Pyber, László and Szabó, Endre (2016) Growth in finite simple groups of Lie type. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 29. pp. 95146. ISSN 08940347
Text
growth.JAMS.pdf  Published Version Restricted to Registered users only Download (569Kb) 


Text
44517.pdf  Submitted Version Download (106Kb)  Preview 
Abstract
We prove that if $ L$ is a finite simple group of Lie type and $ A$ a set of generators of $ L$, then either $ A$ grows, i.e., $ \vert A^3\vert > \vert A\vert^{1+\varepsilon }$ where $ \varepsilon $ depends only on the Lie rank of $ L$, or $ A^3=L$. This implies that for simple groups of Lie type of bounded rank a wellknown conjecture of Babai holds, i.e., the diameter of any Cayley graph is polylogarithmic. We also obtain new families of expanders. A generalization of our proof yields the following. Let $ A$ be a finite subset of $ SL(n,\mathbb{F})$, $ \mathbb{F}$ an arbitrary field, satisfying $ \big \vert A^3\big \vert\le \mathcal {K}\vert A\vert$. Then $ A$ can be covered by $ \mathcal {K}^m$, i.e., polynomially many, cosets of a virtually soluble subgroup of $ SL(n,\mathbb{F})$ which is normalized by $ A$, where $ m$ depends on $ n$.  See more at: http://www.ams.org/journals/jams/000000000/S089403472014008213/home.html#sthash.Lp65MZge.dpuf
Item Type:  Article 

Uncontrolled Keywords:  GROWTH; Finite simple groups; ALGEBRAIC GROUPS 
Subjects:  Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra 
SWORD Depositor:  MTMT SWORD 
Depositing User:  MTMT SWORD 
Date Deposited:  04 Jan 2017 14:22 
Last Modified:  09 Jan 2017 08:39 
URI:  http://real.mtak.hu/id/eprint/44517 
Actions (login required)
View Item 