 15:27
Last Modified: 27 Dec 2013 06:45
URI: http://real.mtak.hu/id/eprint/4388

Actions (login required)

Edit Item Edit Item