REAL

Grain boundaries in graphene grown by chemical vapor deposition

Biró, László Péter and Lambin, Philippe (2013) Grain boundaries in graphene grown by chemical vapor deposition. New Journal of Physics, 15. pp. 1-36. ISSN 1367-2630

[img]
Preview
Text
1367-2630_15_3_035024.pdf - Published Version

Download (3MB) | Preview

Abstract

The scientific literature on grain boundaries (GBs) in graphene was reviewed. The review focuses mainly on the experimental findings on graphene grown by chemical vapor deposition (CVD) under a very wide range of experimental conditions (temperature, pressure hydrogen/hydrocarbon ratio, gas flow velocity and substrates). Differences were found in the GBs depending on the origin of graphene: in micro-mechanically cleaved graphene (produced using graphite originating from high-temperature, high-pressure synthesis), rows of non-hexagonal rings separating two perfect graphene crystallites are found more frequently, while in graphene produced by CVD—despite the very wide range of growth conditions used in different laboratories—GBs with more pronounced disorder are more frequent. In connection with the observed disorder, the stability of two-dimensional amorphous carbon is discussed and the growth conditions that may impact on the structure of the GBs are reviewed. The most frequently used methods for the atomic scale characterization of the GB structures, their possibilities and limitations and the alterations of the GBs in CVD graphene during the investigation (e.g. under e-beam irradiation) are discussed. The effects of GB disorder on electric and thermal transport are reviewed and the relatively scarce data available on the chemical properties of the GBs are summarized. GBs are complex enough nanoobjects so that it may be unlikely that two experimentally produced GBs of several microns in length could be completely identical in all of their atomic scale details. Despite this, certain generalized conclusions may be formulated, which may be helpful for experimentalists in interpreting the results and in planning new experiments, leading to a more systematic picture of GBs in CVD graphene.

Item Type: Article
Subjects: Q Science / természettudomány > QC Physics / fizika > QC06 Physics of condensed matter / szilárdtestfizika
Depositing User: Andrea Bolgár
Date Deposited: 18 Apr 2013 15:36
Last Modified: 19 Apr 2013 07:19
URI: http://real.mtak.hu/id/eprint/4444

Actions (login required)

Edit Item Edit Item