REAL

Interlacement of Double Curves of Immersed Spheres

Kalmár, Boldizsár (2016) Interlacement of Double Curves of Immersed Spheres. DISCRETE AND COMPUTATIONAL GEOMETRY, 55 (3). pp. 550-570. ISSN 0179-5376

[img] Text
art3A10.10072Fs00454_016_9770_x_u.pdf
Restricted to Registered users only

Download (690Kb) | Request a copy

Abstract

We characterize those unions of embedded disjoint circles in the sphere (Formula presented.) which can be the multiple point set of a generic immersion of (Formula presented.) into (Formula presented.) in terms of the interlacement of the given circles. Our result is the one higher dimensional analogue of Rosenstiehl’s characterization of words being Gauss codes of self-crossing plane curves. Our proof uses a result of Lippner (Manuscr Math 113(2):239–250, 2004) and we further generalize the ideas of de Fraysseix and de Mendez (Discrete Comput Geom 22:287–295, 1999), which leads us to directed interlacement graphs of paired trees and their local complementation. © 2016, Springer Science+Business Media New York.

Item Type: Article
Additional Information: N1 Funding Details: NK81203, OTKA, Országos Tudományos Kutatási Alapprogramok
Uncontrolled Keywords: Multiple points of immersions; Local complementation; Interlacement graph
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet
Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 03 Jan 2017 08:51
Last Modified: 03 Jan 2017 08:51
URI: http://real.mtak.hu/id/eprint/44232

Actions (login required)

View Item View Item